一种空分设备板翅式换热器的启动方法与流程

文档序号:25533423发布日期:2021-06-18 20:25阅读:264来源:国知局
一种空分设备板翅式换热器的启动方法与流程

本发明属于空分设备领域,尤其涉及一种空分设备板翅式换热器的启动方法。



背景技术:

某氧气厂新投入生产的60000m3/h大型空分设备,由法国液空公司设计、制造,采用氮水塔、冷冻机预冷,分子筛吸附,增压透平膨胀机制冷,采用高、低压两个板翅式主换热器,全精馏制氩的内压缩流程。空分设备在冷启动初期,经常出现板翅式换热器热端温度低于联锁值,空分停车的现象,导致空分启动失败,而且存在空气管道发生低温脆断的风险。



技术实现要素:

为克服现有技术的不足,本发明的目的是提供一种空分设备板翅式换热器的启动方法,解决60000m3/h制氧机冷启动初期低压板翅式换热器热端空气温度低的问题,确保制氧机一次启动成功,避免发生次生事故。

为实现上述目的,本发明通过以下技术方案实现:

一种空分设备板翅式换热器的启动方法,增压机、气体膨胀机启动后,控制空分塔下塔压力不高于报警值,防止低压空气热端温度t1低于联锁值,导致空分停车;具体包括以下步骤:

1)空分塔下塔入口的低压空气管道通过低压板翅式换热器后,进入空分塔下塔,并与过冷器冷端入口污氮气管道相连,在低压板翅式换热器出口空气管道上设置压力调节阀一,通过压力调节阀一控制下塔压力,将压力调节阀一全开,低压空气进入污氮气管道,降低下塔压力;

2)进入空分塔上塔的液空、污液氮和液氮,分别通过高压空气节流阀二和气提阀十一、污液氮节流阀三、纯液氮节流阀四控制进入上塔的流量;下塔液位调节阀五与上塔相连,调整下塔液位调节阀五和气提阀十二控制下塔液位;通过全开高压空气节流阀二、节流阀三、节流阀四和调节阀五,气提阀十一和气提阀十二开50%-80%,将空分塔下塔的液体打入上塔,降低下塔压力;

3)增压机二段出口中压空气通过中压空气节流阀六进入空分塔下塔,增压机四段出口高压空气通过高压空气节流阀七进入空分塔下塔;节流阀六开10%-20%,节流阀七开10%-20%,减少下塔的进液量,降低下塔压力;

增压机、气体膨胀机启动后,控制板翅式换热器的冷量分布,防止污氮气热端温度t2、t3,低压氮气热端温度t4低于联锁值,空分停车,导致空分启动失败;

4)空分塔上塔污氮气压力通过污氮气压力调节阀八、污氮气流量调节阀九控制,分别通过高压板翅式换热器、低压板翅式换热器复热后,将污氮气排放到氮水塔中;将压力调节阀八开15%-40%,流量调节阀九开5%-15%,防止污氮气热端温度t2、t3低于联锁值,空分停车;

5)上塔低压氮气放空阀十开10%-30%,防止低压氮气热端温度t4低于联锁值,空分停车。

与现有技术相比,本发明的有益效果是:

采用本发明方法解决了60000m3/h制氧机冷启动初期低压板翅式换热器热端空气温度低的问题,确保制氧机一次启动成功,避免发生次生事故。

附图说明

图1是本发明的结构示意图。

图中:1-压力调节阀一2-高压空气节流阀二3-节流阀三4-节流阀四5-调节阀五6-节流阀六7-节流阀七8-压力调节阀八9-流量调节阀九10-低压氮气放空阀十11-气提阀十一12-气提阀十二。

具体实施方式

下面结合说明书附图对本发明进行详细地描述,但是应该指出本发明的实施不限于以下的实施方式。

见图1,空分设备板翅式换热器的启动方法,增压机、气体膨胀机启动后,控制空分塔下塔压力不高于报警值,防止低压空气热端温度低于联锁值,导致空分停车;具体包括以下步骤:

1)空分塔下塔入口低压空气管道与过冷器冷端入口污氮气管道相连,过冷器冷端入口污氮气管道与气体膨胀机连接的管道上设置压力调节阀一1,通过压力调节阀一1控制下塔压力;

气体膨胀机启动后,随着进空分塔空气量的逐渐增加,下塔压力逐渐升高;将压力调节阀一1手动开到100%,设定值0.46mpa,当下塔压力高于0.46mpa时,压力调节阀一1自动开到100%,将低压空气打入污氮气管道,减少进入下塔的空气量,降低下塔的压力;

具体操作时,气体膨胀机启动后,高压空气节流阀二2、污液氮节流阀三3、纯液氮节流阀四4开100%;下塔液位调节阀五5开100%;气提阀十一11、气提阀十二12开50%-80%;若上塔压力高于70kpa,将高压空气节流阀二2、污液氮节流阀三3、纯液氮节流阀四4先关到80%,待上塔压力降到40kpa以下后再将阀门全开。

2)进入空分塔上塔的液空、污液氮和液氮,分别通过高压空气节流阀二2、污液氮节流阀三3和纯液氮节流阀四4控制进入上塔的流量;下塔液位调节阀五5与上塔相连,调整下塔液位调节阀五5控制下塔液位;通过调整阀门将空分塔下塔的液体打入上塔,降低下塔的压力,防止下塔压力升高,同时,增加上塔的回流液体,帮助主冷快速积累液位。

3)空分塔上塔导气,上塔压力逐渐升高,控制上塔压力不高于70kpa;空分塔上塔与粗氩塔通过管道连接,为防止空分塔上塔压力上涨过快,粗氩塔顶部排放阀开100%;上塔低压氮气放空阀十10开10%-30%,低压氮气管道温度t4不低于-15℃;若低于-15℃会联锁冷箱停车。若温度降低过快,先关小上塔低压氮气放空阀十10,待温度稳定后在逐渐开大。

4)空分塔上塔污氮气压力通过污氮气压力调节阀八8、污氮气流量调节阀九9控制,分别通过高压换热器、低压换热器复热后,将污氮气排放到氮水塔中;增压机、气体膨胀机启动以后,将上塔污氮气压力调节阀八8开到15%-40%,冷量经过高压换热器;污氮气流量调节阀九9开到5%-15%,开度不能过大,避免低压换热器污氮气出口温度t3低于-15℃,低于-15℃会联锁冷箱停车。冷量集中在高压换热器后,气体膨胀机入口温度不低于-147.5℃,若低于-147.5会联锁气体膨胀机跳车;由于高压板式换热器正流气体为高压空气和膨胀空气,空分冷启动初期,温度比较好控制,所以可以让冷量尽量多走高压换热器。

其中,高压换热器的作用是实现高压氧与高压空气换热,中压氧、高压氩与膨胀空气换热。低压换热器的作用是实现中压氮气与中压空气换热,低压空气与污氮气换热。

5)增压机二段出口中压空气通过中压空气节流阀六6进入空分塔下塔,增压机四段出口高压空气通过高压空气节流阀七7进入空分塔下塔;中压空气节流阀六6开15%-25%,高压空气节流阀七7开10%-20%;不能开的过大,防止空分塔下塔超压。高压空气压力为4.4mpa,中压空气压力为1.6mpa,在液氧泵和液氮泵没有启动之前,中压空气和高压空气不能完全被液化,减少中压空气和高压空气进下塔的流量,避免下塔压力升高过快。

液氮泵和液氧泵启动之后,高压空气、中压空气温度降低,缓慢开大中压空气节流阀六6、高压空气节流阀七7至72%和%53%,流量测量值与设定值一致后投入自动;

6)当下塔压力升高时,空压机排气压力也会随着升高,增压机入口压力就会升高,容易引起增压机联锁跳车。当增压机入口压力升高时,手动打开增压机二级放空阀开度5%-10%,有效控制增压机入口压力。此阀门不能打开过大,防止三级入口气量减少,发生增压机二段喘振现象。

7)流程液氧泵和流程液氮泵启动后,液氧经过高压换热器,高压换热器冷端温度逐渐降低至170℃以下,液氮经过低压换热器,低压换热器冷端温度逐渐降低至170℃以下,空况逐渐稳定,空分塔内开始积液,主冷液位呈上升趋势,主冷凝蒸发器开始工作,这时下塔压力会逐渐降低,压力调节阀一1自动关后,全关粗氩塔顶部排放阀,逐渐将气提阀十一11、气提阀十二12关至0%;高压空气节流阀二2、污液氮节流阀三3和纯液氮节流阀四4关到54%、48%和56%,流量测量值与设定值一致后并投入自动,开始调纯;随着主冷凝蒸发器液位的继续升高,逐渐将下塔液位调节阀五5关到46%,液位测量值与设定值一致后并投入自动。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1