一种磁性纳米球吸附氧化钒量子点降解罗丹明B的方法与流程

文档序号:20676462发布日期:2020-05-08 17:53阅读:1035来源:国知局
一种磁性纳米球吸附氧化钒量子点降解罗丹明B的方法与流程

技术领域:

本发明属于磁性复合纳米材料的设计与降解应用的领域,涉及一种利用钒氧根离子(vo2+/vo2+)与铁离子(fe2+/fe3+)相似的电荷转移机制设计的类芬顿反应体系,特别是磁性纳米材料上静电吸附具有相反电荷的氧化钒量子点,并以罗丹明b为染料模型进行类芬顿反应降解的方法。



背景技术:

h.j.h芬顿(fenton)提出,铁以通常称为“催化”的方式起作用,极少量的铁足以确定几乎无限量的酒石酸在该方向上的氧化,证明了几种金属具有传递氧气的特性,可以提高过氧化氢的效率。为了纪念这一发现,二价铁催化过氧化氢产生羟基自由基的反应称为“芬顿反应”。经过近一百年的研究和开发,goldstein,s将过氧化氢和亚铁盐的混合物定义为fenton试剂,它是多种有机底物的有效氧化剂。

进行涉及fe2+/h2o2的常规fenton反应,其公式如下:

fe2++h2o2→fe3++oh-+·ohk1=40–80(l·mol-1·s-1)(1)

fe3++h2o2→fe2++o2·-+h+k2=9.1×10-7(l·mol-1·s-1)(2)

fe3++o2·-→fe2++o2+h+k3=0.33-2.1×106(l·mol-1·s-1)(3)

由于fe2+/fe3+循环的转化率常数低,在fe2+/h2o2芬顿反应体系中过氧化氢的利用效率不高。在芬顿反应中,二价铁离子与过氧化氢的链催化反应用于获得具有强氧化性的羟基自由基(·oh),从而达到氧化污染物的目的。为了进一步进行芬顿反应体系设计,考虑到vo2+/vo2+电对与fe2+/fe3+电对的相似性均为单电子氧化还原体系,促进了自由基的形成和转化。在氧化还原对的组合中,vo2+/vo+和fe3+/fe2+的氧化还原对对应于以下方程式:

vo2++h2o–e→vo2++2h+e0=1.00v(4)

fe2+–e→fe3+e0=0.77v(5)

v3++e→v2+e0=-0.25v(6)

综合以上因素,溶液中钒氧根离子的标准氧化还原电势(e0)明显高于亚铁离子,也就是说,前者具有很强的电子捕获能力。另外,随着二维材料的快速发展,纳米材料的小尺寸优势引起了科学界和工业界的广泛关注。作为一种零维半导体材料,量子点(qds)由于其粒径小,比表面积大,毒性低以及大多数原子都位于量子点这一事实而成为研究热点之一。另一个重要的一点是,量子点具有多个混合价态,这有助于自发的氧化还原反应。因此,可以推导钒氧根离子的芬顿反应的机理。

以下是等式:

vo2++h2o2→vo2++h++·oh(7)

vo2++h2o2→vo2++o2+h+(8)

在这项研究中,我们采取截然相反的方式,将催化反应中的铁化合物保护起来,进行了以二氧化硅涂层的磁性四氧化三铁为载体进行设计,利用电荷差异静电吸附具有高催化能力和富氧缺陷的氧化钒量子点的来降解实验。

现有的芬顿反应作为一种高级氧化技术,利用高活性自由基进攻大分子有机物并与之反应,从而破坏有机分子结构达到氧化去除有机物的目的,实现高效的氧化处理。但是,氧化过程中硫酸亚铁的大量投加,使得硫酸亚铁中铁离子的大量沉淀,产了大量的铁泥。而现有技术中,使用含铁矿物以及其他一些过渡金属如co、cd、cu、ag、mn、ni等可以加速或者替代fe2+与h2o2起催化作用,但是,这些金属化合物尺寸较大,相对比表面积很大。现有技术中并没有关于磁性纳米材料与量子点结合降解的报道,已公开的技术中芬顿反应均以铁基进行材料设计,进行类芬顿反应所设计材料尺寸大,分离困难。因此,我们寻求设计提供一种磁性四氧化三铁吸附小尺寸的量子点降解罗丹明b的方法,该方法模拟芬顿反应降解机制,在非均相条件下降解罗丹明b,硅层保护的磁铁可以进行回收利用,并且没有铁泥沉淀的生成。



技术实现要素:

本发明的目的在于克服现有技术存在的缺点,设计提供一种利用类芬顿反应降解有机物的方法,通过水热反应制备了粒径均一的,尺寸在200nm左右的四氧化三铁,用乙醇为溶剂,在碱性环境下在四氧化三铁表面包裹二氧化硅,所制备的磁性硅球表面带有正电荷。利用电荷差异静电吸附氧化钒量子点(voxqds),并将其用于染料罗丹明b的降解中。

为了实现上述目的,本发明涉及的磁性四氧化三铁纳米球吸附氧化钒量子点用于降解罗丹明b的方法具体工艺包括以下步骤:

s1、voxqds是通过一步自下而上的乙醇加热方法合成的;将溶于20ml无水乙醇中的0.2g氯化钒固体粉末在鼓风干燥箱中加热至160℃,并维持10小时,然后通过高速离心获得量子点溶液备用;

s2、磁性fe3o4纳米团簇样品是通过现有的水热法制备的,机械是否应将搅拌下,将1.5g聚(4-苯乙烯磺酸-共聚-顺丁烯二酸)钠盐(pssma)按1:1的摩尔比率溶解在80ml乙二醇中,在80℃的恒温水浴锅中加热以形成透明的溶液备用,然后将fecl3·6h2o和乙酸钠加入上述溶液中并搅拌20分钟;最后,将获得的均匀的红棕色溶液转移到衬有聚四氟的高压釜中,将其在200℃的鼓风干燥箱中保持10小时;反应后将高压釜自然冷却至室温,离心分离出黑色沉淀物,依次用乙醇和去离子水洗涤,然后真空干燥,即实现了对制备的磁性纳米球的包裹,以保护磁性纳米球自身的特性;

关于二氧化硅涂层,将四氧化三铁纳米粒子分散在去离子水中,然后分散在装有200ml无水乙醇和10ml去离子水的圆底烧瓶中;然后对上述分散体进行超声波处理15分钟;再加入3ml氨水溶液至超声波处理后的分散体中,其中氨水的质量浓度为25%-28%,加入氨水后再进行超声处理15分钟,之后将含有0.5ml正硅酸四乙酯(teos)的10ml乙醇溶液加入上述分散体中,反应进行90分钟,然后在磁铁的帮助下收集产物,即二氧化硅包裹的四氧化三铁纳米球,并用乙醇和水洗涤三次;制备出的voxqds与fe3o4@sio2,,并将其用于以下voxqds/fe3o4@sio2(vfs)的合成;

s3、voxqds/fe3o4@sio2(vfs)复合材料具体合成方式按照如下步骤进行:先将步骤s2中合成的fe3o4@sio2粉末50mg溶解在步骤s2中20ml的voxqds溶液中10分钟,磁性纳米颗粒通过磁铁吸附收集,用去离子水洗涤并冷冻干燥24小时以获得吸附有氧化钒量子点的磁性铁纳米颗粒(vfs)备用;

s4、所有实验均在室温下在离心管和样品瓶中进行,通过将所需剂量的fe3o4@sio2(fs)纳米颗粒添加到含有voxqd的溶液中,可以启动点和球的组合,吸附有量子点的磁性纳米粒子与罗丹明b(rhb)染料反应;30秒后通过紫外分光光度计(mapadauv-6300分光光度计)在552nm处的吸光光度值测定rhb分子的浓度,并通过gc-ms(agilent7890b-5977b)和lc-ms(agilent1260hplc系统,美国)分析降解产物。

本发明通过对所得的制备的磁性硅球上负载的量子点和罗丹明b降解后的产物采用不同手段进行表征,所采用的的表针手段包括荧光、紫外、红外、x射线光电子能谱仪(xps)、透射电镜(tem)、x射线衍射(xrd)、气相色谱联用仪(gc-ms)、液相色谱联用仪(lc-ms)。

本发明与现有技术相比,取得的有益效果如下:

1、提供了一种新颖的非均相催化剂,是一种无铁消耗的类芬顿反应体系;

2、该方法可以在30秒内迅速实现罗丹明b的脱色降解,与传统芬顿反应相比在12小时后没有铁泥沉淀;

3、磁性硅球负载的氧化钒量子点可回收利用,里面磁铁没有损耗;

4、首次在染料及有机物降解方面提出内球反应机理,解释了该类芬顿反应快速实现的原因。

综述,该制备方法构思巧妙,简单易操作,可在三十秒内实现罗丹明b快速脱色降解,为研究氧化还原研究提供了新思路,应应用环境友好,市场前景广阔。

附图说明:

图1为本发明涉及的纳米材料的合成过程原理示意图。

图2(a)为本发明涉及的制备的氧化钒量子点的透射电子显微镜原理示意图;图2(b)为本发明制备的磁性包裹二氧化硅后的四氧化三铁的透射电子显微镜原理示意图。

图3(a)为本发明涉及的制备的磁性硅球吸附量子点后的透射电子显微镜原理示意图;图3(b)为本发明涉及的扫描电子显微镜原理示意图。

图4为本发明涉及的量子点与磁性硅球吸附量子点前后在ph=1-7下的电势原理示意图。

图5(a)为本发明涉及的罗丹明b的在紫外下测得的降解曲线;图5(b)为本发明涉及的2ml体系与5ml体系下降解三十分钟与十二个小时后的降解原理示意图。

图6为本发明涉及的磁性硅球吸附量子点后降解罗丹明b的原理示意图。

具体实施方式:

下面通过实施例并结合附图对本发明进一步说明。

实施例1:

本实施例涉及的磁性四氧化三铁的制备及二氧化硅层的包裹,具体合成方法按照步骤进行:

s1、50℃水浴锅中将1.5gpssma1:1溶解在80ml乙二醇(中,以fecl3·6h2o为前驱体,分别称量1.62gfecl3·6h2o和4.5g无水乙酸钠于上述醇溶液中,然后转移到100ml聚四氟内衬的反应釜中,在鼓风干燥箱中升温至200℃,并维持十个小时,用磁铁收集得到的沉淀物,乙醇和去离子水分别清洗三次后,进行冷冻干燥24h;

s2、称取50mg四氧化三铁纳米粒子分散在5ml去离子水中,然后分散在装有200ml无水乙醇和10ml去离子水的圆底烧瓶中,获得分散体,然后对上述分散体进行超声波处理15分钟;再加入3ml氨水溶液至超声波处理后的分散体中,其中氨水的质量浓度为25%-28%,加入氨水后再进行超声处理15分钟,之后将含有0.5ml正硅酸四乙酯(teos)的10ml乙醇溶液加入上述分散体中,反应进行90分钟,然后在磁铁的帮助下收集产物,即二氧化硅包裹的四氧化三铁纳米球,并用乙醇和水洗涤三次备用;

s3、voxqds/fe3o4@sio2(vfs)复合材料具体合成方式按照如下步骤进行:先将步骤s2中合成的fe3o4@sio2粉末50mg溶解在步骤s2中20ml的voxqds溶液中10分钟,磁性纳米颗粒通过磁铁吸附收集,用去离子水洗涤并冷冻干燥24小时以获得吸附有氧化钒量子点的磁性铁纳米颗粒(vfs)备用。

实施例2:

本实施例对罗丹明b降解条件进行验证,具体步骤按照如下方式进行:

称取50mgfe3o4@sio2粉末,分散在100ml0.5mnaci溶液中,超声三十分钟,然后加入0.75g聚二烯丙基氯化铵(pdda),机械搅拌1h后水洗除去多余的pdda;采用相同的方法包裹了聚苯乙烯磺酸钠(pss),修饰了pdda的fe3o4@sio2用字母fs(pdda)表示,修饰了pdda与pss的用字母fs(p/s)表示,分别吸附了量子点后,用字母vfs(pdda),vfs(p/s)表示,图5(a)图所示,a-h分别做了以下控制,于反应5min后测量了紫外吸光度,(a)rhb;(b)rhb+h2o2;(c)fs+h2o2;(d)vfs+h2o2;(e)fs(pdda)+h2o2;(f)vfs(pdda)+h2o2;(g)fs(p/s)+h2o2;(h)vfs(p/s)+h2o2;表面包裹pdda时,fs(pdda)带正电荷,不能吸附氧化钒量子点;当再修饰上一层pss,即fs(p/s),能够吸附量子点,从而也证明了磁性硅球与量子点的带电情况。

图5(b)为rhb30分钟和12小时后颜色变化的原理示意图,从左到右依次是rhb;rhb+h2o2;rhb+fs+h2o2;rhb+fe2++h2o2;rhb+vfs+h2o2,在芬顿反应组中12个小时后有明显的黄色的铁泥沉淀物,而rhb+vfs+h2o2组没有铁泥沉淀生成。

实施例3:

本实施例验证实施例1与实施例2中的二氧化硅包裹的四氧化三铁与量子点结合的电荷条件,单纯的量子点醇溶液在ph=2时带有正电荷,利用此时量子点的带电荷情况,实现了负电荷表面对量子点的吸附作用,磁性硅球吸附前后表面的电位差如图4所示,表明二氧化硅包裹的磁性硅球表面电位相比未吸附时的材料,ph1-7下的电位值略有降低,表面硅球表面的确吸附有量子点。

实施例4:

传统的芬顿容易产生铁泥,造成二次污染,同时芬顿效应产生的自由基受距离的影响,降解效果有限,二氧化硅包裹的磁性四氧化三铁表面带有强负电荷,吸附量子点后仍表现出很强的电负性,而罗丹明b分子带正电荷,由于静电吸附作用,将染料静电吸附后缩短距离进行ros杀菌,作用后可以有效分离将材料回收再利用。利用磁性纳米粒子作为载体,氧化钒量子点作为类芬顿试剂,因为量子点的尺寸较小,比表面积大,少量材料就可以起到高效的降解效果,同时由于静电吸附作用,将染料静电吸附后缩短距离进行ros杀菌,作用后可以有效分离将材料回收再利用。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1