共同产氧的多塔氮发生器的制作方法

文档序号:4761442阅读:125来源:国知局
专利名称:共同产氧的多塔氮发生器的制作方法
技术领域
本发明涉及在高压下生产氮和氧的低温方法,其中氮回收率高,一般是高于70%,优选高于85%,而氧回收率则明显低于100%,一般是低于70%,优选低于55%。在某些工业应用中,也就是在电子和石油化学工业中,需要氮,有时需要少量的氧。当生产的氧超过需要而又没有市场时,从空气进给(从一完全回收设备中)中完全分离氮和氧将是很不经济的。因此,就需要一有效的空气分离设备,即具有高的氮回收率和较低的氧回收率的设备。
在制氮的已有技术中有几种方法,但是很少有涉及到同时共同产少量氧的方法。
氮发生器可以由一个、两个或多个蒸馏塔组成。本发明的改进涉及由两个或多个塔组成的氮发生器。
在一双塔的氮发生器中,每个塔可以是标准尺寸的蒸馏塔,或者可以使其减小为含有少至一个分馏级(如果能应用,不包括再沸器或冷凝器)的较小分馏器。
美国专利4,604,117使人得知一循环由单一塔组成,该塔带有对主塔产生新进料(不同成分)的预分馏器。
美国专利4,848,996和4,927,441各使人得知一具有后分馏器的氮发生器循环。该后分馏器与精馏塔的塔顶热结合在一起,它将富氧的塔底液体分离成为甚至更富氧的流体和具有类似于空气成分的汽流。随后,这种“合成空气”流被温热、压缩并循环回到精馏塔中。
美国专利4,222,756使人得知一传统的制氮双塔工艺循环。在该传统的双塔循环中,第一塔(高压塔)的目的是将进给空气分离为塔顶蒸气氮和富氧液体,及随后要在第二塔(一般在较低的压力下操作)内对富氧液体加工来进一步回收氮。
英国专利1,215,377和美国专利4,453,957、4,439,220、4,617,036、5,006,139和5,098,457使人得知双塔氮发生器的各种其它的实施例。在这些专利中公开一些概念在塔的热结合措施上有了变化,比如在再沸器/冷凝器中使用了不同的介质,以及在塔中使用了中间或侧再沸器等。其它的不同是在向设备提供制冷的措施上,比如用不同介质的膨胀。
美国专利4,717,410使人得知另一双塔氮发生器的工艺流程图。在此公开的发生器中,通过将液氮从低压塔泵回到高压塔,靠牺牲低压氮的回收,使高压氮产物的回收增加。
美国专利5,069,699、5,402,647和5,697,229,以及欧洲专利0701099各公开了包括多于两个塔的氮发生器流程图。附加的塔或塔段被用来进一步增加氮产物的回收和/或压力,或者用来提供超高纯的氮产物。
美国专利5,129,932使人得知一低温方法用于生产中压氮同时对氧和氩有高回收率。然而,该方法是一全回收的循环。通过膨胀一部分来自高压塔的氮来实现比上述参考已有技术更高的氮压力。
美国专利5,049,173使人得知由任何低温空气分离设备制造超高纯氧的原理。具体说来,改进之处包括从其中一个精馏塔当中取出含氧但无重杂质的物流,在一分馏器中进一步汽提该物流的轻杂质,得到超高纯的氧。通过从高于含重杂质的进料位置处抽出物流而得到无重杂质的物流。
美国专利4,448,595使人得知一双塔空气分离方法的应用,其中由一部分进给空气(“分裂塔”)提供低压塔的蒸出,得到氮,和任选地得到一些氧。全部氧产物都是从低压塔随着至少一些氮产物产生。氧产物是从低压塔底或接近塔底处作为液体抽出,然后在该塔的塔顶被汽化。如果氧产物的纯度高于97%,该专利教导,该产物可以从低压塔的塔底抽出。任何过剩的氧可以从低压塔在废物流中抽出。该废物流还含有氮,这就明显地降低来自该塔的氮回收量。该专利发明的改进本身显示,在高压下操作低压塔,以高压提供氮产物。因此,废物流含有过剩的压力能,而且使其膨胀为设备提供必要的制冷。如果由其它装置(比如液化器)来提供制冷,废物流膨胀器就不再是必需的而可以除去。
单塔氮发生器与本发明的方法无关,因为它们不能提供氮的高度回收。然而,为了对背景技术提供更完整的评论,提供这些专利来公开一些单塔氮发生器循环。
美国专利4,560,397和4,783,210各使人得知使用单塔氮发生器共同产氧的方法流程。
美国专利4,560,397公开一种生产高压氮以及超高纯氧的方法,在该方法中,使用了两塔循环,其中第一高压塔用来产氮,而氧产物则从第二低压塔在高于储液罐的某一部位取出,以避免重杂质。
美国专利4,783,210公开一单塔氮发生器,其中来自氮发生器底的富氧液体在氮发生器顶的再沸器/冷凝器中被部分沸腾,造成废汽物流和第二个富氧液体,最后在一附加塔中将其提纯。
本发明是对氮发生器的改进,除了主产物氮以外,使该方法有效地以低回收率,一般是小于70%,优选小于55%的回收率共同产氧。在氮发生器方法中,在具有一高压塔和一低压塔的蒸馏系统中蒸馏空气。将进料空气压缩、处理除去水和二氧化碳、冷却至接近其露点,并送入蒸馏塔系统的高压塔中。从该蒸馏塔系统的至少一个塔中取出塔顶蒸气物流,得到氮产物。从低压塔中取出至少一种富氧物流。改进的特征在于(a)从低压塔在处于或低于低压塔进料某一位置处取出富氧物流;(b)将取出的富氧物流送入到一补充蒸馏塔中,分离为氧塔底液和废塔顶馏分;(c)为补充蒸馏塔提供蒸出,以及(d)从补充蒸馏塔的塔底取出氧物流(蒸气或液体)作为氧产物。
按本发明的方法,可以通过冷凝一部分来自高压塔的蒸气物流、冷凝一部分来自低压塔的蒸气物流、冷凝一部分进给空气或显冷至少一部分从蒸馏塔系统取出的富氧液体,来提供补充蒸馏塔的蒸出。
按本发明的方法,可以通过在分离区附近,将一部分进入该分离区部分的液体或蒸气进行旁路,来控制补充蒸馏塔分离区内液体与蒸气流量的比值。
按本发明的方法,可以通过从低压蒸馏塔中膨胀富氧蒸气、通过从补充蒸馏塔中膨胀废塔顶馏分或通过至少一部分压缩的进料空气的膨胀来提供工艺制冷。
在本方法中,共同产的氧可以含有大约85%至大约99.99%的氧。一般说来,这个范围将在95至99.7%之间。在本发明的该优选实施例中,加入到补充蒸馏塔的富氧进料从低压塔以液体取出。在该最优选的实施例中,加入到补充蒸馏塔的富氧进料从低压塔的塔底取出。


图1至5均为本发明方法的几个实施例示意图。
图6是背景技术方法的示意图。
图7至11均为说明本发明几个其它实施的示意图。
下面将参考几个特定的实施例,详细地说明在上面综述中描述的本发明。在下面的说明中,术语“富氧液体”是指一液体的含氧量大于空气中的含氧量。
图1上示意性地示有本发明的一个可能的实施例。冷却的进给空气101进入高压塔103,在那里将其分离为塔顶氮蒸气105和第一富氧液体107。管路109中的一部分塔顶氮蒸气在再沸器/冷凝器111中被液化。管路113中的第二个部分塔顶氮蒸气在补充再沸器/冷凝器中被液化。可任选的是管路117中的第三部分塔顶氮蒸气可以作为高压氮产物被取出。液化的氮135给低压塔119提供回流。第一富氧液体107在低压塔119中进一步被分离为低压氮蒸气121和第二富氧液体123。经过阀125使第二富氧液体降压,管路127中得到的流体被送入一补充蒸馏塔,即提馏塔129中,在那里该流体进一步被分离,产生氧产物131(作为液体或蒸气取出)和废物流133。因为氧产物131比第二富氧液体123的氧含量高,所以对于图1的实施例,提馏塔129中的压力必须低于低压塔119中的压力。补充塔或提馏塔129包括具有再沸器/冷凝器115(它可以坐落在储液槽壳体内或塔外,但是由液体和蒸气管路与储液槽连通)的储液槽和由蒸馏塔盘、结构填料或任何其它适当的传质接触器件组成的传质区137。
优选使用从低压蒸馏塔119的塔底取出的第二富氧液体123作为塔129的进料。然而应该理解,补充蒸馏塔129的进料可以是任何从低压塔由某一低于引进物料部位取出的含氧流体(在该实施例中是物流107)。而且,虽然在图1上未示出,有可能(从低压塔中)取出第三股富氧物流。比如可以选择第三股富氧物流作为蒸气,以及最终膨胀所述物流以为工艺提供制冷。
对于任何给定的空气分离设备,对氧的需求会随时间而变化。这可能影响塔129中液体对气体的流量比,最终影响氧产物131的纯度。为了控制这一氧纯度,我们可以在整个传质区周围或其任意部分提供一带有流量控制阀的液体或蒸气旁路。图2中示有该实施例具有这样的蒸气旁路。这个旁路,即管路241带有流量控制阀243,它从塔129的储液槽通往废物流133。
本发明的另一个实施例是可能的,其中使用不同的加热介质为补充塔提供蒸出。图3示有这个实施例。该循环的结构和前面的蒸馏塔系统不同之处是,补充提馏塔329通过再沸器/冷凝器315与低压塔319热结合在一起。在这一实施例中,低压塔319内的压力必须足够高,使得在该塔塔顶的温度足以使在再沸器/冷凝器内的氧沸腾。
图4中示有本发明的另一实施例。进给空气101在高压塔103内被分离为塔顶氮蒸气105和第一富氧液体107。管路109中的一部分塔顶氮蒸气在再沸器/冷凝器411中被冷凝,并作为回流液返回到高压塔103中。另一部分塔顶氮蒸气在管路117中作为高压氮产物被取出。通过一JT阀使第一富氧液体107减压,并被送入小提馏塔445中,在那里将其分离为两股不同组成的蒸气物流,即管路447和449。通过在再沸器/冷凝器411中冷凝氮109对塔445提供蒸出。两股蒸气流447和449在两个不同的部位被送入低压塔419中,并在这里被分离为塔顶氮蒸气451和第二富氧液体123。管路453中的一部分塔顶氮蒸气在再沸器/冷凝器315中被冷凝,并作为回流液返回低压塔419中。管路121中的另一部分塔顶氮蒸气作为低压氮产物被取出。补充塔329借助于再沸器/冷凝器315与低压塔热结合在一起。第二富氧液体123经过一JT阀被减压,并被送入蒸馏塔329中,在那里将其分离为氧产物331和废物流333。
图1-4中的实施例指出,使用来自高压塔顶的冷凝氮的潜热,或者使用来自低压塔顶的冷凝氮的潜热可以为补充塔提供蒸出。对加热流体的这一特定选择不是必须的,我们可以使用任何可以得到和适当的工艺物流来为氧提馏塔提供蒸出,比如一部分进给空气流、从低于高压塔顶处取出的蒸气物流、从低于低压塔顶处取出的蒸气物流、第一富氧液体107的显热等。还应该理解,冷凝的全部或部分氮可以从低于可用塔塔顶的位置处取出。
图5中示有本发明的另一可能的实施例。这一空气分离装置的目的是以较高的回收率产生蒸气和液氮,同时以较低的回收率产生少量液氧。对于此实施例,为了产生低温液体,这一循环与氮液化器结合在一起。然而一般说来,任何类型的液化器,比如氮液化器、空气液化器、混合(氮和空气)液化器、含有一个或几个膨胀透平的液化器在这一循环中都可以使用。
图5中,管路501供应进给空气,使其在主压缩机503中压缩,在换热器505中被外面的冷却流体冷却,最好在吸收器507中处理除去水和二氧化碳,通过管路509将其引入到主换热器511中,在那里将其冷却至低温的温度,并经由管路513被送入高压蒸馏塔515中。根据工艺规程不同,高压塔可以在大约50至大约250磅/平方英寸面积范围,优选为65至150磅/平方英寸面积范围的压力下操作。空气在高压塔内被分离产生塔顶氮蒸气517和第一富氧液体519。管路521中的一部分塔顶氮蒸气在再沸器/冷凝器523中被冷凝。管路525中的第二个部分塔顶氮蒸气在再沸器/冷凝器527中被冷凝。使一部分液化氮在管路529中作为回流液返回到高压塔515中,而管路531中的第二个部分则在换热器521中过冷,经过阀533减压,再经管路535作为回流液送入低压塔537。可以任选地取出管路539中的第三个部分塔顶氮蒸气,在换热器511中温热,并作为高压氮产物541排出。第一富氧液体519在换热器521中被过冷,经过阀543减压,并经由管路545被送入低压塔537中,在那里对其进一步分离为低压氮蒸气547和第二富氧液体549。低压塔可以在25至100磅/平方英寸面积范围,优选25和50磅/平方英寸面积之间的压力下操作。低压氮547在换热器521和511中被温热,并被分成两股物流产物物流551和液化进给物流553。可以任选地将物流541中的全部或一部分高压氮产物送到氮液化器555中。一部分在液化器555中液化的氮在管路557中作为产物被取出,而另一部分则在管路559中,用泵561通过管路563抽到低压塔537中作为补充的回流液。第二富氧液体549经过JT阀565减压,在管路567中得到的流体在补充塔569中被蒸馏提供液氧产物571和废物流573。废物流573在换热器521和511中被温热,经由管路575离开该系统。补充塔569可以在接近大气压的压力和更高的压力下操作,优选范围是15-30磅/平方英寸面积。
如果不使用液体制冷,则可以使用某些形式的膨胀制冷。对于图5中的实施例,人们可以选择在高压下操作塔569,并且使废物流573膨胀。另外也可以选择膨胀一部分进给空气,优选膨胀到低压塔537的压力。最后,可以选择从低压塔中取出富氧蒸气,并使之膨胀。
为了显示本发明的效果,对在图5中所示的实施例进行了模拟,计算出其功率消耗,与图6中所示的具有氮液化器的传统双塔循环进行比较。进行比较时假设每天生产1500短吨的含氧不高于5ppm的氮产物,并将其后压缩至150磅/平方英寸面积。除了上述氮以外,每天还以纯度99.5%生产165短吨液氧。如图5所示的本发明的功率消耗是10.2兆瓦。图6所示的传统双塔循环的功率消耗(那里排出任何过剩的氧)是11.4兆瓦。正如从上所述可知,本发明方法是一种更高效的方法。
本发明的其他实施例都是可能的。图7说明如何可使一部分进给空气(物流713)在再沸器/冷凝器115中冷凝,以对补充塔129提供蒸出。另一方案如图8所示可使第一富氧物流107在再沸器115中显冷,以对补充塔提供蒸出。图9至11说明对该工艺提供制冷的不同措施。在图9中从低压蒸馏塔取出富氧蒸气作为物流923并在涡轮925中膨胀以对该工艺提供制冷。在图10中可使来自补充塔、物流133的塔顶蒸气在涡轮1035中膨胀以提供制冷。最后在图11中使一部分进给空气(物流1113)在涡轮1115中膨胀,然后将其引入低压塔内。
参考了其几个特定的实施例说明了本发明。这些实施例不应看作是对本发明的限制。应按照如下的权利要求来确定本发明的范围。
权利要求
1.一种蒸馏空气的低温方法是在具有高压塔和低压塔的蒸馏塔系统中生产氮产物,其中将进给空气压缩、处理除去水和二氧化碳、冷却至接近其露点,并送入蒸馏塔系统的高压塔中,其中从该蒸馏塔系统的至少一个塔中取出塔顶蒸气物流,生产氮产物,以及其中从低压塔中取出至少一股富氧物流,该方法的特征在于(a)该富氧物流是从低压塔在或一低于低压塔进给位置处取出的;(b)将取出的富氧物流送入一补充蒸馏塔中,以蒸馏分离为一氧塔底液和一废塔顶馏分;(c)为补充蒸馏塔提供蒸出;以及(d)从补充蒸馏塔的塔底取出氧蒸气物流作为氧产物。
2.如权利要求1所述的方法,其特征在于,通过冷凝一部分来自高压塔的蒸气物流提供补充蒸馏塔的蒸出。
3.如权利要求1所述的方法,其特征在于,通过冷凝一部分来自低压塔的蒸气物流提供补充蒸馏塔的蒸出。
4.如权利要求1所述的方法,其特征在于,通过冷凝一部分进给空气提供补充蒸馏塔的蒸出。
5.如权利要求1所述的方法,其特征在于,通过显冷至少一部分从蒸馏塔系统中取出的富氧液体提供补充蒸馏塔的蒸出。
6.如权利要求1所述的方法,其特征在于,补充蒸馏塔包括至少一个分离区,在那里蒸气和液体逆向流动接触,而且其中通过在分离区周围将一部分要进入这部分分离区的液体或蒸气加旁路来控制分离区内液体流量与蒸气流量的比例。
7.如权利要求1所述的方法,其特征在于,从低压蒸馏塔取出富氧蒸气,并且使其膨胀以提供工艺制冷。
8.如权利要求1所述的方法,其特征在于,从补充蒸馏塔取出废塔顶馏分,并使其膨胀以提供工艺制冷。
9.如权利要求1所述的方法,其特征在于,通过膨胀至少一部分压缩的进给空气来提供工艺制冷。
10.如权利要求1所述的方法,其特征在于,进给空气中少于70%的氧被回收在氧产物中。
11.如权利要求1所述的方法,其特征在于,进给空气中少于55%的氧被回收在氧产物中。
12.如权利要求1所述的方法,其特征在于,氧产物的氧浓度在85和99.99%氧之间。
13.如权利要求1所述的方法,其特征在于,氧产物的氧浓度在95和99.7%氧之间。
14.如权利要求1所述的方法,其特征在于,从低压塔中取出的富氧物流是液体。
15.如权利要求14所述的方法,其特征在于,富氧物流是从低压塔的塔底取出。
全文摘要
本发明是对氮发生器的一改进,除了主产物氮以外,使该方法有效地以低回收率,一般是小于70%,优选小于55%的回收率共同产氧。在氮发生器方法中,在具有高压塔和低压塔的蒸馏系统中蒸馏空气。将进给空气压缩、处理除去水和二氧化碳、冷却至接近其露点,并将其送入蒸馏塔系统的高压塔中。通过从该蒸馏塔系统的至少一个塔中取出塔顶蒸汽物流,生产氮产物。从低压塔中取出至少一股富氧物流。该改进的特征在于(a)从低压塔在某处或低于低压塔进给位置处取出富氧物流;(b)将取出的富氧物流送入到补充的蒸馏塔中,以分离为氧塔底液和废塔顶馏分;(c)为补充蒸馏塔提供蒸出,以及(d)从补充蒸馏塔的塔底取出氧物流(蒸气或液体)作为氧产物。
文档编号F25J3/04GK1237697SQ9910830
公开日1999年12月8日 申请日期1999年6月2日 优先权日1998年6月2日
发明者Z·T·菲德科维斯基, D·M·赫伦, J·A·霍普金斯 申请人:气体产品与化学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1