气体冷冻方法与装置的制作方法

文档序号:93622阅读:617来源:国知局
专利名称:气体冷冻方法与装置的制作方法
本发明有关冷冻法及装置,尤其有关永久气体,如氮或甲烷之液化。
永久气体之性质为无法仅藉升压而液化,须将气体(在加压下)冷却达气体可与其液态平衡存在之温度方可。
液化永久气体或冷却至或低于临界点之习知方法典型地需将气体压缩(除非已以合宜升压,通常超过30大气压而供应)并于一个或一个以上热交换器中对著至少一道相当低压工作流体流而行热交换。至少有些工作流体系以低于永气体临界温度之温度而供应;至少部份工作流体流或各流典型地系由压缩工作流体而形成者,于前述热交换器中冷却,继以执行外功而膨胀之(“功膨胀”)。工作流体本身可取自高压永久气体流,或者,永久气体可与可与工作流体保持分开虽言如此,后者组成可与永久气体相同。
典型上,液化之永久气体贮于或用于实质较供等压冷却至低于其临界温度之压力为低之压力下;如此,此等压冷却完成后,在低于其临界温度下之永久气体通经膨胀或节流阀而使其所置身其中之压力实质减低,产生实质体积之所谓“闪蒸气体”。膨胀实质为等焓的,造成液体温度降低。一般进行一两次此种膨胀以产生在贮藏压力下与其气相平衡之液化永久气体。
概括言之,液化永久气体之商用方法其热力学效率相当低,尚待改进。技艺界大大强调藉改进制程中热交换效率而改善制程之总效率;因此,技艺界先前提议皆以尽量减少永久气体流与行热交换之工作流体流间之温度差异为重心。
唯本发明有关用以冷冻永久气体流之次临界温度工作流体循环之改进。
依据本发明提供永久气体液化法,包含如下各步骤于升压下降低永久气体流温度至低于其临界温度,并进行至少两次工作流体循环以提供将永久气体温度降至低于其临界温度所需之至少部份冷冻;各次此工作流体循环包含压缩工作流体,冷却之,功膨胀经冷却之工作流体,在与永久气体流及与待冷却之工作流体行逆流热交换中温热经功膨胀之工作流体,因而对永久气体流提供冷冻;其中在至少一次工作流体循环中,经功膨胀之工作流体带至在低于永久气体临界温度下,与永久气体流呈逆流热交换关系;而在该次循环或各该循环中,当功膨胀完成时工作流体压力至少为10大气压。
较好,所述压力系在12至20大气压范围。工作流体循环中,采用膨胀叶轮机以执行工作流体之功膨胀,至少10大气压之压力为膨胀叶输机之出口压力;如此出口压远较习用于可比拟液化法中者为高。藉采用至少十大气压之出口压,可提高与永久气体流呈热交换关系之工作流体比热,可以提高次临界温度工作流体循环之热力学效率,因而降低其比动力消耗。
较好,若膨胀叶轮机之出口压系在12至20大气压范围,则一俟功膨胀完成,工作流体系在其饱和温度或在较其饱和温度为高2K之温度。在或接近饱和温度时,工作流体之比热随温度之下降,相当快速升高。吾人偏好令工作流体功膨胀至其饱和温度(或接近之),就采用至少十大气压膨胀叶轮机出口压所得热力效率增高而言,即可优异地为全然饱和蒸气或湿润。
在次临界温度工作流体循环中,采用至少十大气压之膨胀叶轮机出口压范围其结果为循环所造成之冷冻及如此加诸其上之冷冻负荷皆有限。如此,典型地须取相当高温(如对氮而言,在107至117K范围,较好约110K)之永久气体流供膨胀(亦即压力减低)至藏压压力(如1大气压级位之压力)。习知地,液化永久气体流膨胀至贮藏压力系藉永久气体流通经一或二膨胀而等焓地进行;咸信此乃一种相当无效率的膨胀方法,消耗相当量不可逆功;且若采行此种方式,则由本发明所得动力消耗方面之大半(即令非全部)效益将漏失。然而,吾人咸便可能以较一或二等焓膨胀为更有效率地膨胀至贮藏压;举例言之,在升压及低于永久气体流可进行至少三次依序等焓膨胀,在各等膨胀所得液体(未次者除外)系恰在下一次等焓膨胀的流体,且至少部份(典型地全部)该闪蒸气体与该永久气体流行热交换。典型上,在适温与永久气体流之热交换关系后,闪蒸气体以喂进供液化用之永久气体重行压缩;除一次或多次闪蒸分离阶段外,流体可利用一或多个膨胀叶轮机而降低压力。
吾人偏好将至少部份,较好全部该闪蒸气体与该永久气体流在永久气体流温度(较功膨胀工作流体与该永久气体流呈热交换关系时之温度为低)下,呈热交换关系。在一典型例中,咸信吾人可将永久气体流温度降低约3K,此意味著取供膨胀用之永久气体流温度可较其它情况下所需为高3K,藉此加大如下各范围提升在该次临界工作流体循环中之膨胀叶轮机出口压超过12大气压,因而提升进入与该永久气体流呈热交换关系之工作流体的比热。
以氮永久气体流为例,在置于前述依序等焓膨胀前,偏好将氮温降至107-117K;如此,闪蒸气体可供永久气体流由在或近周温冷却至107-117K温度。110K温度可用于广泛范围之永久气体流压力。典型上,次临界温度工作流体循环中,功膨胀工作流体供将永久气体流由在或近周温冷却至110-118K范围之温度。
若永久气体为,例如每日至少产制数百吨氧之低温空气分离厂所产生之氮流,则闪蒸气体典型产率为约产物液态氮生成速率之一半左右,而氮流可于该110K温度取供该等焓膨胀,在使用离心压缩机的小厂及在膨胀叶轮机出口温接近工作流体之临界温度下,则典型地嗜用高速闪蒸气体生成速率(如高达产物液体生成率之100%)以增加循环气体体积与保持循环压缩机效率。若叶轮机出口温确实接近临界温度,则一般不可能将出口温保持在饱和温度2K以内,除非亦采格外高之出口压(亦即以氮作工作流体为例,超过20大气压)。
若有所需,两个或多个功膨胀阶段可用于工作流体循环;例如,在高于永久气体流临界温度下操作之工作流体循环中,介于冷却与温热阶段间之工作流体可经功膨胀至中等压力,部份重行加热及功膨胀至低压,但典型地如第一次功膨胀所产生之相等温度。
较好,至少提供一工作流体循环,其中工作流体在高于气体流临界温度下,带至与永久气体流呈热交换关系。使用此种工作流体循环亦有助于减少次临界温度工作流体循环之冷冻负荷。典型地,在此种工作流体循环中,功膨胀工作流体供将永久气体流由在或近周温冷却至135-180K范围之温度。
典型地,永久气体流亦藉与至少一道冷冻剂流行热交换而冷却;所述冷冻剂流在高于功膨胀工作流体与永久气体流之温度下,带至与永久气体流呈逆流热交换关系。
以氮之液化为例,吾人偏好利用所述冷冻剂流供将永久气体流由周温冷却至约210K;如此之优点为可减少在高温功膨胀阶段之冷冻负荷,因而得较其它可能为更有效地操作。
典型冷冻剂为“氟利昂(Frcon)”或冷冻所用此等非永久气体典型工作流体为永久气体,为便利起见,通常取自待液化气体,亦可重行归并供应压缩。
一般言之,需在永久气体流与工作流体之温度-焓曲线间保持密切吻合关系,以在高于临界温度-永久气体比热变化率为最大时一之温度温度范围尤为然(如对45大气压氮而言,约135至180K间)。功膨胀工作流体带至与永久气体流呈逆流热交换关系时之精确温度,及所用工作流体循环数可经选择而提供此种吻合关系。在液化以45大气压或以下之压力供应之永久气体时,欲达此目的,嗜用三次工作流体循环;藉采行三循环,可将次临界温度循环之冷冻负荷保持在一位準,有助于将次临界温度工作循环中之叶轮机出口压固定在至少10大气压位準。以在45大气压液化氮为例;较好采用一个次临界温度或“冷”工作流体循环,膨胀叶轮机出口压约16大气压及出口温约112K;一个居中工作流体循环,有二膨胀叶轮机出口温皆约为136K;及一个“温”工作流体循环,膨胀叶轮机出口温约160K。
永久气体压力愈高则其温度-焓曲线愈不弯曲,则其温度-焓曲线与工作流体所能保持之曲线间愈易密切吻合;如此,在高于45大气压之永久气体压力下,较好仅采二工作流体循环;举例言之,对50大气压而言,较好采用“冷”工作流体循环,膨胀叶轮机出口压14大气压及出口温约110至112K;及“温”工作流体循环膨胀叶轮机出口温约150K。
除非永久气体系在合宜升压下供应,否则较好在一合宜压缩机内或一排压缩机内提升至升压。一例中,永久气体压力在一多段式压缩机内分若干步骤提升至中等压力,继而利用至少一升压压缩机,提升至终特选压力;此升压压缩机之转子系架在工作流体功膨胀中所用膨胀叶轮机转子之同轴上。典型地,各压力相异之闪蒸汽体流送回多段式压缩机之不同阶段。
欲求减少通经热交换装置之分开径路数目,较好工作流体循环享有一条共用径路,经熟交换器回到压缩机。
本发明不限于氮及甲烷之液化,其它气体如一氧化碳及氧亦可藉此液化。
兹参照附图举例说明本发明,图中图1为本发明氮液化工场之部份回路图解。
图2为氮之温度对焓之图解。
图3为图1所示工场之示意图。
图4为另一氮液化工场之示意图。
图5显示在不同压力下氮之比热-漂度曲线图。
兹参照图1,周温(如300K)及超临界压(如45大气压)之主氮流30通经热交换装置32具温端34及冷端36,并包含一串热交换器38,40,42,44,46,48及50,各在较恰在其游(就流30之流向而言)之热交换器50时,流30之温度约110K;然后等焓膨胀经节经节流阀54而产生8大气压压力之液态氮及8大气压之一定体积闪蒸气体;然后,8大气压之闪蒸气体及液态氮在相分离器56中彼此分开或分离。取自分离器56之闪蒸气体流58,与流30呈逆流热交换关系,从热交换装置32之冷端36送回温端34。
来自相分离器56之液态氮经第二节流阀60等焓膨胀而产生3.1大气压压力之液态氮及闪蒸气体;该液氮于第二相分离器62之闪蒸气体流64,与流30呈逆流热交换关系,从热交换装置32之冷端36送回温端34。在相分离器62中收集之若干液体经第三节流阀66等焓膨胀而产生1.3大气压压力之液态氮及闪蒸气体;液态氮在第三相分关器68中与闪蒸气体分开,后者(取自第三相分离器68之闪蒸气体流70)与流30呈逆流热交换关系,从热交换装置32之冷端36送回温端32。液体自相分离器62中撤出,在沉浸于第三相分离器68中之液态氮的盘管70中过度冷却之后送去贮藏;如此第三相分离器68中之液体态氮沸起,而所得蒸气归并闪蒸气体流70。
闪蒸气体流58,64及70对热交换器50提供所有冷却,可将氮流30温度由113K有效降至110K。典型地,闪蒸气体系以液态氮通去贮藏速率之50%而产生;闪蒸气体产生时之压力系由闪蒸气体从热交换装置32之温端34送回的压缩机阶段压力而决定。
压力34.5大气压及温度约300K之第一工作流体循环77中,氮工作流体流76与流30共流经热交换装置32,并依序流经热交换器38,40,42,44及46,并于温度138K离开热交换器46。然后,此流在“冷”膨胀叶轮机78中功膨胀至16大气体压压力;在此压力下,工作流体之比热相当高,因而可以更有效地冷却永久气体流;结果所得工作流体呈温度112K之流80离开叶轮机78,对于如此被温热的流呈逆流地通经热交换器48,而符合热交换器48之要求;然后,依序流经热交换器46,44,42,40及38。
第二工作流体循环81中,部份流30于温度163K,在介于热交换器44冷端与热交换器46温端间之一处,自其中呈工作流体而撤出,并通入第一中间膨脆叶轮机82,在其中行功膨胀,呈温度136K及压力23大气压之流84离开叶轮机82。流84以对如此被重行加热之流30呈逆流地通经热交换器46,并以150K温度于中间处自热交换器中撤出;然后通入第二中间膨胀叶轮机86并在其中行功膨胀。氮呈压力16大气压及温度136K之流88离开叶轮机86;然后于介于热交换器46冷端与热交换器48温端间之一区,与流80合并;如此有助于符合热交换器46之冷冻需求,尤因压力16大气压下,工作流体之比热相当高。
第三工作流体循环89中,另一部份流30呈工作流体,在介于热交换器42冷端与热交换器44温端间之一区,从其中撤出;于温度210K下流入“温”膨胀叶轮机90,在其中行功膨胀。氮呈压力约16大气压及温度160.5K之流92离开膨胀叶轮机;在此压力下,工作流体之比热相当高,因而可更有效地冷却永久气体流。然后,于介于热交换器44冷端与热交换器46温端间之一处,流92与流80合并;如此,流92有助于符合热交换器42之冷冻需求。
习知氟利昂冷冻机94,96及98分别用以冷冻热交换器38,40及42;藉此方式,流30温度可从热交换装置32温端之3000K降至热交换器42冷端之210K。
图3所示工场所用压缩机系统系供增进图3(未示)之一般廓清作用;然而包括多段式压缩机,第一阶操作时之入口压1大气压,最终阶段出口压34.5大气压。1大气压之氮与闪蒸气体流70一起喂进第一阶段入口,接下来各阶段期间,与已离开热交换装置32温端34的闪蒸气体流64及58合并。在进一个压缩机阶段中,亦与送回之经功膨胀工作流体流80合并。
各流58,64,70及80彼水送至压缩机不同阶段。
部份离开多段式压缩机之气体取供形成流76;馀者利用四个升压压缩机(各分别由膨胀叶轮机驱动)进一步压缩至45大气压压力,然后用以形成主氮流30。
多段式压缩机之各阶段及各升压压缩机典型地关连有其自身水冷却器以从压缩气体中去除压缩热。
图1所示工场以图解方式示于图3。适于液化超过45大气压(如50大气压)压力之氮流用之另一工场同样示于图4。图4与3工场间之主要差异在于前者采用四个功膨胀叶轮机而后者仅换用两个此种叶轮机一叶轮机(“冷叶轮机”)取150K压缩氮,藉功膨胀将其温度降至约110K(在50大气之例中降至约14大气压);而另一叶辅机(“温叶轮机”)取210K压缩氮,将其温降至约150K。如此,虽在产物氮流冷却至低于其临界温度中仅采二工作流体功膨胀流,此流之压力相当高使其温度-焓曲线(未示)较不弯曲,因而可保持回流之温度-焓曲线与产物氮流之温度-焓曲线合理地吻合。
参照图2,线AB为等压线。在氮液化过程中系顺此线而冷却;点B代表液态氮离开热交换器36之温度(即110K);曲线DEF界定一“封套”,其中氮呈气液“双相”存在;线BGHI,JKL及MNO为恒焓线;线PQ,RS及TU为气态之等压线。
兹考虑图1经阀54之第一等焓膨胀,氮遵行恒焓线BGHI直到达封套DEF内之点H;氮呈气液“双相”由其中送出,相分离器56将气相自液相中分开,如此分离结果在点J得液态氮(闪蒸气体在点P)。第二等焓膨胀令氮顺著恒焓线JKL至达点K;第二相分离在点M产生液体(闪蒸气体在点R)。第三等焓膨胀令氮顺著线MNO直至达点N,因而第三相分离在点V制得液体(闪蒸气体在点T)。如图1所示,第三分离器中液体藉著来自第二分离器之遇冷液体而蒸发;遇冷液体在等于点M压力,及在点M与点V间之温度并靠近点V温度下而送供贮藏。
兹假定点V液体仅因一次等焓膨胀所产生;此将涉及氮遵循径路BGHI直到达点W为止,此步骤涉及之总熵增加较遵循径路GH,JK及MN涉及之熵增加总和为大,咎于线GH,JK及MW相当陟而径路HI较不陟之故(的确,各恒焓线之(负)斜率随温度之下降而减低)。如此,进行一次等焓膨胀所涉之不可逆功较依序三次等焓膨胀为多,故后法(依据吾人之发明)较前法更具热力效率。
复次,至少使用三次等焓膨胀可在第一次以后的各次等焓膨胀中,减少(其上进行不可逆功之)工作流体量。
亦可瞭解若点V系经过4或5或更多次依序等焓膨胀而达到时,则可进一步提高效率。然而实际上使用超过五次等焓膨胀,其额外收益(罕见评断)减低。
亦须瞭解第一焓膨胀(BGH)其效率较第二及第三等焓膨胀相对地为低,因步骤BG涉及熵相对地大增;如此,更优异地考虑等压冷却至对应点J之温度,然后进行较三次为少了等焓膨胀。唯此操作有其缺点咎于工作流体功膨胀中(降低氮温至取供等焓膨胀用氮温所需)热力效率过度漏失,又复熵之增加J′J较顺恒焓线BG为大。
再度回顾附图1,随著功膨胀工作流体(氮)流80之通经热交换装置32朝向其温端34,此流被渐进地加热。假定如此通过过程实质为等压者,则意味著氮将遵循附图5例示之等压线之一。图5例示一群曲线,显示在各压力(由1至25大气压)下氮比热随温度之变化。各等压线之左手端(如所示)系由气态氮之饱和温度所界定可知等压线(有效地,温热曲线)压力愈高,则位在等压线上任何给定温度之氮比热愈大,因而在该温之冷冻容量愈大。在高压及给定温度之氮比热与在低压同温之氮比热间之相对差异随压力逐渐升高而增加;在10大气压以上压力下,此差异尤为显著。
六、图示之简单说明(详发明之详细说明内)
权利要求
1.永久气体流之液化方法,包含如下各步骤于升压下降低永久气体流温度至低于其临界温度,并进行至少两次工作流体循环以提供将永久气体温度降至低于其临界温度所需之至少部分冷冻;各次此工作流体循环包含压缩工作流体,冷却之,功膨胀经冷却之工作流体,在与永久气体流及与待冷却之工作流体行逆流热交换中温热经功膨胀之工作流体,因而对永久气体流提供冷冻;其中在至少一次工作流体循环中,经功膨胀之工作流体带至,在低于永久气体临界温度之温度下,与永久气体流呈逆流热交关系;而在该次循环或各该循环中,当功膨胀完成时工作流体压力至少为10大气压。
2.根据上述请求专利部份第1项之方法,其中所述压力系在12至20大气压之范围内。
3.根据上述请求专利部份第2项之方法,其中所述工作流体完成其功膨胀时之温度系在该压力之饱和温度或较该饱和温度为高不超过2K之温度。
4.根据上述请求专利部份第1或2项之方法,其中在低于其临界温度下之永之气体流进行至少三次依序等焓膨胀,在各等膨胀后,所得闪蒸气体自结果所形成之液体中分开;各等焓膨胀所得液体(末次者除外)系恰在下一次等焓膨胀中膨胀的流体,且至少部份该闪蒸气体与该永久气体流行热交换。
5.根据上述请求专利部份第3项之方法,其中执行三,四或五次依序等焓膨胀。
6.根据上述请求专利部份第3或4项之方法,其中至少部份该闪蒸气体与该永久气体流温度(较功膨胀工作流体与该永久气体流呈热交换关系时之温度为低)下,呈热交换关系。
7.根据上述请求专利部份第3-5项中任一项之方法,其中该第一等焓膨胀系在107至117K温度范围之永久气体流上进行者,而该永久毫体为氮。
8.根据上述请求专利部份任一项之方法,其中在可产生超过永久久气体临界温度之功膨胀工作流体的至少一次工作流体循环中,工作流体带至与(超过该永久气体临界温度之温度下之)永久气体流呈热交换关系。
9.根据上述请求专利部份第8项之方法,其中在至少一次工作流体循环中,功膨胀工作流体供将永久气体流由在或近温冷却至1135-180K范围之温度。
10.根据上述请求专利部份第8或9项之方法,其中该永久气体体流亦藉与至少一道冷冻剂流行热交换而冷却。
11.根据上述请求专利部份第10项之方法,其中该至少一道冷冻剂流供将永久气体流从在或近周温冷却至210K。
12.根据上述请求专利部份任一项之方法,其中该工作流体为一种永久气体。
13.根据上述请求专利部份第12项之方法,其中该工作流体系取自待冷却之永久气体流并与之归并而供压缩。
14.根据上述请求专利部份任一项之方法,其中该永久气体流系以45大气压或以下之压力而供应者,并采用三次工作流体循环。
15.根据上述请求专利部份第1-13项中任一项之方法,其中该永久气体流系以超过45大气压或以下之压力而供应者,并采用二次工作流体循环。
16.根据上述请求专利部份任一项之方法,其中在将经功膨胀之工作流体带至在低于永久气体临界温度之温度下,与永久气体流呈热交换关系的该次工作流体循环中,该功膨胀工作流体供将此流由在或近周温度冷却至110至118K范围之温度。
17.实质如本文中参照附图1及3或图4所叙述之一种永久气体流液化方法。
专利摘要
永久气体流液化法,包含如下各步骤于升压下降低永久气体流温度至低于其临界温度,并进行至少两次工作流体循环以提供将永久气体温度降至低于其临界温度所需之至少部分冷冻;其中在至少一次工作流体循环中,经功膨胀之工作流体带至,在低于永久气体临界温度之温度下,与永久气体流呈逆流热交换关系;而在该次循环或各该循环中,当功膨胀完成时工作流体压力至少为10大气压。
文档编号F25J1/02GK85106303SQ85106303
公开日1987年2月18日 申请日期1985年8月22日
发明者约翰·马歇尔, 约翰·道格拉斯·奥凯 申请人:英商Boc集团公司导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1