用于制冷或液化流体的装置和方法与流程

文档序号:35392836发布日期:2023-09-09 14:53阅读:22来源:国知局
用于制冷或液化流体的装置和方法与流程
用于制冷或液化流体的装置和方法
1.本发明涉及一种用于制冷或液化流体的装置和方法。
2.本发明更具体地涉及一种用于制冷或液化流体如天然气或氢气的装置,该装置包括用于待冷却流体的回路,该回路具有旨在连接到气态流体源的上游端和旨在连接到用于收集冷却或液化的流体的构件的下游端,该装置包括与用于待冷却流体的回路成热交换关系的热交换器组件,该装置包括与热交换器组件的至少一部分成热交换关系的制冷器,该制冷器是对循环气体进行制冷循环的类型,该循环气体包括以下中的至少一种:氦气、氢气、氮气或氖气,所述制冷器包括串联设置在循环回路中的以下部分:用于压缩循环气体的机构,至少一个用于冷却循环气体的构件,用于膨胀循环气体的机构和至少一个用于加热膨胀的循环气体的构件,其中该压缩机构包括由离心式压缩机组件构成的串联的多个压缩级,该压缩级安装在由马达组件驱动旋转的一组轴上,该至少一个用于冷却循环气体的构件包括至少一个设置在至少一个压缩级的出口处的热交换器,该热交换器与循环回路成热交换关系,所述热交换器由传热流体冷却。
3.增加低温制冷器/液化器的容量(也就是说,提供的制冷/液化功率)通常需要对制冷循环的结构进行显著修改并提供额外的设备(在出口处带有冷却器的额外压缩机)。
4.一个目的是限制这种设备的复杂性和成本,而不会显著影响系统的总体效率并且尤其是其压缩系统的总体效率。
5.本发明的一个目的是补救上文阐述的现有技术的所有或部分缺点。
6.为此,根据本发明的、在其他方面符合在上文前序部分中给出的其一般定义的装置的实质性特征在于,压缩机构包括至少两个串联连续设置的压缩级并且它们之间没有用于冷却循环气体的构件如热交换器来交换热量。
7.此外,本发明的实施例可以包括以下特征中的一个或多个:
[0008]-压缩机构包括串联的四个压缩级,用于冷却循环气体的构件包括三个冷却热交换器,该三个冷却热交换器分别设置在第一压缩级与第二压缩级之间、在第二压缩级与第三压缩级之间、以及在第四压缩级的出口处,
[0009]-装置包括仅每两个串联的压缩级设置的冷却热交换器,
[0010]-马达组件包括多个用于驱动压缩级的马达,
[0011]-马达组件包括用于每个压缩级的单独的相应马达,
[0012]-这些马达中的至少一个由循环气体流经由至少一个用于供应压缩机构的循环气体流的一部分的旁通管冷却,该旁通管包括附接到压缩级中的至少一个的出口的上游端以抽取循环气体流的一部分,
[0013]-至少一个旁通管的下游端在其通过并与至少一个马达交换热量后附接到压缩级的入口,
[0014]-至少一个旁通管在其上游端与其下游端之间包括分为至少两个单独分支的子区段,这些分支分别供应单独的马达以便将它们冷却,
[0015]-由旁通管的子区段形成的至少两个单独分支具有在同一个管部分内的下游交汇部,
[0016]-至少一个旁通管包括至少一个用于冷却循环气体的构件,
[0017]-至少一个旁通管的至少一个用于冷却循环气体的构件包括冷却热交换器。
[0018]
此外:
[0019]-循环气体可以由氦气或包含至少50%氦气的混合物构成,
[0020]-循环气体可以由氢气或包含至少50%氢气的混合物构成,
[0021]-循环气体可以由氮气或包含至少50%氮气的混合物构成,
[0022]-压缩机构可以仅包括离心式压缩机,
[0023]-待冷却流体可以包括以下中的至少一种:氢气、天然气、沼气、甲烷、氦气。
[0024]
本发明还涉及一种用于制冷或液化流体的方法,该方法使用根据上文或下文特征中的任一个的制冷装置并包括使流体在用于待冷却流体的回路中循环的步骤和经由由制冷器产生的冷量来冷却所述流体的步骤。
[0025]
根据进一步可能的特定特征:该方法包括根据独立速度控制压缩级的转速的步骤,其中,在至少一个确定的操作阶段期间,它们之间没有用于冷却循环气体的构件如热交换器来交换热量的串联的压缩级的转速保持在低于在它们的出口处设置有用于冷却循环气体的构件的压缩级的转速的速度。
[0026]
本发明还可以涉及包括权利要求范围内的上文或下文特征的任何组合的任何替代性的装置或方法。
[0027]
通过阅读以下参考附图提供的描述,进一步的特定特征和优点将变得显而易见,在附图中:
[0028]
[图1]是展示根据本发明的装置的结构和操作的一个示例的示意性和部分描述。
[0029]
装置1被配置用于流体(例如天然气、生物甲烷或氢气,但不限于此)的低温制冷和/或液化。装置1包括用于待冷却/液化的流体的回路3,该回路具有旨在连接到(例如气态)流体源2的上游端和旨在连接到用于收集冷却或液化的流体的构件(例如储存器)的下游端23。
[0030]
装置1包括与用于待冷却流体的回路3成热交换关系的热交换器6、10组件。
[0031]
装置1包括冷源,该冷源具有与热交换器6、10组件的至少一部分成热交换关系的制冷器20。
[0032]
制冷器20是低温的并且是对主要包括氦气和/或氢气和/或氮气和/或氖气的循环气体进行制冷循环的类型。
[0033]
例如,循环气体由纯氦气或包含至少50%氦气的混合物构成。
[0034]
类似地,循环气体可以由纯氢气或包含至少50%氢气的混合物构成。
[0035]
类似地,循环气体可以由氮气或包含至少50%氮气的混合物构成。
[0036]
作为替代方案,循环气体可以由氖气或包含至少50%氖气的混合物构成。
[0037]
当然,可以设想任何其他合适的混合物或循环气体,例如包括以下中的至少一种:氦气、氢气、氮气、氖气、甲烷。
[0038]
典型地,制冷器20包括串联设置在循环回路14中的:用于压缩循环气体的机构15,至少一个用于冷却循环气体的构件7、6、10,用于膨胀循环气体的机构17以及至少一个用于加热膨胀的循环气体的构件6、10。
[0039]
压缩机构包括由离心式压缩机组件构成的串联的多个压缩级15,压缩级安装在由
马达18组件驱动旋转的轴组件上。
[0040]
至少一个用于冷却循环气体的构件包括至少一个设置在至少一个压缩级15的出口处的热交换器7,该热交换器与循环回路14成热交换关系。该至少一个热交换器7可以由传热流体(例如水或空气)冷却。
[0041]
热交换器组件可以包括一个或多个热交换器6、10,这些热交换器串联设置,并且在这些热交换器中,循环回路14的两个单独部分呈现出同时逆流循环,分别用于循环气体的冷却和加热。因此,多个热交换器可以既形成用于冷却循环气体的构件,又形成用于加热循环气体的构件。
[0042]
根据有利的特定特征,压缩机构包括至少两个串联连续设置的压缩级15并且它们之间没有用于冷却循环气体的构件如热交换器7来交换热量。也就是说,两个压缩级可以彼此跟随,而不会在这些级之间发生冷却。
[0043]
更具体地,至少一个压缩级15在其出口处不具有由与循环气体分离的传热流体冷却的冷却交换器7(没有“后冷却器”)。相反,在该压缩级的出口处的循环气体可以在适当的情况下直接进入由比循环气体更冷的流冷却的逆流冷却交换器6、10。
[0044]
这可能有利于修改例如给定容量的现有装置以便增加其制冷功率。
[0045]
在相对“重”的循环气体(也就是说,通过离心压缩显著变热的循环气体),如常规使用的循环气体(典型地氦气和氮气的混合物)的情况下,现有技术提供了添加额外的冷却交换器(“中间冷却器”)以便当循环气体进入随后的压缩级时其不会太热。这样做是为了不达到过高的温度。
[0046]
对于较轻的气体如氦气或氢气,常规使用容积式压缩机,其中单个压缩级之后是冷却交换器。
[0047]
本发明与偏见背道而驰,因为相对于已知系统,总体压缩效率可能下降(因为最后一个压缩级在较高的温度下工作)。然而,尤其是在非常轻的循环气体(摩尔质量小于30g/mol并且尤其是小于20g/mol或小于10g/mol)的情况下,根据本发明的较低等温压缩的性能下降通过压降的减少(由于冷却交换器的数量较少)得到了充分补偿。
[0048]
此外,硬件节省是显著的(特别是冷却交换器和相关电路系统)。
[0049]
在将下游压缩机添加到现有装置(单个添加的一件设备,模块:压缩机+马达)的情况下,这是特别有利的,该下游压缩机可能与前面的压缩模块相同。这不需要对设计进行任何修改或者需要对设计进行很少的修改。
[0050]
最后添加的、在出口处没有冷却的压缩级可以容易地集成。优点是新系统的更好竞争力以及经由以较低的成本在现场添加额外的压缩级的一定程度的通用性,尤其是如果希望在运行几年后增加设备的产量。
[0051]
在所示的非限制性示例中,压缩机构包括四个串联的压缩级(轮)15和仅在这四个压缩级中的三个压缩级的出口处(优选地在第一、第二和第四压缩级的出口处)的冷却装置7。也就是说,循环气体在第三压缩级与第四压缩级之间没有被冷却。
[0052]
其结果是,由于(相对)低的离心压缩,装置保持温度升高,以便在每个压缩级之间不需要中间冷却器。这使得能够降低成本并增加紧凑性,同时仍然限制对压缩系统的总体效率的影响。
[0053]
当然,就压缩级的数量以及在出口处没有冷却的一个或多个级的数量而言,任何
其他配置都是可能的,例如可以设想具有仅每两个串联的压缩级15(或每三个串联的压缩级)设置的冷却热交换器7的结构。在其他可能的配置中,例如具有三个串联的压缩级的装置,其中两个第一级在其出口处设置有冷却热交换器,在第三压缩级的出口处,循环气体然后可以直接进入制冷装置的逆流交换器并且然后随后进入膨胀级(例如单个涡轮机)。在膨胀级的出口处,循环气体然后可以被置于与用于待冷却气体的回路成热交换关系(典型地在热交换器中)。然后,在与待冷却流体进行该交换之后,循环气体可以进入逆流交换器,在该逆流交换器中,循环气体通过冷却离开上述压缩级的流变热。该被加热的循环气体然后可以重新进入第一压缩级以重新开始循环。
[0054]
优选地,马达18组件包括多个用于驱动压缩级的马达。
[0055]
在所示的示例中,为每个压缩级提供相应的马达18。当然,马达18可以驱动多个压缩级(例如,安装在同一个输出轴上)。类似地,一个或多个涡轮机17可以安装在驱动一个或多个压缩级的马达18的轴上。
[0056]
马达18中的至少一个可以由循环气体流冷却。
[0057]
如所示,可以提供至少一个旁通管4、5、9以抽取供应压缩机构的循环气体流的一部分。旁通管4可以包括附接到压缩级15中的至少一个的出口的上游端(例如在第一压缩级15的下游,尤其是在冷却7之后),以抽取循环气体流的一部分。
[0058]
旁通管的下游端可以在其通过并与至少一个马达18(例如在该示例中在第一压缩级15的上游)交换热量后附接到另一个压缩级的入口。
[0059]
至少一个旁通管4可以在其上游端与其下游端之间包括至少一个分为至少两个单独分支5、9的子区段,这些分支分别供应单独的马达18以便将它们冷却。也就是说,因此,可以提供冷却回路来冷却所有或部分马达18。
[0060]
其结果是,所有或部分马达18可以由从回路以不同压力水平分出的循环气体冷却。
[0061]
如所示,由旁通管4的子区段形成的至少两个单独分支5、9可以具有在同一个管部分内的下游交汇部。
[0062]
至少一个旁通管可以包括至少一个用于冷却循环气体的构件8,例如至少一个用于冷却在与至少一个马达18进行热交换后的流的冷却热交换器8。
[0063]
有利地,(两个)最后压缩级(压缩轮)的转速可以相对于其他级降低以便限制其压缩率和循环流体的加热。这使得能够避免达到容易损坏设备的过高温度。
[0064]
本发明特别适用于循环气体为轻质气体(也就是说,摩尔质量包括在2与30g/mol之间并且优选在2与20g/mol之间)的制冷器。这是因为,在这种情况下,由于压缩级之间没有冷却而导致的压缩性能的下降在很大程度上被结构益处、成本的降低和实施的容易性所补偿。
[0065]
当然,本发明可以与较重的循环气体一起使用(在这种情况下,优选降低每个压缩级的压缩率以便限制加热,但同时仍然保持大于仅用氦气和/或h2获得的压缩率)。
[0066]
如所示,用于冷却循环气体的系统可以包括热交换器,该热交换器设置在涡轮机17中的至少一些(除了沿循环气体的循环方向串联的最后涡轮机17之外)的出口处。
[0067]
装置1可以具有比涡轮机17更多的压缩级15。
[0068]
装置1可以具有等于三个、四个、五个或更多个的多个压缩级。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1