超饱和富氢饮水机的制作方法

文档序号:16275126发布日期:2018-12-14 22:31阅读:558来源:国知局
超饱和富氢饮水机的制作方法

本实用新型涉及一种饮水机,属于一般的物理或化学的方法或装置的混合作业技术领域。



背景技术:

饮水机为家电产品,然而,对于当前市面上的大多饮水机只具备了净水、储水功能,却不能提供高溶解氢饮用水,而当前市面上的饮水机来说有以下缺点:

1)净水效果不达标准,存在余氯风险,即使达到生活饮用水标准,饮水机却体积非常大,占用面积较大,使用繁琐;

2)多数饮水机均存在出水量小,缓存于水箱中,难以避难细菌滋生,从而影响饮用水质量;

3)更有甚者通过磁化,饮水机改变水的分子团,但是对于有肠胃疾病的人来说慎用,因为磁化水对肠胃有一定的刺激;

4)通过净化水质一般为酸性,不易人体长期饮用。

而对于市面上的富氢类产品技术来说,富氢水制作方法有三种:电解法、氢气灌注法、镁水生成法:

1)对于电解法而言,氢气保存不易,短时间内氢气容易跑掉,而且经过水机后急速衰减,另外电解后不单纯有阴极产物,阳极产物也存在于水中,仍具备一定氧化作用。而且强电流作用下,会产生一定副产物(H2O2、O3等);

2)对于氢气灌注法而言,用压力将氢气灌注入纯净水中,这应该叫做含有氢气的水,而不是氢“溶”与水,所以氢气无法长时间保存。与此同时,更应该注意的点在于氢气来源是否纯净;

3)对于镁水生成法而言,利用镁与水的反应制造出氢气,而需要注意的是极难溶于水的副产物氢氧化镁仍存在于水中,经常摄入这样的水,会对身体造成一定影响,尤其是儿童的摄入更为严重。

可见,对于大多数饮水机而言,制取的富氢水,溶解氢含量较低,即使个别含量较高也会存在不同程度上的余氯、次氯酸等,而且一味地强电流提高溶解氢,会带来副产物。



技术实现要素:

本实用新型解决的技术问题是,针对现有技术不足,提出一种保持水中的超浓富氢微气泡的溶解浓度不衰减、水中的超微氢气泡长期维持有足够的数量不破碎消失、同时制取快捷,即时出水,现做现用,保证水质安全性的超饱和富氢饮水机。

为了解决上述技术问题,本实用新型的发明人在上述认识的基础上提出如下技术方案是:一种超饱和富氢饮水机,包括纯水箱、循环泵和电解槽,所述电解槽包括隔离膜以及由隔离膜分隔出的阴、阳电解室,所述隔离膜两侧设有分别位于阴、阳电解室内的阴、阳电极,所述阴、阳电解室内壁上固定有多个指向隔离膜的梳形齿,所述阴电解室的进、出水口与循环泵的进、出水口通过管路依次串行连通并形成循环回路,所述循环回路上串接有出、回水口分别与阴电解室的进水口和循环泵的出水口连通的进水控制单元,所述进水控制单元的进水口与纯水箱连通,所述循环回路上靠近所述阴电解室的出水口处还外接有连通外部的出水管;在使用时,位于所述循环回路上的阴电解室中电极生成的氢气与该电解室中的水体混合生成氢气泡并在所述循环回路中高速流动。

上述本实用新型公开的超饱和富氢饮水机技术方案的工作机理及有益效果陈述如下。

本实用新型装置结构特征是,参见图1,源水从纯水箱经过进水控制单元送至循环泵入口,当出水管关闭时,在循环泵驱动下,源水经循环泵出水口→阴电解室→进水控制单元→循环泵入水口构成一循环回路进行封闭循环流动,整个循环回路的水阻很小,管路压降趋于零,因此循环泵的很小泵压就可以产生很高的循环流速,水流总体表现为层流状态。

本实用新型先在阴电解室中电极生成的氢气,由于循环回路中的水流流速很高,氢气分子迅速溶解入水流中,与该电解室中的水体混合,在水中生成相当数量的气泡。

在静止液体中,氢气泡与液体之间最重要的力是升力,氢气泡在升力作用下不断上浮逃逸。而氢气泡在流动场中,因气液两相密度、黏度等不同,引起氢气泡与流体之间速度存在一定差异。而气液两相的相对速度差,产生气液两相间的曳力。在静止液体中,氢气泡与液体之间最重要的力是升力,而流动液体中则主要是曳力。曳力的存在,限制了气泡的上浮,气泡随流体同向运动而保持相对稳定。

流速越高,同速、同向运动的气泡间发生相互碰撞的几率就越小。氢气泡进入流水后随水流流向运动时,必定受到水流挤压而变细变长→被持续拉伸→拉断成小气泡→小气泡再进一步缩小…,甚至气泡粒径可以达到100纳米以下。本实用新型装置正是通过保持封闭循环管路中水体的高流速,来确保生成小气泡。

需要特别指出的是:为要使水中氢气泡大量稳定存在,理想的情况是氢气泡均匀分布悬浮于水中,相互之间不碰撞,同时解决氢气泡无法在静止水中稳定存在的缺陷。本实用新型装置将氢气泡溶存在一个封闭旋转的循环回路中,形成一个动态水箱。由流体力学常识知道,对于相同管道截面积,流速越高,流量越大,意味着动态容积增大,可以包容更多气泡进入,伴随着电解室中气泡持续进入水中,循环回路中的气体溶解浓度和气泡数量稳步均匀增加,很快达到饱和乃至超饱和。

概括上述本实用新型的超饱和富氢饮水机技术方案的有益效果是:

1)本实用新型通过阴电解室中电极生成的氢气,融入水中,从水体内部进行立体溶气,水中存在大量氢气泡尤其是超微氢气泡,伴随着氢气泡的破灭气体在水中释放,就可能发生氢气体水中以单分子或多分子态的的超量溶解,成为超饱和氢气水,氢气体在水中的扩散就可以不受水体表面溶解度的限制,可以达到超饱和度的状态,并在进入流水后随水流流向运动时,受到水流挤压,甚至可以被持续拉伸、拉断成达到100纳米以下粒径,同时,通过在循环回路中的高流速,使得循环回路中的氢气溶解浓度不衰减,水中氢气泡始终维持有足够的数量;同时制取快捷,即时出水,现做现用,保证了水质安全性。

2)通过在阴、阳电解室内壁上固定有多个指向隔离膜的梳形齿,阴电解室内部水路为易于形成紊流的结构,水流在,阴电解室内剧烈碰撞,形成涡流,对气泡进行切割,过流断面再次收缩时,流态剧变,紊动更为剧烈,气泡进一步变小,最终产生超精细纳米氢气泡。

本实用新型在上述技术方案基础上的改进是:在使用时,所述循环回路内的循环水流量Lx和出水管的出水流量Lc两者保持量化关系为:Lx:Lc≧5。

具体实用效果是:如果从循环水路(动态水箱)中取水输出的流量过大,就会破坏循环回路中气水两相流型的稳定,故本实用新型装置限定Lx:Lc≧5。

本实用新型在上述技术方案基础上的完善之一是:所述循环回路中的气水混合溶液的最小流速Umin=ɑ×出水流量÷循环回路的管路截面积S,其中ɑ为设定数值,取5≥ɑ≥2。

本实用新型在上述技术方案基础上的完善之二是:所述循环回路上串接有滤芯。

具体实用效果是:滤芯可对水中悬浮运动的气泡群进行梳理分隔,防止气泡间相互聚积,维持泡沫流型,还可在高温时,阻挡气泡上浮。

本实用新型在上述技术方案基础上的完善之三是:所述循环回路上设有循环控制单元,所述循环控制单元包括循环单向阀、流量控制阀、稳压阀或其组合。

具体实用效果是:通过循环控制单元对气水流循环的流量、流速、压力等运行工况进行调试或调整。

本实用新型在上述技术方案基础上的完善之四是:所述出水管上设有出水控制单元,出水控制单元包括循环电磁阀、稳压阀、限流孔板或其组合。

本实用新型在上述技术方案基础上的完善之五是:所述循环回路上设有流量计。

附图说明

下面结合附图对本实用新型的超饱和富氢饮水机作进一步说明。

图1是本实用新型实施例一的超饱和富氢饮水机的连接结构示意图。

图2是图1的电极槽的结构示意图。

具体实施方式

实施例一

本实施例的超饱和富氢饮水机,参见图1和图2,包括纯水箱、循环泵和电解槽1。电解槽1包括隔离膜11以及由隔离膜分隔出的阴电解室12和阳电解室13,隔离膜11两侧设有分别位于阴、阳电解室内的阴电极14和阳电极15,

为了提高制取氢水的效率,电解槽1可以采用多个级联的方式。当期望获得更高的溶解氢时,可以将各电解槽1的水路串联;若期望加大出水流量,可以将各电解槽1水路并联。至于各电解槽1的电极供电电压,优选采用正负相串联的方式,以保持相同的电解电流。若设计合理的话,可以与循环泵供电使用统一电压等级,使得系统更加简化。

本实施例的阴电极14和阳电极15均为网状电极且与隔离膜11零间距紧贴,隔离膜11可以是超滤膜、纳滤膜或反渗透膜,等等。循环泵采用隔膜泵。

阴、阳电解室内壁上均固定有多个指向隔离膜11的梳形齿16。阴电解室的进、出水口与循环泵的进、出水口通过管路依次串行连通并形成循环回路2,循环回路2上靠近阴电解室的出水口处还外接有连通外部的出水管3。循环回路2上串接有出、回水口分别与阴电解室的进水口和循环泵的出水口连通的进水控制单元,进水控制单元的进水口与纯水箱连通,进水控制单元可以是由一个三通管和电磁开关阀组成,也可以是多个电磁阀或稳压阀组成。

在使用时,位于循环回路2上的阴电解室中电极生成的氢气与该电解室中的水体混合生成氢气泡并在循环回路中高速流动。同时,循环回路2内的循环水流量Lx和出水管3的出水流量Lc两者保持量化关系为:Lx:Lc≧5。

本实施例的循环回路2中的气水混合溶液的最小流速Umin=ɑ×出水流量÷循环回路的管路截面积S,其中ɑ为设定数值,取5≥ɑ≥2。

从气水两相流形态研究可知,为使气泡群能均匀稳定分布于流体中,管路直径应远远大于气泡粒径;反之,若管径太大,水流循环功率损耗将增大。综合平衡后,本实用新型装置的循环回路2的管路采用具疏水特性,截面内径范围 100mm≧D≧2mm的管道。

实际试验测试中制取的氢水,采用丹麦Unisense高精度氢微电极检测,溶解氢浓度可以稳定维持在1200ppb-2000ppb。

本实用新型装置在使用时,循环回路2基本工作在≤0.01MPa低压范围。循环泵始终处于轻负荷状态,因此不仅节能,而且工作可靠,故障率极低。同时,本实用新型装置中各单元部件基本都是市面上技术成熟、易购易元器件,因此本实用新型装置的性价比极高,适合大批量生产、适用于各种场合推广普及。

实施例二

本实施例的超饱和富氢饮水机是在实施例一基础上的改进,与实施例一的不同之处在于:1)本实施例的循环回路2上串接有滤芯。滤芯的大量无规则微孔对水流起到阻挡、分割等作用,使之趋向成为无序紊流,可以使气体在水中溶解得更充分,生成的纳米气泡更多、气泡粒径更小。这对于难溶于水的氢气,效果尤为显著。

2)本实施例的循环回路2上设有循环控制单元,循环控制单元包括循环单向阀、流量控制阀、稳压阀或其组合,等等。

3)在出水管3上设有出水控制单元,出水控制单元包括循环电磁阀、稳压阀、限流孔板或其组合,等等。

4)循环回路上设有流量计4,实现对系统运行工况的控制,等等。

本实用新型的超饱和富氢饮水机不局限于上述实施例的具体技术方案。本实用新型的上述各个实施例的技术方案彼此可以交叉组合形成新的技术方案。凡采用等同替换形成的技术方案均为本实用新型要求的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1