一种二氧化碳提纯液化的装置及方法与流程

文档序号:17320512发布日期:2019-04-05 21:31阅读:1028来源:国知局
一种二氧化碳提纯液化的装置及方法与流程

本发明涉及石油天然气勘探与开发技术领域,特别是一种油田co2驱产出气的提纯液化的装置及方法。



背景技术:

co2是主要的工业原料,也是重要的工业气体,在石油化工、电子工业、冶金工业、食品加工、精细有机合成等方面有着广泛的应用。另一方面,随着co2捕集技术的不断发展和co2驱产气在中低渗油藏开发中的优越性,并逐渐成为提高油气田采收率的重要方式。目前全世界正在实施的项目有120多个,而我国起步较晚,国内该类项目主要应用在大庆油田、江苏草舍油田、吉林油田、胜利油田等区块;

油田注入的co2一般来自邻近的天然co2气藏、化工厂和水泥厂等。对于矿产小规模的注入,通常采用槽车和槽船将低温液态co2运送到矿场,储存在液态co2储罐中,并利用液体的co2增压泵加压注入地下,对于大规模的油田注入,为降低整体成本,通常在前期铺设长距离管线,将co2以高压状态输送到矿场,并利用多级压缩机增压注入。

随着co2驱产的进行,注入的co2终将有一部分在油井中产出,现场经验及油藏模拟结果表明,在co2驱产的中后期,随着混相带的采出,会产生大量的富含co2的伴生气,为了进一步提高封存效率和co2利用率,需要将产出的co2进行处置及重复循环利用,进一步降低生产成本,提高环保效益。由于产出气中通常混有ch4、n2等杂质气体,直接回注会对混相造成一定影响,需要利用一定的气体分离手段将co2与杂质气体分离。目前常用的co2气体分离方式有化学吸收法、变压吸附法、膜分离法和低温分离法。

化学吸收法通过co2与溶剂发生化学反应来实现的分离并借助其逆反应进行溶剂再生,常用吸收剂为热碳酸钾或醇胺类溶液,具有较高的吸收率,回收co2纯度高(可达99.99%),适合浓度较低的混合气体处理。该方法具有可以从常压的低浓度的产出气中分离co2,分离后co2气体纯度高等优点,缺点是设备投资高、能耗高等问题;

变压吸附法是一种新型气体吸附分离技术,该技术利用吸附剂对于同一种气体在不同压力下的不同吸附量实现对气体的分离;该方法具有能耗较低、操作压力较低、气体纯度高等优点,缺点是吸附材料易失活,后期维护工作量大等问题。

膜分离技术依靠不同气体对不同薄膜材料的渗透率差异,实现气体的分离;该方法具有系统简单、能耗相对较低、设备体积小占地少等优点,缺点是无法实现大规模的生产。

低温精馏分离则是利用不同气体间的沸点差异,实现co2的液化与分离。该方法具有系统操作简单,系统操作弹性大,能适应不同的负荷工况,能耗低,投资合理,不仅可以回收液态的co2还可以回收液态混烃与一定浓度的富甲烷气态产品,具有较大经济效益。



技术实现要素:

为了解决现有技术的缺点,本发明提供了一种流程简单、调节灵活、工作可靠、易启动、易操作、维护方便、能耗低的二氧化碳提纯液化的装置及方法。

为了实现上述目的,本发明采用如下技术方案:

一种二氧化碳提纯液化的装置,包括换热器i1、脱混烃塔2、换热器ii4、脱混烃塔顶分离器5、换热器ⅴ6、co2提纯塔7、co2提纯塔顶分离器8、换热器iii9、换热器ⅳ10和换热器ⅵ24;所述换热器i1内设置有原料气通道ia1、富甲烷气体返流通道iia2和提纯后co2气体返流通道iiia3,所述换热器iii9内设置有提纯塔顶部气相通道ib1、甲烷气体返流通道iib2和提纯后co2液体返流通道iiib3,所述换热器ⅳ10内设置有低温co2气体返流通道ic1和提纯后co2液体通道iic2;所述的原料气通道ia1出口与换热器ⅵ24的热侧进口连接,所述的换热器ⅵ24的热侧出口与脱混烃塔2的进料口2-a连接,所述的脱混烃塔2的塔顶气体出口2-b与换热器ii4的热侧进口连接,所述的换热器ii4的热侧出口与脱混烃塔顶分离器5的进口连接,所述的脱混烃塔顶分离器5的底部液相出口一路与脱混烃塔顶2的回流口2-c连接,另一路与co2提纯塔7的进料口7-b连接,所述的脱混烃塔顶分离器5的气相出口与co2提纯塔7的进料口7-a连接,所述的脱混烃塔2的塔底出料口2-d与换热器ⅴ6进口连接,所述的换热器ⅴ6出口与混烃储槽连接,所述的co2提纯塔7顶部气相出口7-c与换热器iii9的通道ib1入口连接,所述的换热器iii9的通道ib1出口与co2提纯塔顶分离器8的进料口连接,所述的co2提纯塔顶分离器8的底部液相出口与co2提纯塔的回流口7-d连接,所述的co2提纯塔顶分离器8的顶部气相出口与换热器iii9的通道iib2进口连接,所述的换热器iii9的通道iib2出口与换热器i1的通道iia2进口连接,所述的换热器i1的通道iia2出口与用户净化单元连接,所述的co2提纯塔7的底部液相出口7-e分两路,一路与换热器iii9的通道iiib3进口连接,一路与换热器ⅳ10的通道iic2进口连接,所述的换热器ⅳ10的通道iic2出口与co2液体储存单元连接,所述的换热器iii9的通道iiib3出口与换热器ⅳ10的通道ic1进口连接,所述的换热器ⅳ10的返流通道ic1出口与换热器i1的通道iiia3进口连接,所述的换热器i1的通道iiia3出口与原料气压缩系统进口连接。

进一步的,所述的脱混烃塔2和co2提纯塔7为填料塔或板式塔。

进一步的,所述的脱混烃塔2釜底上设置有液位数字控制器11。

进一步的,所述的脱混烃塔2底部出料口2-d与换热器ⅴ6连接管线上设置有调节阀a12。

进一步的,所述的脱混烃塔顶分离器5上设有液位控制器16。

进一步的,所述的脱混烃塔顶分离器5底部液相通道出口一路与脱混烃塔顶2的回流口2-c连接管线上设置有流量数字控制器14、流量调节阀c15,另一路与co2提纯塔7的进料口7-b连接管线上设置有调节阀b13。

进一步的,所述的co2提纯塔7塔顶设有压力数字控制器17,塔底设有液位数字控制器20。

进一步的,所述的co2提纯塔7塔底液相出口一路与换热器iii9的通道iiib3进口连接管线上设有温度数字控制器19、温度调节阀d21,一路与换热器ⅳ10的通道iic2进口连接管线上设置有液位调节阀e22。

进一步的,所述co2提纯塔顶分离器8上设有温度数字控制器25。

进一步的,所述的换热器ⅰ1的通道iia2气相出口设有压力调节阀f18。

进一步的,装置还包括脱混烃塔再沸器3,所述脱混烃再沸塔3置于脱混烃塔2内,或者置于脱混烃塔2外。

进一步的,所述的换热器ⅵ24置于co2提纯塔7内,或者置于co2提纯塔7外。

一种二氧化碳提纯液化装置用于二氧化碳提纯液化的方法,包括以下步骤:

s1、经压缩净化的co2原料气体23进入换热器i1内的原料气通道ia1中,原料气的主要成分为:二氧化碳、氮气、甲烷、乙烷和重烃,其压力为3.39~3.41mpag,温度为41~43℃;原料气在通道ia1中预冷至26-28℃后,再进入换热器ⅵ24进一步预冷至-3~-5℃,然后再通过脱混烃塔2的进料口2-a进入脱混烃塔内进行精馏,脱混烃塔2内压力为3.29~3.31mpag、塔顶温度为-5~-7℃、塔底温度为110~120℃;重组分的混烃110-112℃从塔底出料口2-d流出,重组分混烃的主要成分为:甲烷、乙烷、丁烷和戊烷,再经调节阀12减压到1mpag,然后被换热器ⅴ6冷却到40℃后再送入混烃储槽内,脱混烃塔2顶部-6℃的气相流体从气体出口2-b流出后进入换热器ii4中被冷却到-32℃后进入脱混烃塔顶分离器5进行气液分离,底部液体分成两部分,一部分流体经过流量调节阀15后返回到脱混烃塔2顶部回流口2-c,另一部分流体经过调节阀13后送入co2提纯塔7进料口7-b内,脱混烃塔顶分离器5顶部气相送入co2提纯塔7进料口7-a内;

s2、来自进料口7-a、7-b的流体在co2提纯塔7内进行精馏,co2提纯塔7内压力为3.26~3.28mpag、塔顶温度为-33~-35℃、塔底温度为-3~-5℃;精馏后,-3~-5℃的co2液体从塔底液体出料口7-e流出,流体分成两部分,一部分液体经过液位调节阀22后进入换热器ⅳ10的通道iic2中被冷却-10℃,另一部分液体经过温度调节阀21降压到0.49~0.51mpag,温度降低到-55℃,再送入换热器iii9的通道iiib3中,被复温到-53℃再返回到换热器ⅳ10的通道ic1升温到-8℃后,再进入换热器i1的通道iiia3中再被复温到35℃后再返回原料气压缩系统进口处;

s3、co2提纯塔7顶部-33~-35℃气相从气相出口7-c流出进入换热器iii9的通道ib1被冷却到-50℃变成气液两相后进入co2提纯塔顶分离器8进行气液分离,顶部气相进入换热器iii9的通道iib2中作为冷源进行复温,再进入换热器i1的通道iia2换热继续升温到35℃后再经过调压阀18后送入用户净化单元,通道iia2出口气体的主要成分:甲烷、二氧化碳和氮气;co2提纯塔顶分离器8底部的低温液体返回到co2提纯塔7顶部的回流口7-d作为冷源冷凝塔内上升的气体。

进一步的,所述换热器ii4冷量由冰机制冷循环提供,冰机制冷剂可为丙烷或r22。

进一步的,所述步骤中循环气的压力范围为3.0~5.0mpag。

进一步的,经提纯液化后,产品的co2摩尔分数≥95%。

与现有技术相比,本发明的有益效果在于:

1、能耗低:利用闭式独立的环保制冷剂制冷循环作为主冷系统,低温段co2冷却主要靠混合气体自身压力节流膨胀制冷来提供冷量。两塔精馏的热量靠混合气体自身在不同工艺段的梯级温度提供。该工艺实现了不同温度段,不同冷量、热量的分配,降低了整个装置能耗。

2、流程简单、操作性强,本工艺采用了闭式独立的的环保工质制冷循环和co2混合气体节流制冷循环,整个工艺中制冷工质少,且两个系统相对独立,操作简单,易启动。

3、维护方便、工作可靠,本装置采用的动力设备较少,且动力设备工作的介质为单一介质,便于设备的维护,减少设备故障。

4、此外,该装置还具有安全可靠、实用性广等优点。

附图说明

图1为本发明具体实施方式中的结构示意图;

图中:1-换热器i,2-脱混烃塔,3-脱混烃塔再沸器,4-换热器ii,5-脱混烃塔顶分离器,6-换热器ⅴ,7-co2提纯塔,8-co2提纯塔顶分离器,9-换热器iii,10-换热器ⅳ,11-液位数字控制器,12-调节阀a,13-调节阀b,14-流量数字控制器,15-流量调节阀c,16-液位数字控制器,17-压力数字控制器,18-压力调节阀f,19-流量数字控制器,20-液位数字控制器,21-温度调节阀d,22-液位调节阀e,23-净化co2原料气,24-换热器ⅵ,25-温度数字控制器;

a1-原料气通道i、a2-富甲烷气返流通道ii、a3-提纯后co2气体返流通道iii、b1-提纯塔顶部气相通道i、b2-甲烷气体返流通道ii、b3-提纯后co2液体返流通道iii,c1-低温co2气体返流通道i、c2-提纯后液体co2通道ii。

具体实施方式

为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式,但本发明的保护范围不局限于以下所述。

一种二氧化碳提纯液化的装置,包括换热器i1、脱混烃塔2、脱混烃塔再沸器3、换热器ii4、脱混烃塔顶分离器5、换热器ⅴ6、co2提纯塔7、co2提纯塔顶分离器8、换热器iii9、换热器ⅳ10和换热器ⅵ24;所述换热器i1内设置有原料气通道ia1、富甲烷气体返流通道iia2和提纯后co2气体返流通道iiia3,所述换热器iii9内设置有提纯塔顶部气相通道ib1、甲烷气体返流通道iib2和提纯后co2液体返流通道iiib3,所述换热器ⅳ10内设置有低温co2气体返流通道ic1和提纯后co2液体通道iic2。

所述的原料气通道ia1出口与换热器ⅵ24的热侧进口连接,所述的换热器ⅵ24的热侧出口与脱混烃塔2的进料口2-a连接,所述的脱混烃塔2的塔顶气体出口2-b与换热器ii4的热侧进口连接,所述的换热器ii4的热侧出口与脱混烃塔顶分离器5的进口连接,所述的脱混烃塔顶分离器5的底部液相出口一路与脱混烃塔顶2的回流口2-c连接,另一路与co2提纯塔7的进料口7-b连接,所述的脱混烃塔顶分离器5的气相出口与co2提纯塔7的进料口7-a连接,所述的脱混烃塔2的塔底出料口2-d与换热器ⅴ6进口连接,所述的换热器ⅴ6出口与混烃储槽连接,所述的co2提纯塔7顶部气相出口7-c与换热器iii9的通道ib1入口连接,所述的换热器iii9的通道ib1出口与co2提纯塔顶分离器8的进料口连接,所述的co2提纯塔顶分离器8的底部液相出口与co2提纯塔的回流口7-d连接,所述的co2提纯塔顶分离器8的顶部气相出口与换热器iii9的通道iib2进口连接,所述的换热器iii9的通道iib2出口与换热器i1的通道iia2进口连接,所述的换热器i1的通道iia2出口与用户净化单元连接,所述的co2提纯塔7的底部液相出口7-e分两路,一路与换热器iii9的通道iiib3进口连接,一路与换热器ⅳ10的通道iic2进口连接,所述的换热器ⅳ10的通道iic2出口与co2液体储存单元连接,所述的换热器iii9的通道iiib3出口与换热器ⅳ10的通道ic1进口连接,所述的换热器ⅳ10的返流通道ic1出口与换热器i1的通道iiia3进口连接,所述的换热器i1的通道iiia3出口与原料气压缩系统进口连接。

所述的脱混烃塔2和co2提纯塔7为填料塔或板式塔。

所述的脱混烃塔2釜底上设置有液位数字控制器11。所述的脱混烃塔2底部出料口2-d与换热器ⅴ6连接管线上设置有调节阀a12。所述的脱混烃塔顶分离器5上设有液位控制器16。所述的脱混烃塔顶分离器5底部液相通道出口一路与脱混烃塔顶2的回流口2-c连接管线上设置有流量数字控制器14、流量调节阀c15,另一路与co2提纯塔7的进料口7-b连接管线上设置有调节阀b13。所述的co2提纯塔7塔顶设有压力数字控制器17,塔底设有液位数字控制器20。所述的co2提纯塔7塔底液相出口一路与换热器iii9的通道iiib3进口连接管线上设有温度数字控制器19、温度调节阀d21,一路与换热器ⅳ10的通道iic2进口连接管线上设置有液位调节阀e22。所述co2提纯塔顶分离器8上设有温度数字控制器25。所述的换热器ⅰ1的通道iia2气相出口设有压力调节阀f18。

装置还包括脱混烃塔再沸器3,所述脱混烃再沸塔3置于脱混烃塔2内,或者置于脱混烃塔2外。所述的换热器ⅵ24置于co2提纯塔7内,或者置于co2提纯塔7外。

一种二氧化碳提纯液化装置用于二氧化碳提纯液化的方法,包括以下步骤:

s1、经压缩净化的co2原料气体23进入换热器i1内的原料气通道ia1中,原料气的主要成分为:二氧化碳、氮气、甲烷、乙烷和重烃,其压力为3.39~3.41mpag,温度为41~43℃;原料气在通道ia1中预冷至26~28℃后,再进入换热器ⅵ24进一步预冷至-3~-5℃,然后再通过脱混烃塔2的进料口2-a进入脱混烃塔内进行精馏,脱混烃塔2内压力为3.29~3.31mpag、塔顶温度为-5~-7℃、塔底温度为110~120℃;重组分的混烃110-112℃从塔底出料口2-d流出,重组分混烃的主要成分为:甲烷、乙烷、丁烷和戊烷,再经调节阀12减压到1mpag,然后被换热器ⅴ6冷却到40℃后再送入混烃储槽内,脱混烃塔2顶部-6℃的气相流体从气体出口2-b流出后进入换热器ii4中被冷却到-32℃以下后进入脱混烃塔顶分离器5进行气液分离,底部液体分成两部分,一部分流体经过流量调节阀15后返回到脱混烃塔2顶部回流口2-c,另一部分流体经过调节阀13后送入co2提纯塔7进料口7-b内,脱混烃塔顶分离器5顶部气相送入co2提纯塔7进料口7-a内;

s2、来自进料口7-a、7-b的流体在co2提纯塔7内进行精馏,co2提纯塔7内压力为3.26~3.28mpag、塔顶温度为-33~-35℃、塔底温度为-3~-5℃;精馏后,-3~-5℃的co2液体从塔底液体出料口7-e流出,流体分成两部分,一部分液体经过液位调节阀22后进入换热器ⅳ10的通道iic2中被冷却-10℃,另一部分液体经过温度调节阀21降压到0.49~0.51mpag,温度降低到-55℃,再送入换热器iii9的通道iiib3中,被复温到-53℃再返回到换热器ⅳ10的通道ic1升温到-8℃后,再进入换热器i1的通道iiia3中再被复温到35℃后再返回原料气压缩系统进口处;

s3、co2提纯塔7顶部-33~-35℃气相从气相出口7-c流出进入换热器iii9的通道ib1被冷却到-50℃变成气液两相后进入co2提纯塔顶分离器8进行气液分离,顶部气相进入换热器iii9的通道iib2中作为冷源进行复温,再进入换热器i1的通道iia2换热继续升温到35℃后再经过调压阀18后送入用户净化单元,通道iia2出口气体的主要成分:甲烷、二氧化碳和氮气;co2提纯塔顶分离器8底部的低温液体返回到co2提纯塔7顶部的回流口7-d作为冷源冷凝塔内上升的气体。

其中,所述换热器ii4冷量由冰机制冷循环提供,冰机制冷剂可为丙烷或r22。所述步骤中循环气的压力范围为3.0~5.0mpag。经提纯液化后,产品的co2摩尔分数≥95%。

以上揭露的仅为本发明的较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作地等同变化,仍属本发明所涵盖的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1