一种使用截止阀的空调器及运行方法与流程

文档序号:18626949发布日期:2019-09-06 23:08阅读:356来源:国知局
一种使用截止阀的空调器及运行方法与流程

本发明属于空调技术领域,具体涉及一种使用截止阀的空调器及运行方法,改善了房间空调器除霜过程吸气压力和温度过低造成的除霜时间过长以及制热启动时换热器缺乏制冷剂造成的吸气低压问题,避免了除霜时间过长以及制热启动时换热器缺乏制冷剂导致的一系列系统问题,尤其是使用r290制冷剂的房间空调器。



背景技术:

结霜问题是影响房间空调器等热泵机组冬季正常制热的主要因素,尤其在寒冷的北方地区及寒冷湿度较大的南方,霜层较厚的情况下不仅会减弱室外机传热系数使空调器制热能力大幅度下降,严重制约着空气源热泵的发展。现有最常见且广泛应用于房间空调器除霜的逆循环除霜,是通过四通阀转向实现的一般制热循环的反向循环,四通阀转向后,室外机由制热过程的蒸发器变为冷凝器,压缩机出口的高温高压制冷剂逐渐化掉室外机的霜层。

r290密度较小,与r22空调器相比系统充注量更少,且由于排气温度较低,相比于氟利昂等会有更大比例的制冷剂储存在压缩机中,作为制冷工质时,系统中的制冷剂质量绝对值更少。尤其在冬季制热除霜过程中,排气温度较低及系统制冷剂循环流量较小的情况下不利于室外换热器上的霜层融化。同时除霜过程中持续的吸气压力温度过低,一旦在室外工况温度较低时,吸气压力有可能出现负压进而引发空调器安全性问题,同时较低的吸气压力和温度使得压缩机油池中溶解大量制冷剂,导致除霜结束后制热启动阶段换热器中制冷剂总量较少的问题。制热启动时制冷剂总量较少,尤其是使用粘度较高倾点较高的润滑油时有可能造成节流装置异常油堵塞。节流装置油堵不仅表现在压缩机功率、被测机能力持续较低,还会出现吸气负压现象,对于r290这种制冷工质来说,出现吸气负压时系统低压区一旦有泄露则有可能引发安全事故,且压缩机持续在这种情况下运行有可能会烧坏。

此外,由于除霜过程中室内外换热器均处于关闭状态,流经节流装置的制冷剂流量较小,储液器内持续的闪发现象使得吸气口压力、温度持续较低,制冷剂在经过节流装置节流后流经室内换热器时有较大的沿程阻力损失,使得吸气口压力、温度进一步降低,同时压缩机内将溶解更多制冷剂。



技术实现要素:

为了克服上述现有技术存在的问题,本发明的目的是提供一种使用截止阀的空调器及运行方法,通过在除霜循环的阀后与吸气管之间的管路上设置截止阀,控制节流装置开度及截止阀的开启与关闭,实现对除霜过程、制热过程启动阶段吸气口压力、温度的提高,同时使得压缩机排气压力保持在一定范围内,可避免制热过程启动阶段空调器产生吸气负压,造成安全隐患,也可防止除霜过程中油池温度过低溶解大量制冷剂。可一定程度上提高空调器的制冷剂循环流量,增大压缩机输出功率并缩短除霜、制热启动阶段时长。除霜结束时更少制冷剂溶解在压缩机油池中,且除霜结束室内换热器温度升高可以避免除霜结束后制冷剂迁移到室外换热器,同时通过提高制热启动阶段吸气压力,提高系统低压侧的温度,进而有效避免除霜结束再制热发生的节流元件异常油堵塞现象,提高系统可靠性。

为了达到上述目的,本发明采用如下技术方案:

一种使用截止阀的空调器,包括储液器1、压缩机2、四通换向阀3、室外换热器4、节流装置5、室内换热器6和截止阀7;

空调器部件间的连接关系如下:

当四通换向阀3切到制热模式时,有两种连接方式:一种是截止阀7处于开启状态,其开启时的流通面积与空调管路内截面积相同,压缩机2的出口通过四通换向阀3连接室内换热器6入口,室内换热器6出口分为两路,一路连接节流装置5,后经管路连接室外换热器4入口,室外换热器4出口通过四通换向阀3连接储液器1入口,另一路通过截止阀7连接在储液器1入口合并为一路,通过储液器1出口连接压缩机2入口,形成制热循环启动阶段的循环系统;另外一种是截止阀7处于关闭状态,压缩机2的出口通过四通换向阀3连接室内换热器6入口,室内换热器6出口连接节流装置5,后经管路连接室外换热器4入口,室外换热器4出口通过四通换向阀3连接储液器1入口,储液器1出口连接压缩机2入口形成制热循环系统;

当四通换向阀3切到除霜模式时,有两种连接方式:一种是截止阀7处于关闭状态,压缩机2出口通过四通换向阀3连接室外换热器4入口,室外换热器4出口连接节流装置5,后经管路连接室内换热器6入口,室内换热器6出口通过四通换向阀3连接储液器1入口,储液器1出口连接压缩机2入口形成除霜循环系统;另一种是截止阀7处于开启状态,压缩机2出口通过四通换向阀3连接室外换热器4入口,室外换热器4出口连接节流装置5,节流装置5出口分成两路,一路通过截止阀7连接四通换向阀3,另一路通过室内换热器6连接四通换向阀3,两路在四通换向阀3后、四通换向阀3中或四通换向阀3前合并为一路,通过管路连接储液器1入口,储液器1出口连接压缩机2入口形成除霜循环系统。

所述节流装置5采用开度能够调节的电磁阀或开度不能调节的毛细管。

所述截止阀7采用球阀。

所述的一种使用截止阀的空调器的运行方法,当四通换向阀3切到制热模式时,需要进行条件st判断,如果不满足条件st则截止阀7处于开启状态,其开启时的流通面积与空调管路内截面积相同,高温高压的制冷剂从压缩机2的出口排出经过四通换向阀3进入室内换热器6放热,室内换热器6出口的过冷制冷剂分为两路,第一路两相制冷剂经节流装置5的节流作用后进入室外换热器4吸热,过热制冷剂从室外换热器4出口流出后通过四通换向阀3进入储液器1,第二路两相制冷剂经截止阀7在储液器1入口处与第一路的过热制冷剂汇合,进入储液器1后从吸气插管进入压缩机2,形成制热过程启动阶段的循环过程;当满足条件st时,截止阀7处于关闭状态,高温高压的制冷剂从压缩机2的出口排出经过四通换向阀3进入室内换热器6放热,室内换热器6出口的过冷制冷剂经节流装置5的节流作用后,两相制冷剂进入室外换热器4内吸热,从室外换热器4出口流出的过热制冷剂通过四通换向阀3进入储液器1,从储液器1内的吸气插管进入压缩机2形成制热循环过程;

当四通换向阀3切到除霜模式时,需要进行条件p的判断,如果不满足条件p则截止阀7处于关闭状态,高温高压的制冷剂从压缩机2出口排出经过四通换向阀3进入室外换热器4放热用于化霜,室外换热器4出口流出的过冷制冷剂经节流装置5的节流作用后,两相制冷剂进入室内换热器6,在室内换热器6内没有换热,室内换热器6流出的没有过热度的制冷剂经四通换向阀3进入储液器1,从储液器1内的吸气插管进入压缩机2形成除霜循环系统;除霜模式下,如果满足条件p则截止阀7处于开启状态,高温高压的制冷剂从压缩机2排出经过四通换向阀3进入室外换热器4放热,室外换热器4出口流出的过冷制冷剂经节流装置5的节流作用后,两相制冷剂在节流装置5的出口分成两路,第一路流经截止阀7,第二路流经室内换热器6,在室内换热器6内没有换热,室内换热器6流出的没有过热度的制冷剂,两路在四通换向阀3后、四通换向阀3中或四通换向阀3前合并为一路并流入储液器1,通过储液器1内的吸气插管进入压缩机2形成除霜循环系统;

其中,当节流装置5为开度能够调节的电磁阀时,在不满足条件st的制热循环启动阶段其流通直径b保持为最大开度bmax;在除霜循环中其开度的控制通过压缩机2出口压力pd实现;当pd≤mpo时,则节流装置5开度b减小0.1bo,其中po为室内换热器6所处的室内环境温度to对应的饱和压力,m为1-1.8之间的任意值,bo为除霜循环开始时节流装置5的初始开度,且bo≤bmax,bmax=wd,d为管路直径,w为0.1-0.5之间的任意值;当pd>mpo时,则节流装置5开度b保持不变;此判断每30秒进行一次;

条件st采用时间判断或温度判断的其中一种,时间判断为:t≥t0是否满足,其中,t为空调器压缩机制热启动后运行的时间,t0选取40-300秒之间任意值;温度判断为:td≥to+5℃是否满足,其中,td为压缩机2出口温度,to为室内换热器6所处的室内环境温度;

条件p采用时间判断、温度判断或压力判断的其中一种,时间判断为:t≥t0是否满足,其中,t为除霜进行的时间,t0选取20-80秒之间的任意值;温度判断包括a、b两种,当条件p采用温度判断时仅选择a、b两种中的其中一种,a:tco≤tci是否满足,其中,tco为室内换热器6在除霜循环中的出口温度,tci为室内换热器6在除霜循环中的入口温度;b:ts≤to-δt是否满足,其中,ts为储液器1入口温度,to为室内换热器6所处的室内环境温度,δt为5-20摄氏度之间的任意值;压力判断包括c、d两种,当条件p采用压力判断时仅选择c、d两种中的其中一种,c:ps≤po-δp是否满足,其中,ps为储液器1入口压力,po为室内换热器6所处的室内环境温度to对应的饱和压力,δp为0.05-0.2兆帕之间的任意值;d:ps≤npo是否满足,其中,ps为储液器1入口压力,po为室内换热器6所处的室内环境温度to对应的饱和压力,n为0.1-0.9之间的任意值。

和现有技术相比较,本发明具备如下优点:

一种使用截止阀的空调器循环与传统空调器循环相比,通过在除霜循环的阀后与吸气口之间连接旁通管并设置截止阀,实现对制热过程启动阶段或除霜过程吸气口压力、温度的提高,同时使得压缩机排气压力保持在定范围内,可避免制热过程启动阶段空调器产生吸气负压造成安全隐患,也可防止除霜过程中油池温度过低溶解大量制冷剂。除霜结束时更少制冷剂溶解在压缩机油池中,且除霜结束室内换热器温度升高可以避免除霜结束后制冷剂迁移到室外换热器,同时通过提高制热启动阶段吸气压力,提高系统低压侧温度,进而有效避免除霜结束再制热发生的节流元件异常油堵塞现象,提高系统可靠性。

附图说明

图1是一种使用旁通管的空调器的实施方案1实例系统示意图。

具体实施方式

以下结合技术方案和附图详细叙述本发明的具体实施方式。

实施方案1:

一种使用截止阀的空调器,如图1所示,包括储液器1、压缩机2、四通换向阀3、室外换热器4、节流装置5、室内换热器6和截止阀7;

空调器部件间的连接关系如下:

当四通换向阀3切到制热模式时,有两种连接方式:一种是截止阀7处于开启状态,其开启时的流通面积与空调管路内截面积相同,压缩机2的出口通过四通换向阀3连接室内换热器6入口,室内换热器6出口分为两路,一路连接节流装置5,后经管路连接室外换热器4入口,室外换热器4出口通过四通换向阀3连接储液器1入口,另一路通过截止阀7连接在储液器1入口合并为一路,通过储液器1出口连接压缩机2入口,形成制热循环启动阶段的循环系统;另外一种是截止阀7处于关闭状态,压缩机2的出口通过四通换向阀3连接室内换热器6入口,室内换热器6出口连接节流装置5,后经管路连接室外换热器4入口,室外换热器4出口通过四通换向阀3连接储液器1入口,储液器1出口连接压缩机2入口形成制热循环系统;

当四通换向阀3切到除霜模式时,有两种连接方式:一种是截止阀7处于关闭状态,压缩机2出口通过四通换向阀3连接室外换热器4入口,室外换热器4出口连接节流装置5,后经管路连接室内换热器6入口,室内换热器6出口通过四通换向阀3连接储液器1入口,储液器1出口连接压缩机2入口形成除霜循环系统;另一种是截止阀7处于开启状态,压缩机2出口通过四通换向阀3连接室外换热器4入口,室外换热器4出口连接节流装置5,节流装置5出口分成两路,一路通过截止阀7连接四通换向阀3,另一路通过室内换热器6连接四通换向阀3,两路在四通换向阀3后、四通换向阀3中或四通换向阀3前合并为一路,通过管路连接储液器1入口,储液器1出口连接压缩机2入口形成除霜循环系统。

所述节流装置5采用开度能够调节的电磁阀或开度不能调节的毛细管。

所述截止阀7采用球阀。

本发明使用截止阀的空调器的运行方法,当四通换向阀3切到制热模式时,需要进行条件st判断,如果不满足条件st则截止阀7处于开启状态,其开启时的流通面积与空调管路内截面积相同,高温高压的制冷剂从压缩机2的出口排出经过四通换向阀3进入室内换热器6放热,室内换热器6出口的过冷制冷剂分为两路,第一路两相制冷剂经节流装置5的节流作用后进入室外换热器4吸热,过热制冷剂从室外换热器4出口流出后通过四通换向阀3进入储液器1,第二路两相制冷剂经截止阀7在储液器1入口处与第一路的过热制冷剂汇合,进入储液器1后从吸气插管进入压缩机2,形成制热过程启动阶段的循环过程;当满足条件st时,截止阀7处于关闭状态,高温高压的制冷剂从压缩机2的出口排出经过四通换向阀3进入室内换热器6放热,室内换热器6出口的过冷制冷剂经节流装置5的节流作用后,两相制冷剂进入室外换热器4内吸热,从室外换热器4出口流出的过热制冷剂通过四通换向阀3进入储液器1,从储液器1内的吸气插管进入压缩机2形成制热循环过程;

当四通换向阀3切到除霜模式时,需要进行条件p的判断,如果不满足条件p则截止阀7处于关闭状态,高温高压的制冷剂从压缩机2出口排出经过四通换向阀3进入室外换热器4放热用于化霜,室外换热器4出口流出的过冷制冷剂经节流装置5的节流作用后,两相制冷剂进入室内换热器6,在室内换热器6内几乎没有换热,室内换热器6流出的过热度较小甚至没有过热度的制冷剂经四通换向阀3进入储液器1,从储液器1内的吸气插管进入压缩机2形成除霜循环系统;除霜模式下,如果满足条件p则截止阀7处于开启状态,高温高压的制冷剂从压缩机2排出经过四通换向阀3进入室外换热器4放热,室外换热器4出口流出的过冷制冷剂经节流装置5的节流作用后,两相制冷剂在节流装置5的出口分成两路,第一路流经截止阀7,第二路流经室内换热器6,在室内换热器6内几乎没有换热,室内换热器6流出的过热度较小甚至没有过热度的制冷剂,两路在四通换向阀3后、四通换向阀3中或四通换向阀3前合并为一路并流入储液器1,通过储液器1内的吸气插管进入压缩机2形成除霜循环系统;

其中,当节流装置5为开度可以调节的装置时,在不满足条件st的制热循环启动阶段其流通直径b保持为最大开度bmax;在除霜循环中其开度的控制通过压缩机2出口压力pd实现;当pd≤mpo时,则节流装置5开度b减小0.1bo,其中po为室内换热器6所处的室内环境温度to对应的饱和压力,m为1.2,bo为除霜循环开始时节流装置5的初始开度,且bo≤bmax,bmax=wd,d为管路直径,w为0.2;当pd>mpo时,则节流装置5开度b保持不变;此判断每30秒进行一次;

条件st为时间判断:t≥t0是否满足,其中,t为空调器压缩机制热启动后运行的时间,t0选取100秒;条件p为时间判断:t≥t0是否满足,其中,t为除霜进行的时间,t0选取60秒;

和现有技术相比较,本发明具备如下优点:

本实施方案1的有益效果:通过在除霜循环的阀后与吸气口之间连接旁通管并设置截止阀,实现对制热过程启动阶段或除霜过程吸气口压力、温度的提高,同时使得压缩机排气压力保持在定范围内,可避免制热过程启动阶段空调器产生吸气负压造成安全隐患,也可防止除霜过程中油池温度过低溶解大量制冷剂。除霜结束时更少制冷剂溶解在压缩机油池中,且除霜结束室内换热器温度升高可以避免除霜结束后制冷剂迁移到室外换热器,同时通过提高制热启动阶段吸气压力,提高系统低压侧温度,进而有效避免除霜结束再制热发生的节流元件异常油堵塞现象,提高系统可靠性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1