Keplerate型聚氧钼酸盐用于净化水生环境的用途的制作方法

文档序号:21365626发布日期:2020-07-04 04:40阅读:417来源:国知局

本发明涉及通用结构mo72m30的keplerate型聚氧钼酸盐用于净化水生环境中的有机和无机污染物的用途。

对环境和人类有潜在危害的污染物通过不同渠道进入水生环境。这类污染物的例子是有机化合物、染料和药物活性成分。

来自织物整理、化学、石化和药物生产的工艺用水以及来自医院或类似地方的废水可能含有不可用于生物水处理的污染物。这些污染物需要在引入生物水处理之前进行预处理。

在这种情况下,已经使用了先进的氧化方法,例如结合使用紫外线辐射和氧化剂(例如过氧化氢)。紫外线处理还用于织物整理过程中的废水处理或用于废气洗涤器中的洗涤液处理。

所有已知的方法都基于使用来自太阳光的可见光谱之外的高能辐射源的辐射,即低于400nm的紫外光,并且由于二氧化钛的随时可用性和低成本,因此优选使用基于二氧化钛的紫外活性光催化材料。然而,在许多情况下二氧化钛的效率并不能令人满意。

hiskia等人,《国际环境分析化学(int.j.environ.analchem.)》,86,3-4,233-242(2006)描述了用于净化水生环境的多金属氧酸盐(polyoxometalate,pom)光催化。概述了在近可见光或紫外光的激发下,pom成为一种强氧化剂,能够破坏水体系中的多种有机污染物。pom在可见光和近紫外光下的光解作用导致形成激发态,该激发态充当强氧化剂,该强氧化剂氧化包括有机污染物在内的有机基质并在许多情况下使其矿化(即分解为二氧化碳和水)。没有设想keplerate型pom。

多金属氧酸盐(缩写为pom)是多原子离子,通常是阴离子,其由三个或更多个过渡金属氧阴离子组成,它们通过共享的氧原子连接在一起形成闭合的3维构架。金属原子在其高氧化态下通常是第6族(mo、w)或不太常见的第5族(v、nb、ta)过渡金属。

在文献中已经大量描述了聚氧钼酸盐,即基于mo作为过渡金属的多金属氧酸盐。聚钼酸盐最常见的单元是八面体{moo6}单元,通常由于mo原子偏心而扭曲,从而产生一个较短的mo-o键。一些聚钼酸盐含有五边形双锥体单元。

文献中描述了这样的一个例子,包含五边形{(mo)mo5}结构单元的聚氧钼酸盐,其包含中央五边形双锥体{moo7}基团和六个周围{moo6}八面体。

高度对称的[(pent)12(link)30]型球形簇,例如{mo132}型纳米球,由12个五边形{(mo)mo5}基团(pent)与作为接头(link)的30个{mo2}基团连接而成。

数字十二是二十面体对称的象征,在两种柏拉图立体:二十面体和十二面体的情况下非常重要,后者具有12个面,前者具有12个顶点。

这些体系中的接头(mo基团)可能会被其他金属原子如fe、cr或v所替代,从而产生通常由分子式mo72fe30、mo72cr30和mo72v30指定的pom并且通常被称为keplerate分子。

keplerates是一类高对称性分子。一些金属位于柏拉图立体(例如立方体、八面体、四面体、二十面体)的顶点上,而其他金属则位于阿基米德立体(例如立方八面体)的顶点上。

keplerate型聚氧钼酸盐mo72fe30最初由müller教授和他的小组在比勒费尔德大学(universityofbielefeld)于2000年左右合成并描述,而且已经发表müller教授著写或合著的许多关于聚氧钼酸盐的综述(例如,a.müller,p.gouzerh,《化学学会评论(chem.soc.rev.)》2012,41,7431-7463(2012)或a.müller,s.roy,oxomolybdates:fromstructurestofunctionsinaneweraofnanochemistry,“thechemistryofnanomaterials:synthesis,propertiesandapplications”,编辑c.n.r.rao,a.müller,a.k.cheetham,wileyvch,2004)。报道的评论中尚未描述或建议使用keplerate型pom来净化水生环境。

zang等人,《化学学会评论(inorg.chem.comm.)》,第14卷,第4期,590-593(2011)公开了在紫外线辐射下使用聚氧钼酸盐mo72fe30降解罗丹明b。

zhou等人,《rsc进展(rscadv.)》第4卷,第97期,54928-54935(2014)公开了在紫外线辐射下使用聚氧钼酸盐mo72(mo2)30降解罗丹明b。

cn102210917也公开了在紫外线辐射下使用聚氧钼酸盐mo72(mo2)30降解若丹明b。

本发明的目的是提供keplerate型聚氧钼酸盐用于净化水生环境的新用途。

这一目的是由根据权利要求1的用途和根据权利要求13的方法实现。

本发明的优选实施方案在从属权利要求和下面的具体实施方式中进行了描述。

根据本发明,通用结构mo72m30的keplerate型聚氧钼酸盐(pom),其中m选自由feiii、criii、viv或mov2组成的群组,与电磁辐射结合用于净化水生环境中的无机和有机污染物。

此处使用的术语keplerate是指包含柏拉图和阿基米德立体(由等价原子集合跨越)的分子结构,其原理是一个原子套另一个原子,就像俄罗斯套娃一样。

根据本发明适合使用的keplerate型聚氧钼酸盐已经在文献中进行了描述,例如仅在a.müller等人,《德国应用化学(angew.chem.int.ed.)》,39,1612-1614(2000)、a.müller等人,《固态科学(solidstatesci.)》,2,847-854(2000)和a.müller等人,《化学学会评论》41,7431-7463(2012)中给出几个例子。

本发明中使用的所有keplerate型聚氧钼酸盐都可以由通用结构pent12link30表示,其中pent表示五边形(mo)mo5单元,而link是如上文所定义的金属m。五边形基团通过接头连接。

根据本发明使用的pom的核心结构,其中m选自fe、v或cr,是三十二面体。磁性离子m占据所述三十二面体的顶点。三十二面体包含12个五边形(由mo(mo5)单元形成)和20个三角形(由接头原子m形成)。

m为mov的pom形成截角二十面体,其具有由mov形成的12个五边形和20个六边形。

根据本发明使用的pom由通过30个单核或双核接头连接的12个五边形mo(mo5)单元形成,包括一个纳米级胶囊腔和20个可调节大小的[mnon]型的特异性纳米孔(例如n=6或9),它们可以充当基质特异性受体。该腔甚至可以容纳较小的多金属氧酸盐以形成超分子纳米复合材料。如果m是铁磁性金属,则获得分子纳米反铁磁性物质。

在无机缩聚反应之后,mo72m30型纳米物体可以在固态反应中交联形成层。

新过滤的晶体显示出快速的水分流失,并且还存在从球形纳米球形成相关的一维链(顺磁性keplerate项链)的可能性。

在可以是亲水或疏水的腔内,不同反应类型可以在明确限定的位置进行。

因此,根据本发明使用的pom是令人关注的,因为它们的稳定性、尺寸、溶解度、巨大的腔、纳米大小的可变孔隙、独特的表面、不同寻常的电子结构以及在各种拓扑结构中丰富的磁性中心(如果m是铁磁金属)。在保持稳固的纳米级氧化钼酸盐骨架完整的同时,可以操作大部分的团簇。用表面活性剂包封这些巨大的团簇,可以制成薄膜和单层。

关于根据本发明使用的pom的特性的进一步信息提供于a.müller,s.roy,oxomolybdates:fromstructurestofunctionsinaneweraofnanochemistry,“thechemistryofnanomaterials:synthesis,propertiesandapplications”(编辑c.n.r.rao、a.müller和a.k.cheetham),wiley-vch2004和a.müller,p.gouzerh,《化学学会评论》2012,41,7431-7463(2012)中。

关于kepleratepom合成的一般信息也可以在b.yadollahi等人,《催化通讯(catal.commun.)》66,107-110(2015)的支持信息中找到。

根据本发明使用的pom的合成方法已在a.müller等人,《德国应用化学(angew.chem.int.ed.)》383238-3241(1999)、a.müller等人,《德国应用化学》119,6218-6222(2007)和a.müller等人《德国应用化学》37,3360-3363(1998)中描述。

根据优选实施方案,m是feiii

根据本发明特别优选的聚氧钼酸盐是movi72felll30o252(ch3coo)12{movi2o7(h2o)}2{h2movi2o8(h2o)}(h2o)91]x

大约150个h2o,其已在a.müller等人,《德国应用化学》,39,1612-1614(2000)中描述。

根据本发明使用的合适的kepleratepom的其他例子是na8k14[(vo)[(movi)movi5o21(h2o)3{movl)movl5o21(h2o)3(so4)2{vivo(h2o)20{vivo}10({kso4)5)2x150h2o(mo72v30)和[{na(h2o)12}[movi72crlll30o252(ch3coo)19(h2o)}]94x120h2o(mo72cr30)。关于它们合成的信息提供于yadollahi等人,rsc进展,70424-70428(2015)中,进一步细节参考该文献。

聚氧钼酸盐用于净化水环境中的有机和无机污染物。

原则上,任何种类的水生环境都可以由根据本发明的pom处理,即,在这方面没有具体的限制。

已经发现,在某些情况下,根据本发明处理选自织物整理、染料生产、化学合成、石化合成或药物合成的工艺用水或城市环境或医院中的废水收集系统的水生环境是有利的。

织物整理、化学、石化和药物生产的工艺用水可能含有生物或化学水处理无法去除并且对环境有危害的污染物。通过使用根据本发明的pom处理这类水生环境,有可能在很大程度上去除污染物,从而消除或至少减少与水介质中此类污染物相关的风险。

污染物本质上是无机或有机的并且可能是例如药物活性成分、农业活性成分、肽或芳香族化合物,优选是药物或农业活性成分。另一类污染物是染料。

根据本发明的优点之一是以下事实:在许多情况下,污染物基本上被矿化,即,被分解为二氧化碳和水。已知的氧化方法在某些情况下会将污染物分解成中间产物或分解产物,但仍有危害。很明显,将整个碳链分解为二氧化碳和水可以消除中间产物或分解产物的任何潜在问题,因此,根据本发明的用途在这方面提供了优于已知方法的重要益处。

以此为例,根据本发明的用途可以应用于水生环境,其含有尿素、尿酸、邻菲咯啉、肽类、细菌、苯、芘、乙腈、血卟啉、三聚氰胺、如五氟苯酚的氟化有机化合物、如对硝基酚的含氮芳香族化合物、三乙醇胺或者如亚铁氰化钾、亚甲蓝、结晶紫、酞菁氯化铁(lll)或甲基紫精的染料作为污染物。

如上所述,此列表仅是示例性的;没有具体的限制,因为pom氧化了绝大多数的有机和无机污染物。

根据优选实施方案,这些pom与氧化剂结合使用。

合适的氧化剂是,例如,过氧化氢、氧或过硫酸盐,后者是优选的。特别是碱金属和碱土金属过硫酸盐,如过硫酸钠、过硫酸钾或过硫酸钙,由于其良好的可用性而更优选。熟练的技术人员将根据自己的专业经验和具体的预期应用选择合适的氧化剂。

pom与氧化剂的重量比不受特定限制,一般可在1:100到100:1的范围内,优选在1:1到1:100的范围内,特别优选在1:10到1:50的范围内。

根据进一步的优选实施方案,电磁辐射的波长超过400nm,优选超过420nm。特别优选在401至800nm范围内的电磁辐射,即可见光谱范围内的辐射。

根据一个特别优选的实施方案,所使用的辐射是太阳光,在这种情况下使用术语太阳光催化。本实施方案的优点是,与其他波长的辐射相比,不需要辐射的能量消耗源,因为太阳的光是充分可用的。与需要波长少于400nm的紫外线辐射及需要要求外部能量供应以产生辐射的特定辐射源的方法比较,根据本发明的用途提供了实现显著的节能和不依赖于任何昂贵的能源基础设施的优点。

根据特别优选的实施方案,使用上文所述的keplerate型聚氧钼酸盐与氧化剂和波长超过400nm(优选在401nm到800nm范围内)的电磁辐射相结合。

本发明的另一个实施方案涉及一种净化水生环境的方法,其中将通用结构mo72m30的keplerate型聚氧钼酸盐,其中m选自由fe、cr、v或mo组成的群组,视情况在如过氧化物的氧化剂存在的情况下,添加到水介质中并用电磁辐射(例如可见太阳光)照射,或者其中将聚氧钼酸盐负载于固相支持体上,并且水介质在被电磁辐射(例如可见太阳光)照射的同时流过负载的载体。电磁辐射优选具有超过400nm,更优选超过420nm并且最高达800nm的波长。

用于pom的固相支持体不受特定的限制,可以选自任何合适的材料,该材料能够以允许液体(水生环境)流过被支撑的pom而不会破坏结构的方式固定pom。熟练的技术人员将根据他的专业知识和具体的应用情况选择合适的支持体。

根据本发明的用途允许在节能和经济可行的过程中对水生环境进行净化,尤其是在使用太阳光作为电磁辐射源的情况下。

已经发现,大多数有机和无机污染物都可以在环境条件下,即在10℃至50℃,优选15℃至35℃的温度范围内,在1至24小时,优选2至20小时,尤其是3至18小时的时段内被去除40%或更多,优选60%或更多,最优选80%或更多。

污染物的浓度不受具体限制,并且可以跨越很宽的范围,从而可以处理很多种水生环境。已成功测试了100至10000ppm,优选200至5000ppm范围内的污染物浓度,并提供了令人满意的结果。

如前所述,根据本发明的用途的一个优点是以下事实:污染物基本上被转化为无害的产物,即有机主链结构被有效地降解以主要产生二氧化碳和水作为最终的降解产物,这些降解产物易于处理/去除,不会对健康造成危害。

以下实施例显示了根据本发明的用途和根据本发明的方法的广泛通用性。

实施例:

0.1g根据müller等人《德国应用化学》39,1612-1614(2000)合成的mo72fe30、2g过硫酸钠、20ml的水和根据表1中给出的数据处理的基质在石英玻璃反应器中通过使用滤光器的氙灯进行照射,滤光器排除了波长小于420nm的辐射(从而过滤掉紫外线辐射)。通过利用cg/ms在反应器上端测量co2的析出,监测基质的分解。此外,在一些实验中,还进行了色谱(hplc)或分光光度(uv/vis)测量来显示基质的降解。表1示出了得到的结果。

表1

1双氯芬酸(dichlofenac)、卡马西平(carbamezipine)和磺胺甲噁唑(sulfomethaxol)的混合物(各200ppm)

结果表明,根据本发明的pom的用途可以被成功地应用于很多种不同的污染物。

实施例2

在实施例1的条件下,提取并降解美人蕉叶片中所含的染料。观察到的颜色变化是成功降解的证据。

pom催化剂也可以被固定,从而开启了连续操作的可能性。实施例表明,发射可见光范围内光的简单led就足以实现所需的降解。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1