附着了污染物的粒状体的处理方法及其设备的制作方法

文档序号:4828622阅读:256来源:国知局
专利名称:附着了污染物的粒状体的处理方法及其设备的制作方法
技术领域
本发明涉及在将附着了从被重金属类和油性组分等污染的土壤和焚烧炉中取出的焚烧灰等污染物质的粒状体微细化的同时,从上述微细化的粒状体中将不包含污染物质或已除去大部分污染物的粒状体分离的方法及其设备。
以往,不能够再利用的垃圾等可燃物主要是在加煤式焚烧炉或流化床式焚烧炉中焚烧,以焚烧灰的形式搬运到废弃物处理场加以掩埋,由于其中还含有混合在上述可燃物中被焚烧的金属屑和玻璃或陶瓷碎片及砂子等,所以,作为焚烧灰的组分也混合有各种金属、二氧化硅、氧化铝和石灰等。由于废弃物量较大,以及重金属和焚烧过程中生成的二肟类等有害物质附着在焚烧灰上,所以,希望确立一种减少焚烧灰量及使其无害化的方法或再利用的技术。
使包含在焚烧灰中的铅、锌、铜、镉等有害重金属无害化的方法包括(1)熔融固化、(2)混凝土固化、(3)药剂处理、(4)利用酸和其他溶剂的稳定化、(5)碳酸盐化处理、(6)水洗等。其中,最有效的方法是(1)熔融固化法,它是在约1500℃以上的高温下使焚烧灰熔融后运至废弃物处理场丢弃或粉碎成微细碎片再利用的方法,该处理方法目前正广泛使用着。该处理方法中,由于重金属被封在熔融物内部,所以,上述熔融物即使与水接触,上述重金属类也不会洗脱。
(2)混凝土固化法,由于在焚烧灰中混合了混凝土,所以,其致命的弱点是增大了废弃物量。而且,混合入混凝土进行处理后的焚烧灰的碱性增强,铅等洗脱的危险性较高。(3)药剂处理法,该方法的关键是调整pH值,但包含在焚烧灰中的物质不是一定的,且多种多样,所以,pH值很难调整,如果pH值不佳,则药剂添加的效果不好,所以,还存有疑问。(4)利用酸和其他溶剂的稳定化方法,由于以重金属类残存的形式进行稳定化,所以,难以长期防止重金属类的洗脱。(5)碳酸盐化处理法,难以维持管理,而且,由于装置复杂,所以不实用。(6)水洗法,若不在酸雨等酸性环境中,则认为比较容易除去重金属,但其效果是仅以粉状飞灰来确认的,为焚烧灰的情况下,对附着在团粒状态的粒状体上的重金属类和二肟类的处理就难以获得很好的效果。
由于上述熔融固化法的焚烧灰处理温度很高,所以,能够使二肟类热分解而无害化,因此,就目前情况来讲,这种熔融固化处理法可以说是最有效的,该熔融固化法已成为焚烧灰处理法的主流。
但是从长期看,即使采用上述熔融固化法,也不能够排除封入被掩埋在处理场中的熔融物内部的重金属类的洗脱的可能性。而且,熔融固化是在高温下使焚烧灰熔融,所以,需要熔融炉等大型设备和大量燃料,设备费用和处理成本较高也是一个问题。
另一方面,近年化工厂和金属冶炼厂等工厂附近的土壤被重金属类和有机氯化物或油性组分等污染的问题正倍受瞩目。另外,由于在被因海难事故等而流入海中的原油污染的海滨土壤和在储有原油的地方挖隧道时挖出的土中含有原油,所以,对其进行处理常常很困难。此外,成为环境问题的附着了污染物的土壤(污染土壤)还包括混入了上述焚烧灰而被污染的土壤。
希望能够确立从这样的污染土壤中除去上述污染物,提取包含在污染土壤中的石子、砂子和微粒组分等,达到再利用目的的技术。
一般,附着在焚烧灰中的二肟类较牢固地附着在焚烧灰中粒径在2mm以下的粒状体表面。所以,如果从焚烧灰中分出5mm以上的粒状体,除去不太牢固地附着于上述粒状体表面的二肟类,就能够使该粒状体无害化,达到再利用的目的。但是,据本发明者所知,目前还没有找到在不破坏各粒状体的前提下对粒状体为团粒状的焚烧灰进行分离的方法,以及从较牢固地附着了二肟类的2mm以下的粒状体中分离出上述二肟类物质的方法。
而且,由于焚烧灰为软组织物,所以,不仅用普通的粉碎机很难使附着在焚烧灰中的二肟类脱落,例如,用球磨机粉碎焚烧灰后,虽然焚烧灰的粒状体变细,但未能分离出附着了二肟类的粒状体,还反而使减少焚烧灰的量变得困难。
污染土壤中虽然构成土粒的粒状体变为团粒状态的部分较少,但由于附着在上述粒状体上的重金属类和油性组分等污染物的粒径非常小,所以,与上述焚烧灰的情况相同,不仅用普通的粉碎机很难使上述污染物脱落,而且,污染土壤的土粒也变小,这样就很难分离出上述污染物。
日本专利公开公报平8-164363号揭示了不粉碎包含砂粒和粘土等的疏浚土而除去疏浚土中的砂子等较尖锐的部分、粉碎土块和砂块等的粉碎机。图32(a)和(b)为粉碎机10的结构图,(a)图是侧视图,(b)图为(a)图的A-A剖视图。上述粉碎机10具备圆筒状旋转滚筒6和转子7,上述圆筒状旋转滚筒具有沿轴方向设置在内周面上的向中心方向突出的多个外叶轮,转子具有沿轴方向设置在外周面上的径向突出的多个内叶轮、转子被安装在上述旋转滚筒的内部、其中心与旋转滚筒有所偏离。设置在上述旋转滚筒6外周的环状齿轮6a通过马达8运转,安装在转子7上的旋转轴7a通过驱动结构7b驱动,使上述旋转滚筒6和上述转子7分别以相反方向旋转,对投入粉碎机10的疏浚土等投入物施加压缩应力和剪切应力,使上述投入物粉碎,并利用被粉碎的投入物间的互相摩擦使被粉碎的投入物研磨。另外,利用上述粉碎机10进行的粉碎处理在研磨碎石时用干式或湿式法使包含砂粒和粘土等的疏浚土等砂土细粒化时,可在上述投入物一边加水一边进行研磨。此外,作用于上述投入物的应力的大小主要根据旋转滚筒6和转子7的间隔(转子7的偏心度)以及旋转滚筒6和转子7的旋转速度进行调整。
但是,上述以往例子揭示的是粉碎包含砂粒和石子等的疏浚土的例子,但对垃圾和可燃物等有机物燃烧后产生的焚烧灰等团粒状粒状体进行分离、并不破坏粒状体的方法,以及分离出附着在焚烧灰中的粒状体上的重金属类和二肟类、使焚烧灰无害化的方法并没有任何揭示。
在处理材料为附着了碳或油性组分等粘性较大的污染物的污染土壤的情况下,以及处理材料为作为污染物的重金属类牢牢附着在各粒状体上的污染土壤的情况下,利用上述粉碎机10很难使附着在构成上述污染土壤的土粒的各粒状体上的污染物有效地脱落。
而且,上述例子中对从焚烧灰和污染土壤中分离出污染物而获得的无害粒状体的再利用方法也未有任何提示。
鉴于以上问题,本发明的目的是提供一种在使污染土壤和焚烧灰等附着了污染物的粒状体细粒化的同时,将上述污染物有效分离除去,并使分离出上述污染物的无害粒状体能够被再利用的附着了污染物的粒状体的处理方法及其装置。
本发明的权利要求1记载的是通过将附着了污染物的粒状体投入处理空隙内、一边加水一边使其产生压缩力及粒状体间的研磨力,使上述粒状体分离为独立的粒状体,同时又将附着在上述粒状体表面的污染物分离出来的细粒化装置而使上述粒状体细粒化的附着了污染物的粒状体的处理方法,该方法的特征是,在上述细粒化过程中,依次增加了作用于上述粒状体的应力。
具体来讲,该附着了污染物的粒状体的处理方法的特征是,首先,主要对投入的附着了污染物的粒状体施加压缩应力,在不破坏粒状体的前提下,将多数粒状体固着在一起的团粒状的附着了污染物的粒状体分离成几乎独立的粒状体而对其进行细粒化处理(以下称为粉碎处理)。然后,增大施加于上述粒状体的应力,对上述细粒化的粒状体主要产生粒状体间的研磨力,利用粒状体间的摩擦来互相研磨,分离出附着在上述粒状体表面的污染物(以下称为解胶处理)。
权利要求2记载的附着了污染物的粒状体的处理方法的特征是,利用1台细粒化装置,对所投入的附着了污染物的粒状体进行细粒化处理后,再次将其投入同一细粒化装置进行再处理时,施加在上述粒状体上的应力大于前一次。
权利要求3记载的附着了污染物的粒状体的处理方法的特征是,使用了具备圆筒状旋转滚筒和转子的细粒化装置对附着了污染物的粒状体进行细粒化处理,该圆筒状旋转滚筒具有沿轴方向设置在内周面上的向中心方向突出的多个外叶轮,转子具有沿轴方向设置在外周面上的径向突出的多个内叶轮、转子被安装在上述旋转滚筒的内部、其中心与旋转滚筒有所偏离、旋转方向与上述旋转滚筒相反。
权利要求4记载的附着了污染物的粒状体的处理方法的特征是,在附着了污染物的粒状体中混合了硬质材料的状态下,使上述旋转滚筒和上述转子以反方向旋转,而加快上述硬质材料的速度,对上述粒状体进行细粒化处理。
权利要求5记载的附着了污染物的粒状体的处理装置具备1台一边向投入处理空间的附着了污染物的粒状体中加水一边使其产生压缩力及粒状体间的研磨力,使上述粒状体分离为独立的粒状体,同时又将附着在上述粒状体表面的污染物分离出来的细粒化装置,上述细粒化装置的粒状体处理空间被设计成沿下游方向变窄的结构,所以,能够有效地对附着了污染物的粒状体进行粉碎、解胶处理。
权利要求6记载的附着了污染物的粒状体的处理装置中多段设置了一边向投入处理空间的附着了污染物的粒状体中加水一边使其产生压缩力及粒状体间的研磨力,使上述粒状体分离为独立的粒状体,同时又将附着在上述粒状体表面的污染物分离出来的细粒化装置,使上述粒状体依次通过各细粒化装置,同时又逐渐沿下游方向缩小上述细粒化装置的处理空隙。
权利要求7记载的附着了污染物的粒状体的处理装置中设置了对前段细粒化装置排出的淤浆进行脱水处理的装置,同时又将上述经过脱水的材料投入后段细粒化装置中。
权利要求8记载的附着了污染物的粒状体的处理装置中,作为权利要求6所述的细粒化装置,使用了具备圆筒状旋转滚筒和转子的细粒化装置,对附着了污染物的粒状体进行细粒化处理,该圆筒状旋转滚筒具有沿轴方向设置在内周面上的向中心方向突出的多个外叶轮,转子具有沿轴方向设置在外周面上的径向突出的多个内叶轮、转子被安装在上述旋转滚筒的内部、其中心与旋转滚筒有所偏离、旋转方向与上述旋转滚筒相反。
权利要求9记载的附着了污染物的粒状体的处理装置是对从前段细粒化装置中排出的淤浆中的混合在附着了污染物的粒状体中的石子和砾石等粒径较大的粒状体进行分级,将分离出的粒径较大的粒状体投入后段的细粒化装置,在上述粒状体和上述粒径较大的粒状体混合的状态下,使上述旋转滚筒和上述转子反方向旋转,从而加快上述粒径较大的粒状体的速度,对上述粒状体进行细粒化处理的装置。
权利要求10记载的附着了污染物的粒状体的处理方法的特征是,利用液体旋风分离器,从权利要求1记载的细粒化装置排出的粒状体中分离出不含污染物的粒径较大的粒状体,以及包含上述被分离出的污染物、且比上述粒状体小的粒状体。
权利要求11记载的附着了污染物的粒状体的处理方法的特征是,在位于液体旋风分离器主体下部的排出口设置由弹性体构成的喷嘴,采用使上述液体旋风分离器的排压增大的负压式液体旋风分离器,从上述经过细粒化的粒状体中分离出不含污染物的粒径较大的粒状体。
权利要求12记载的附着了污染物的粒状体的处理方法的特征是,在向附着了污染物的粒状体加水使其细粒化后,将其储存在液体旋风分离器的液体供给槽中,从上述液体供给槽下部向液体旋风分离器提供包含上述粒状体的处理用水,使上述粒状体分级、同时又使从上述液体旋风分离器上部排出的包含粒径较小的粒状体的处理用水返回至上述液体供给槽。
以下,根据附图对本发明的实施状态进行说明。
实施状态1

图1是表示本发明的实施状态1的附着了污染物的粒状体的处理装置的构成的方框图。该图中,11表示接受投入的作为处理材料的附着了污染物的粒状体的漏斗,12表示用于排除投入漏斗11中的上述粒状体中大小在数cm以上的杂质的预选装置。20为粒状体的细粒化装置,它具备以下2个部分,即在所投入的附着了污染物的粒状体中加水、对上述粒状体进行粗粉碎处理的第1细粒化装置一次细粒化机21,以及在经过一次细粒化机21的粗粉碎处理后的上述粒状体中加水、对上述粒状体进行粉碎、解胶处理的第2细粒化装置二次细粒化机22。30是从包含经过上述细粒化装置20的粉碎、解胶处理的粒状体的淤浆中分离出大小在5mm以上的粒状体的振动筛,50是具备液体旋风分离器和连续沉降浓缩槽等分级设备、将上述振动筛30所送出的包含5mm以下的粒状体的淤浆中的各种尺寸的粒状体分级的分级装置。60是向上述细粒化装置20及上述分级装置50提供处理用水的给水部,70是对上述分级装置50排出的处理用水进行净化的污水处理部分。
图2表示细粒化装置20的一个构成例。细粒化装置20是将一次细粒化机21和二次细粒化机22装入1个铁容器2内,利用共同的动力机3运转而构成的。另外,图2中,4为投入作为处理材料的附着了污染物的粒状体的处理材料投入口,5为排出分别在一次细粒化机21和二次细粒化机22的处理空隙内依次粉碎解胶的上述粒状体的处理材料排出口。
上述一次细粒化机21和上述二次细粒化机22的基本构造都与上述传统的粉碎机10大致相同,但运转条件与上述粉碎机10的以粉碎为主体的条件不同,一次细粒化机21的条件主要根据其粉碎功能设定,而二次细粒化机22的条件则主要根据其解胶功能设定。
即,如图3(a)所示,对附着了污染物的粒状体进行粗粉碎处理的一次细粒化机21中,由于转子7的偏心量较小,所以,旋转滚筒6和转子7的间隔D1较宽,同时旋转速度较小。此外,如图3(b)所示,主要对上述粒状体进行解胶处理的二次细粒化机22中,由于转子的偏心量较大,所以,旋转滚筒6和转子7的间隔D2较窄,且旋转速度较快。由于上述传统的粉碎机10主要进行粉碎处理,所以,相对于上述二次细粒化机22来说,其旋转滚筒6和转子7的间隔更窄,旋转速度更快。
如图4所示,一次细粒化机21和二次细粒化机22中,在作为处理空隙的旋转滚筒6和转子7的间隔中投入的附着了污染物的粒状体S在被旋转滚筒6的外叶轮6W向上方拢的同时,也被转子7的内叶轮7W向下方吸引,所以,上述粒状体S的各粒状体P在受到压缩应力的同时也受到剪切应力的作用,这样就对上述粒状体S进行了粉碎解胶处理。
即,如图5(a)所示,粒状体p间通过固着面r固定成团粒状态的附着了污染物的粒状体的各粒状体P或粒状体间未固定、但较大的独立的粒状体p产生了压缩应力和剪切应力,上述团粒状各粒状体P从上述固着面r分离出来,被粉碎成大致独立的较细粒状体p(粉碎处理),与此同时,如图5(b)所示,粒状体间受到研磨方向的力的作用,通过粒状体p的互相摩擦,使附着在各粒状体P表面的重金属类和二肟类等污染物q的粒状片剥离,从上述粒状体p中分离出来(解胶处理)。上述污染物q不仅附着在团粒状粒状体P表面,还附着在作为各粒状体p表面的上述固着面r上(参照图5(a))。因此,虽然在粉碎时,附着在团粒状粒状体表面的污染物q有一部分剥离,但几乎在上述解胶处理时,才从上述粒状体p表面分离。另外,在一部分较大的粒状体p中也有粉碎成细粒的。
此外,利用图中未标出的给水口向上述一次细粒化机21和二次细粒化机22提供来自给水部分70的处理用水。所以,被投入细粒化装置20的附着了污染物的粒状体是在上述处理用水的给水状态下被粉、碎解胶的,因此,上述剥离的污染物内的重金属类或二肟类溶于上述处理用水中或变成微小片状物浮游在水中。
以下,以处理材料为焚烧灰为例,对利用上述处理装置对附着了污染物的粒状体的处理方法进行说明。
首先,利用预选机12除去投入到漏斗11中的焚烧灰中的大小在数cm以上的杂质,然后,从细粒化装置20的处理材料投入口4投入到一次细粒化机21中。在旋转滚筒6和转子7的间隔较大的一次细粒化机21中,对与处理用水混合在一起的焚烧灰进行粗粉碎,在不破坏成团粒状焚烧灰的各粒状体的前提下进行分离,同时使上述焚烧灰转移到一次细粒化机21的下游侧,再运送到二次细粒化机22中。此时,不太牢固地附着于焚烧灰表面的重金属类和二肟类等的微小片状物被剥离,并浮游在处理用水中,易溶解的重金属类则溶于上述处理用水中。此外,由于上述一次细粒化机21中对焚烧灰的应力比以往的粉碎机10要低得多,所以,混合在焚烧灰中的砂粒和陶瓷片等粒状体不用进行粉碎就可排出。
由于二次细粒化机22的旋转滚筒6和转子7的间隔比一次细粒化机21更窄,且运转速度更快,所以,在焚烧灰被分离成更细小的粒状体(粉碎)、部分较大粒状体细粒化的同时,牢牢附着在焚烧灰中的重金属类和二肟类的微小片状物利用粒状体间的互相摩擦分离(解胶),同时使上述焚烧灰向下游侧转移,从处理材料排出口5送至振动筛30。此时,在易溶解的重金属类溶于上述处理用水的同时,从粒状体分离出的重金属类和二肟类等的微小片状物则以浮游在处理用水中的状态,与上述焚烧灰一起从处理材料排出口5排出。
振动筛30是一边向来自细粒化装置20的淤浆状焚烧灰中加水,一边筛选出包含在上述焚烧灰中的5mm以上的粒状体的装置。通过振动筛30的5mm以下的粒状体被送至分级装置50后,大小各异的粒状体被分级。而从粒状体中脱离出的重金属类或二肟类则与处理用水一起被送至分级装置50进行处理,再经过分级装置50送至污水处理部分70进行处理。另一方面,利用上述振动筛30所获得的5mm以上的粒状体(主要为砾石和细小陶瓷片等)由于几乎未附着重金属类或二肟类,所以是无害的,可再利用。
分级装置50是从包含5mm以下的粒状体的焚烧灰中分出砂粒、微小砂粒和作为灰组分的微细粒状体等大小各异的粒状体的装置,经过分级装置50分级的约20μm以下的微粒片被认为是包含大量二肟类的微粒片,例如,通过熔融固化等方法进行无害化处理。另一方面,浮游或溶于处理用水的重金属类在污水处理部分70中进行了药物处理等,从处理用水中分离出来。因此,上述经过净化的处理用水可作为循环用水被再利用。此外,包含除去了重金属类和二肟类的约20μm以上的粒状体的泥土也可被再利用。
污染土壤的处理方法也与上述焚烧灰的情况相同,但由于土粒的团粒化程度较小,所以,在细粒化装置20的一次细粒化装置21和二次细粒化装置22内主要进行的都是以上图5(b)所示的解胶处理。另外,对包含焚烧灰的污染土壤进行处理时,一次细粒化机21进行的是粗粉碎处理,二次细粒化机22进行的是粉碎和解胶处理,这样,如本实施状态1所述,在利用旋转滚筒6和转子7的间隔D1较宽、旋转速度较慢的一次细粒化机21对附着了污染物的粒状体进行粗粉碎处理,使上述粒状体细粒化后,再利用旋转滚筒6和转子7的间隔D2较窄、旋转速度较快的二次细粒化机22,主要利用粒状体间的研磨力使经过上述一次细粒化机21细粒化的粒状体互相研磨,然后,进行使牢牢附着在上述粒状体表面的重金属类或二肟类等污染物分离的解胶处理,所以,在能够有效除去附着在污染土壤和焚烧灰中的污染物的同时,又能使上述粒状体的分级变得容易。接着,利用振动筛30和分级装置50从经过细粒化装置20的细粒化处理的粒状体中分离出不包含污染物的粒状体,因此,分离了污染物而无害化的粒状体就可作为循环资源被再利用。
此外,在上述实施状态1中,所用的细粒化装置20是一次细粒化机21和二次细粒化机22这两台细粒化机(细粒化装置)连为一体的装置,对附着了污染物的粒状体进行2个阶段的处理,但处理次数并不仅限于此。例如,在二次细粒化机22的下游侧设置转子7和旋转滚筒6的间隔比上述二次细粒化机22更小的三次细粒化机而对经过上述二次细粒化机22处理的粒状体进行进一步的解胶处理,这样就能够使牢牢附着在上述粒状体中的重金属类或二肟类等污染物切实脱落。
相反,也可以在用1台细粒化机反复进行粉碎解胶处理时,使后一次处理时的转子7的偏心量比前一次大,旋转滚筒6和转子7的间隔变小,或者旋转滚筒6和转子7的相对旋转速度变快,或者在使偏心量变大的同时,使上述旋转速度变快,而施加在附着了污染物的粒状体上的应力比前一次更大,由此来进行上述粒状体的粉碎、解胶处理。
或者,如图6(a)所示,使转子7下游侧的内叶轮7W2周围的高度高于上游侧的内叶轮7W1的高度,使作为处理空隙的转子7和旋转滚筒6的间隔的下游方向阶段性地、即不连续地变窄,设置1台细粒化装置20A,依次增大施加在所投入的附着了污染物的粒状体上的应力来进行粉碎、解胶处理。即,细粒化装置20A利用对附着了污染物的粒状体进行处理的处理空隙的下游方向急剧变窄的结构,使上述粒状体在上述细粒化装置的上游侧的滞留时间变长,在主要对上述粒状体进行充分粉碎处理后,在下游侧加大对上述粒状体的应力,主要对从上游侧独立的各粒状体分离出的粒状体进行解胶处理。这样,即使只用1台装置也能够连续且有效地对附着了污染物的粒状体进行粉碎、解胶处理。
此外,也可采用设置成如图6(b)所示的、转子7的内叶轮7W的高度全部相同而转子7下游侧7R的外径R2大于上游侧7F的外径R1、使转子7和旋转滚筒6的间隔的下游方向变窄的结构的细粒化装置20B,与上述细粒化装置20A同样,利用1台装置也能够连续且有效地对附着了污染物的粒状体进行粉碎解胶处理。但是,如果是在处理材料中混合了大量粒径较大的粒状体或粒径参差不齐的情况,还是象本实施状态1那样使用2台细粒化机为好。
实施状态2图7和图8是本发明的实施状态2的附着了污染物的粒状体的连续处理系统的处理流程图。该连续处理系统的中心是上述实施状态1的附着了污染物的粒状体的处理装置,它是在对投入的作为处理材料的附着了污染物的粒状体进行连续处理而使上述粒状体细粒化的同时,又将附着在上述粒状体中的污染物有效地除去,将排出的无害粒状体分级而再利用的装置。
本处理系统中,为了对附着了污染物进行有效处理,如图7所示,在分开设置细粒化装置20的一次细粒化机21和二次细粒化机22的同时,在一次细粒化机21和二次细粒化机22间设置了可从上述一次细粒化机21排出的粒状体中分离出粒径10mm以上的粒状体和10mm以下的粒状体的分离装置、即筛选用振动筛23,以及从利用该筛选用振动筛23分离出的10mm以下的粒状体中除去金属片的磁性除金属机23M,这样就限制了投入到二次细粒化机22中的处理材料的最大粒径等。投入细粒化装置20的处理材料中混合的数cm以上的杂质在投入漏斗11前就预选除去了,而且,在一次细粒化机21的排出口21a设置了捕获约30mm以上的较大固形物的分级用网21b。
如图8所示,本处理系统的分级装置50具备以下4个部分,即,使淤浆状处理材料中约100μm以下的粒状体浮游在处理用水中而分离的第1液体旋风分离器51,使约20μm以下的粒状体浮游在处理用水中而分离的第2液体旋风分离器51R,使淤浆状处理材料在容器内慢慢旋转、使粒状体等固形物凝集沉淀的连续沉降浓缩槽55,以及除去二肟类等微粒片的离心分离器57。
40是暂时储存包含振动筛30送出的5mm以下的粒状体的淤浆、同时又向上述第1液体旋风分离器51提供处理材料的液体供给装置第1供液槽,41是设置在分级装置50内的上述第2液体旋风分离器51R的液体供给装置第2供液槽。
本处理系统中的处理用水是循环使用的。即,在污水处理部分70净化处理用水,再传递给给水部分60,在二次处理用水槽61中混合另外补给的清水和上述经过净化的处理用水后,再次提供给一次细粒化机21和二次细粒化机22及筛选用振动筛23等。
如图10所示,第1液体旋风分离器51是利用处理材料导入管512以较快的速度向筒状主体511内壁喷射包含大小各异的粒状体的液体,并在这些液体一边形成称为一次旋转流的旋涡V1一边沿主体511内壁向下移动时,减少主体511的中央部分的气压,并利用一边使上述液体形成称为二次旋转流的旋涡V2一边使主体511从上述一次旋转流V1内侧上升的现象的分级装置。导入液体旋风分离器51、51R的液体中包含的粒径较大的粒状体利用上述一次旋转流V1冲撞主体511内壁,同时向下方移动,与部分液体一起从材料排出口管513的下部排出口513s排出。另一方面,粒径较小的粒状体通过上述二次旋转流V2向主体上部方向转移,被吸入上升管515中而从主体511的上部排出,再通过移送管516返回到图中未标出的供液槽40中。
第2液体旋风分离器51R的结构与上述液体旋风分离器51相同,从第2液体旋风分离器51R的上部排出的粒径较小的粒状体返回到供液槽41中。
如图10(a)的模式图所示,第1供液槽40具备以下4个部分,即,储存来自筛选用振动筛23的处理用水和由振动筛30送出的包含5mm以下的粒状体的泥状处理材料的供液槽主体401,在上部和下部具有与上述供液槽主体401连通的隔壁402、并储存从液体旋风分离器51上部排出的粒径较小的粒状体的密封箱403,将供液槽主体401底部的包含粒径较大的粒状体的处理用水压送至液体旋风分离器51的泵40P,以及将上述密封箱403的上清液运送至第2供液槽41的导入通道404。405是隔壁42的上部连接口。如图10(b)所示,供液槽主体401的上清液从上述上部连接口405向密封槽403转移,上述密封槽403的上清液通过上述导入通道404被送至供液槽41。位于供液槽主体401底部的包含粒径较大的粒状体的淤浆通过泵40P被送至液体旋风分离器51,再次进行分级。
第2供液槽41的构成与上述第1供液槽40相同,在第2供液槽41中,通过除去垃圾的转筒筛54将图中未标出的密封箱中的上清液送至连续沉降浓缩槽55(参考图8)。
以下,以处理材料为焚烧灰为例,对本实施状态2的附着了污染物的粒状体的连续处理系统的处理流程进行说明。
首先,利用传送带将投入漏斗11的焚烧灰送至一次细粒化机21。在一次细粒化机21中,向上述焚烧灰中加入给水部分60的后述的二次处理水槽61提供的处理用水,对上述焚烧灰进行粗粉碎处理,在使焚烧灰分离成大小各异的粒状体的同时,一边使略附着于焚烧灰表面的二肟类和重金属类浮游或溶解于上述处理用水中而分离,一边使上述焚烧灰向下游侧转移,从一次细粒化机21的排出口21a排出。
在一次细粒化机21中,旋转滚筒6和转子7的间隔较大,且旋转速度较慢,所以,不用粉碎就可将较大的金属类和杂质等固形物排出。这些较大的固形物被设置在上述排出口21a的约30mm的分级用网21b捕获而除去,再通过传送带运出。另一方面,成为粒径约30mm以下的粒状体的焚烧灰通过10mm左右的筛选用振动筛23被筛分。上述经过筛选的10mm以下的焚烧灰在利用磁性除金属机23M除去焚烧灰中的金属片后,被送至二次细粒化机22。
如上所述,由于附着在焚烧灰中的二肟类一般附着在焚烧灰中的2mm以下的粒状体中,所以,焚烧灰中粒径在5mm以上的粒状体是无害的。因此,通过上述筛选用振动筛23分离出的10mm~30mm的粒状体可被再次利用。此外,由给水部分60向上述筛选用振动筛23供水,经过上述筛选用振动筛23的水被送至第1供液槽40暂时储存。
由于经过筛选用振动筛23的焚烧灰成为了粒径大致在10mm以下的粒状体,所以,二次细粒化机22中,在向上述焚烧灰加入来自给水部分60的处理用水的同时,使旋转滚筒6和转子7的间隔变窄,旋转速度变快,使粒状体间通过摩擦而互相研磨,这样,牢牢附着在焚烧灰中的重金属类和二肟类物质就出现剥离,同时,上述焚烧灰向下游侧转移,从二次细粒化机22的排出口22a排出,被送至振动筛30。
上述振动筛30是从经过上述二次细粒化机22的粉碎解胶处理获得的焚烧灰中筛选出粒径在5mm以下的粒状体的装置,在将包含通过振动筛30的5mm以下的砂粒和细粒化后的灰粒等粒径较小的粒状体的淤浆状焚烧灰暂时储存在第1供液槽30后,通过分级装置50被分为大小各异的粒状体。此外,以上述振动筛30筛选出的5mm以上的砂粒和细陶瓷片为主的粒径较大的粒状体通过传送带被运出,可再利用或废弃。
以下,对分级装置50的分级处理进行详细说明。
储存在第1供液槽40中的包含5mm以下的粒状体的淤浆状焚烧灰首先被送至第1液体旋风分离器51进行分级。如上所述,在第1液体旋风分离器51中,约100μm以下的粒状体浮游在处理用水中而分离。从上述第1液体旋风分离器51上部排出的包含约100μm以下的粒状体的处理用水被暂时储存在第1供液槽40中,其上清液被送至第2供液槽41。另一方面,从第1液体旋风分离器51底部排出的包含粒径超过100μm的粒状体的淤浆在被送至第1连接槽52后,利用第1脱水振动筛53分离出以约100μm以上的砂粒为主体的粒状体,然后将其送至上述第2供液槽41。
同样,储存在第2供液槽41中的成为约100μm以下的粒状体的焚烧灰通过第2液体旋风分离器51R和第2脱水振动筛53被分成以20~100μm的微细砂粒为主的粒状体和20μm以下的微粒片。即,从第2液体旋风分离器51R上部排出的包含约20μm以下的微粒片的处理用水被暂时储存在第2供液槽41中,其上清液通过垃圾处理转筒筛54被送至连续沉降浓缩槽55。另一方面,从第2液体旋风分离器51R底部排出的包含粒径超过20μm的粒状体的淤浆被送至第2连接槽52R后,通过第2脱水振动筛53R分离出以约20μm以上的微细砂粒为主的粒状体,再被送至连续沉降浓缩槽55。
经过上述第1脱水振动筛53分级的以约100μm以上的砂粒为主体的粒状体,以及经过第2脱水振动筛53R分级的以约20~100μm的微细砂粒为主体的粒状体分别通过传送带被运出,可再利用或废弃。
在连续沉降浓缩槽55中,使包含上述约20μm以下的微粒片的处理用水和淤浆状焚烧灰在容器内慢慢旋转,进行使粒状体等固形物凝集沉淀的固液分离。如上所述,由于上述连续沉降浓缩槽55的上清液中溶解或浮游了从焚烧灰中分离出的重金属类,所以,将其送至污水处理部分70的一次处理水槽71进行处理。由于在该一次处理水槽71中加入了螯合剂,形成了上述重金属类的不可溶盐,使重金属类不溶解,这样就将上述重金属类从上述处理液中分离出来。
另一方面,沉淀于连续沉降浓缩槽55底部的淤浆状焚烧灰在被暂时储存在第1淤浆槽56中后,再被投入离心分离器57。离心分离器57中,除去了上述淤浆状焚烧灰中的二肟类微粒片,残留的淤浆被送至第2淤浆槽58中储存。经过上述离心分离器57分离的有害淤泥在经过熔融固化等出来后被废弃。而储存在第2淤浆槽58中的淤浆中的重金属类和二肟类物质被除去而无害化,所以,再送至脱水机59,通过图中未标出的压滤机这些淤浆被制成脱水饼等,可再利用。
通过脱水机59脱出的水被暂时储存在放置返回的过滤水的槽72中,然后,在一次处理水槽71中使重金属类物质不可溶化,再将其送至液体过滤装置73。在液体过滤装置73中,用活性炭等吸附材料过滤上述处理用水,除去重金属类和二肟类而净化。经过净化的处理用水被送至给水部分60的二次处理水槽61。来自连续沉降浓缩槽5而被送至一次处理水槽71的处理用水也在上述液体过滤装置73中被净化,再被送至上述二次处理水槽61。返回到二次处理水槽61中的处理水与补给用清水混合,再次运送到一次细粒化机21、二次细粒化机22和筛选用振动筛23等。
图11~图13表示用本实施状态2的连续处理系统进行了处理的焚烧灰的分析结果。图11是表示重金属类的溶出试验结果的表,图12是部分试验结果的棒状立体图。图13表示二肟类物质浓度的测定结果。
从图11和图12可明显看出,从利用本处理系统获得的经过粉碎、解胶处理的砂粒组分中未检测出铅、镉、硒等有害重金属类。也未从由约20μm以下的微粒片制得的脱水饼中检测出铅、镉、硒等有害重金属类。另一方面,从经过净化的排出水中不仅检测出了其量约为包含在原灰中的约86%的铅,还检出了接近标准值的镉和硒等。这就表明在焚烧灰的处理过程中,附着在焚烧灰中的重金属类在处理用水中溶出或浮游在其中,在上述粉碎、解胶过程中,确实从焚烧灰中分离出了重金属类物质。
如图13所示,在从连续沉降浓缩槽55排出的淤浆状焚烧灰(图中为堆积泥土)中检测出了二肟类物质,但几乎未附着在通过本发明的处理系统分离出的5mm以上的粒状体(图中为砾石)或5mm以下的粒状体(砂粒)上,所以,可认为充分进行了二肟类的分离。上述无害粒状体可再利用。由于在从连续沉降浓缩槽55排出的水(图中为沉淀槽中的上清水)中检出了若干二肟类物质,所以,在解胶过程中从焚烧灰剥离出的大部分二肟类物质作为微粒片包含在上述淤浆状的焚烧灰中,但其中的一部分成为微粒粉浮游在处理用水中。
因此,经过分级的5mm以上及5mm以下的粒状体、脱水饼、金属片等都可作为再循环资源被利用。另一方面,对包含大量分离出的重金属类和二肟类物质的淤泥进行熔融固化等处理,最后可埋在垃圾处理场中,所以,能够切实减少焚烧灰的量,并使其无害化。另外,如果对上述淤泥进行脱水处理,制成脱水饼,就能够容易地进行熔融固化处理,可进一步减少焚烧灰的量。
另外,上述实施状态2中,虽然是就利用第1和第2液体旋风分离器51和51R对经过细粒化装置20的粉碎解胶处理的粒状体进行分级的例子来进行说明的,但如图14所示,也可使用1台液体旋风分离器,使处理系统简化,进行分级处理。上述处理系统在简化了分级装置50的其他结构成和污水处理部分70的结构的同时,也简化了水循环部分。
液体旋风分离器51Z使约50μm以下的微粒浮游在处理用水中而分离,包含上述微粒片的处理用水利用图中未标出的移送管返回到供液槽40的同时,又将由液体旋风分离器51Z底部排出的粒径较大的粒状体形成的固形组分较多的淤浆暂时储存在连接槽52中,然后,通过脱水振动筛53Z分离出以约50μm以上的砂粒组分为主体的粒状体(细砂粒),再次返回到上述供液槽40的图中未标出的密封箱中。上述供液槽40的上清液被送至连续沉降浓缩槽55中。
这样,包含经过液体旋风分离器51Z分级的微粒片的处理用水和利用脱水振动筛53分离出细砂粒的处理用水同时返回到供液槽40中,收集在供液槽40底部的包含粒径较大的粒状体的淤浆再次通过液体旋风分离器51Z分级,同时,供液槽40的上清液被送至连续沉降浓缩槽55,能够向连续沉降浓缩槽55提供只含有微粒片的处理用水。
上述实施状态2中,如果利用脱水振动筛53分离出细砂粒的处理用水返回到供液槽40中,并将供液槽40的上清液送至第2供液槽41,则能够更好地使粒状体分级。
以上例子中,对处理材料为焚烧灰的情况进行了说明,当然,利用上述处理系统对对受污染的土壤进行同样的处理,也能够有效除去附着在土粒中的污染物。此外,还可将上述受污染土壤中包含的石子、砂粒、微粒组分等提取以再利用。
实施状态3上述实施状态1和2中,作为后一细粒化装置的二次细粒化机22,通过增大转子7的偏心量、缩小旋转滚筒6和转子7间的间隔、提高旋转速度,使作用于附着了污染物的粒状体的应力大于作为前一细粒化装置的一次细粒化机21,但使用具备图15和图16分别所示结构的一次细粒化机21Z和二次细粒化机22Z的细粒化装置,通过在下游侧增大作用于上述粒状体的应力,更能够切实进行上述粒状体的粉碎、解胶处理。
即,如图15所示,一次细粒化机21Z具有圆筒状旋转滚筒21D和转子21R,旋转滚筒21D具有沿轴方向设置在内周面上的向中心方向突出的多个外叶轮21WD,转子21R具有沿轴方向设置在外周面上的径向突出的多个内叶轮21WR、被安装在上述旋转滚筒21D的内部、其中心与旋转滚筒21D有所偏离。此外,图中的211表示处理材料投入室,212表示转子21R的旋转轴,213表示旋转轴212的驱动装置,214表示处理材料排出室,215表示设置在由旋转滚筒21D和转子21R构成的处理室216和上述处理材料排出室214的间隔217中的位于环状平板上的狭缝宽度约为5~29mm的多个狭缝形成的套管狭缝。此外,图中省略了设置在旋转滚筒21D外周的环状齿轮和驱动该环状齿轮的马达。
图16表示二次细粒化机22Z的主要部分的构成,其基本构成与上述一次细粒化机21Z大致相同。该图中,22D表示具有多个外叶轮22WD的圆筒状旋转滚筒,22R表示具有多个内叶轮22WR1和22WR2、设置在旋转滚筒22D内部、中心与上述旋转滚筒22D偏离的转子,221表示处理材料投入室,222表示转子22R的旋转轴。内叶轮22WR1表示上游侧内叶轮,内叶轮22WR2表示下游侧内叶轮。
图17表示一次细粒化机21Z的内叶轮21WR的具体结构。图18、图19表示二次细粒化机22Z上游侧的内叶轮22WR1和下游侧的内叶轮22WR2的具体结构。各图中,(a)图为俯视图,(b)图为正视图,(c)图为侧视图。如图17~图19所示,一次细粒化机21Z的内叶轮21WR及二次细粒化机22Z的内叶轮22WR1、22WR2在与转子21R或转子22R的轴平行的方向上分别设置了一定的间隔,在断面上设置了大致呈″U″字型的多个沟21K或21K1和22K2。设置在二次细粒化机22Z的内叶轮22WR1和22WR2的沟22K1和22K2的宽度w21和w22小于设置在一次细粒化机21Z的内叶轮21WR的沟21K的宽度w1。
二次细粒化机22Z中,下游侧的内叶轮22WR2的高度H22大于上游侧内叶轮22WR1的高度H21,且下游侧的沟22K2的深度h22大于上游侧沟22K1的深度h21。一次细粒化机21Z的内叶轮21WR1的高度H1基本与二次细粒化机22Z上游侧的内叶轮22WR1的高度H21相同,二次细粒化机22的上游侧的内叶轮22WR1的沟22K1的宽度w21基本与下游侧内叶轮22WR2的沟22K2的宽度w22相同。
另外,如图20(a)、(b)所示,二次细粒化机22Z的转子222R的外径R2大于一次细粒化机21Z的转子21R的外径R1,二次细粒化机22Z的处理空隙小于一次细粒化机21Z的处理空隙。在二细粒化机22Z中,为了确保下游侧内叶轮22WR2的强度,具备转子22R下游侧内叶轮的22WR2的部分的外径比具备上游侧内叶轮WR1的部分的外径R2略大,这样就可限定内叶轮22WR2的高度H22。
二次细粒化机22Z的旋转速度(旋转滚筒22R和转子22D的相对速度)比一次细粒化机21Z快,作用于二次细粒化机22Z的处理空隙中的处理材料S的压力P2大于作用于一次细粒化机21Z中的处理材料S的压力P1,这样就能够加快处理材料S的各粒状体间的冲撞速度。
如图21所示,在一次细粒化机21Z和二次细粒化机22Z中,外叶轮21WD和22WD与旋转滚筒21D和22D的旋转轴相比,分别略向下方倾斜(θ~约3度),这样投入到上述旋转滚筒21D、22D和转子21R、22R的处理空间中的处理材料就能够向下游方向移动(图21是一次细粒化机21Z的例子)。
通常,由于转子21R和22R的旋转速度高于旋转滚筒21D和22D的旋转速度,所以,上述处理空间沿内叶轮21WR、22WR1、22WR2的沟21K、22K1、22K2与向下方倾斜设置的外叶轮21WD、22WD的沟部设置,投入处理空间的处理材料沿转子21R和22R的旋转方向或上升或下降向下游侧移送。因此,在内叶轮22WR1、22WR2的沟22K1、22K2较窄的二次细粒化机22Z中,由于处理材料向下游移动的阻力大于一次细粒化机21Z,所以,其解胶处理效率高于一次细粒化机21Z。此外,如图22所示,二次细粒化机22Z的外叶轮22WD中,处理空间狭小的最后一段外叶轮22WDE的安装角度与其他外叶轮22WD相反,与旋转滚筒22R的旋转轴相比,略向上方倾斜(θ~约2度),这样,就可使处理材料逆流,进一步提高解胶处理效率。
以下,对具备上述一次细粒化机21Z和二次细粒化机22Z的细粒化装置的运作进行说明。
首先,在通过漏斗11将污染土壤和焚烧灰等处理材料S投入一次细粒化机21Z的处理材料投入室211的同时,从图中未标出的处理用水导入口将处理用水送入一次细粒化机21内。不仅由于一次细粒化机21Z的旋转滚筒21D和转子21R的间隔较宽,作用于粒状体的压力较小,而且,由于内叶轮21WR的沟21K的宽度w1较大,旋转速度较慢,所以,主要进行的功能是将粒径较大的块状物粉碎,使粒径较一致的粒状体解胶。因此,投入一次细粒化机21Z的处理材料S在被分离成独立的各粒状体的同时,又向下游方向移送。而粒径较一致的附着于粒状体表面的污染物被剥离,与上述粒状体分离。送至一次细粒化机21Z下游侧的粒状体中粒径约小于10mm的微细粒状体通过设置在隔壁217的套管狭缝215的各狭缝,与水一起经过处理材料排出室214排出机外。部分10mm以上粒径较大的粒状体则通过上述套管狭缝215的中央部分排出到处理材料排出室214,但部分上述粒径较大的粒状体则返回至一次细粒化机21Z的处理室216内。即,通过设置套管狭缝215,能够阻留上述粒径较大的粒状体,使一次细粒化机21Z内的解胶效果更好。
在二次细粒化机22Z中,内叶轮22WR1和22WR2的沟22K1和22K2的宽度w21和w22小于上述一次细粒化机21Z的内叶轮21WR的沟21K的宽度w1,且转子直径增大,旋转滚筒22D和转子22R的间隙变小的同时,下游侧内叶轮22WR的沟22K2的深度h22大于上游侧沟22K1的深度h21,这样,就使下游侧的处理空间更窄,可重点进行处理材料的解胶处理。另外,下游侧的外叶轮41Z的安装角度向上,这样处理材料就可逆流,使解胶处理充分进行。而且,由于在上游侧的内叶轮22WR1和下游侧的内叶轮22WR2间处理空间是有序地发生变化的,所以,处理材料不会顺利地流向下游侧,部分处理材料再次返回到内叶轮22WR1侧而滞留,这样,就更进一步进行处理材料的解胶处理。
这样,在二次细粒化机22Z中,进一步进行处理材料的细粒化的同时,通过解胶处理,利用粒状体的互相摩擦附着在各粒状体表明的重金属类污染物能够有效地与上述粒状体分离。
分离出的重金属类等污染物由于粒径极小,所以,可溶解或浮游在处理用水中。
实施状态4在上述实施状态1和2中,作为对在细粒化装置20中经过粉碎、解胶处理并通过振动筛30送出的包含粒径在5mm以下的粒状体的淤浆状处理材料进行分级所用的装置,采用的是通常的液体旋风分离器,但采用在位于液体旋风分离器主体下部的排出口上设置了弹性体构成的喷嘴、使排压有所增大的负压式液体旋风分离器来代替上述常用的液体旋风分离器,能够进一步提高分级效率。图23表示负压式液体旋风分离器51X的结构,在该图中,511为下方内径慢慢变小的筒状旋风分离器的主体,512为设置在主体511上部511a侧壁的处理材料导入管,513为设置在主体511下部511b端部的材料排出管,514为设置在材料排出管513的橡胶制连接喷嘴,515为设置在主体511上部大致中央部分的上升管,516为使从上升管515排出的包含粒径较小的粒状体的处理用水返回到供液槽40而设置的移送管,517为设置在移送管516的上升管515侧、向上述移送管516内导入空气、调整液体旋风分离器51的排压的排压调整装置,518为调整送入设置在处理材料导入管2前段的负压式液体旋风分离器51X的处理材料导入量的导入量调整阀,519为贴在主体511下部511b内壁上的、用来缓冲的橡胶。
如上所述,一般液体旋风分离器的结构如下所述,利用二次旋转流使导入液体中包含的粒径较小的粒状体向主体511上部方向移动,通过上升管515,使其从主体511上部排出、同时又使包含在上述液体中的粒径较大的粒状体与部分液体一起从材料排出管513的下部排出口13s排出(参考图9)。
与此相对,如图23所示,本实施状态4的负压式液体旋风分离器51X是在材料排出管513处设置了由弹性体构成的连接喷嘴514的装置,这样,负压式液体旋风分离器51X在工作时,由于上述主体511内部的气压降低,上述连接喷嘴514被吸引而缩小,其开口部分514s就关闭了,因此,能够增大主体511下部的负压而使二次旋转流容易产生,并将粒径较小的粒状体有效送入上升管515,同时还能防止处理用水从成为下部排出口的连接喷嘴514的开口部分514s流出。
即,一边用一次旋转流冲击主体511内壁一边向下方移动的包含粒径较大的粒状体的泥水从材料排出管513被送入上述连接喷嘴514内,上述泥水中的固形组分蓄积在连接喷嘴514的开口部分514s,如果上述固形组分蓄积到一定重量以上,由于连接喷嘴514是由弹性体构成的,所以,利用本身的重量连接喷嘴514开口部分514s会撑开,固形组分较多的淤浆就从上述开口部分514s排出。因此,从上述连接喷嘴514的开口部分514s排出的不仅是以往处理用水占大多数的泥水,还排出了由粒径较大的粒状体形成的固形组分较多的淤浆。此外,即使做成上述下部排出口在规定时间内通过机械方法关闭的结构,也能排出固形组分较多的淤浆,如上所述,通过使用弹性体构成的连接喷嘴514,能够以简单的结构有效地排出固形组分较多的淤浆。
此外,如果上述二次旋转流过强,则粒径大于所希望粒径的粒状体也会从移送管516排出,所以,利用移送管516的上升管515侧的排压调整装置517将空气导入上述移送管516内来调整负压式液体旋风分离器51X的排压,就能够控制从负压式液体旋风分离器51X上部排出的粒状体的粒径。
此外,通过在主体511下部511b内壁贴上缓冲用橡胶519,能够缓解粒状体对上述内壁的冲击,防止上述粒状体在主体511内裂开,同时使粒径较大的粒状体顺利地向下方转移。
图24表示使用了负压式液体下方分离器51X的污染土壤处理系统的一个结构实例。与上述图14所示的使用1台液体旋风分离器的处理系统的结构相同。
储存在供液槽40中的包含5mm以下粒状体的淤浆状处理材料被送至负压式液体旋风分离器51X,使粒径约50μm以下的微粒浮游在处理用水中而分离,通过移送管516使包含上述微粒片的处理用水返回到供液槽40,同时从负压式液体旋风分离器51X底部的连接喷嘴4排出的粒径较大的粒状体构成的固形组分较多的淤浆被送至连接槽52。在利用脱水振动筛53X从上述淤浆分离出以约50μm以上的砂粒组分为主体的粒状体(细砂粒)后,上述淤浆又返回至供液槽40。
这样,在本实施状态4中,使用了具备安装在位于筒状主体511下部的材料排出管513的弹性体构成的连接喷嘴514的负压式液体旋风分离器51X,由于从经过细粒化装置20的粉碎、解胶处理的粒状体中分离出了不含污染物的粒径较大的粒状体,所以,能够使由粒径较大的粒状体构成的固形组分较多的淤浆从上述负压式液体旋风分离器51X底部排出。因此,能够有效地分离出不含污染物的粒径较大的粒状体,使分级效率显著提高。
此外,上述实施状态4是使用了1台负压式液体旋风分离器51X的例子,如图25所示,通过在具备负压式液体旋风分离器51X的分级装置的后段设置具备利用排压调整装置517将压力调整到低于上述负压式液体旋风分离器51X的负压式液体旋风分离器51Y的分级装置,能够利用前段的负压式液体旋风分离器51X和脱水振动筛53X分离出例如以约50μm以上的砂粒组分为主体的粒状体,再通过后段的负压式液体旋风分离器51Y和脱水振动筛53Y,就能够分离出例如以约10-50μm的微细砂粒为主体的粒状体。
这样,就能够有效地从被重金属类和油性组分等污染的土壤和焚烧炉中取出的焚烧灰等附着了污染物的粒状体中分离出不含污染物的粒径较大的粒状体,并可进一步提高分级效率。
此外,如果用经过脱水振动筛53Y分级的微细砂粒制成脱水饼A,则该脱水饼A与用沉淀于连续沉降浓缩槽55底部的淤浆状污染土壤制得的脱水饼B不同,由于它是由不含污染物的微细砂粒形成的,所以,不用进行无害化处理就可再利用。
上述例子中,为了利用负压式液体旋风分离器51X对50μm以下的粒状体进行分级,以及利用负压式液体旋风分离器51Y对10μm以下的粒状体进行分级,分别通过各自的排压调整装置7对上述负压式液体旋风分离器51X和51Y的排压进行了调整,但上述排压量并不限于此,可根据处理系统的结构和处理材料等作适当决定。如果设置3段以上的负压式液体旋风分离器,则分级的粒状体的大小也可分为3个范围以上。
实施状态5上述实施状态2中,在一次细粒化机21和二次细粒化机22间设置了筛选用振动筛23,在二次细粒化机22中投入粒径小于10mm的粒径较小的粒状体,能够提高二次细粒化机22的粉碎、解胶效率,如图26所示,为了对通过上述振动筛22的淤浆进行脱水处理和分级处理,在上述筛选用振动筛23的后段设置了浮游分级机24,通过将经过脱水的粒径在规定范围内的粒状体投入二次细粒化机22,能够进一步提高二次细粒化机22的粉碎、解胶效率,同时还能够提高分级效率。
图27(a)和(b)是浮游分级机24的一个结构实例,该浮游分级机24与日本专利公开公报平8-164363号记载的公知的筛选机的结构相同。浮游分级机24的一端是水平的,另一端由以下8部分组成,即,具备带有向上坡度的一对框架241a和241b的主机架241;利用驱动转子242a及从动转子242b使主机架241的水平部分在上述框架241a和241b间向上坡度方向移动的传送带243;设置于上述传送带243的材料投入面243a的内侧宽度方向的两侧,支持上述传送带243的多个旋转转子244;具有分别支持上述旋转转子244的一端的多个腕部245a和分别与上述旋转转子244的另一端连接的多个腕部245b的支持上述旋转转子244的振动框架245;使上述振动框架245振动的励振机246;设置在上述传送带243宽度方向的两侧的沿上述传送带243长度方向延展的波浪型立壁247;向在上述传送带243上移动的处理材料洒水的洒水机248;以及设置在上述传送带243的坡度部分243K的折返部分243b下方的排出漏斗249。使投入上述传送带243的水平部分243H的处理材料沿向上坡度部分243K方向振动将其向上搬运,同时利用洒水机248从上述处理材料中除去粒径较小的粒状体,在使粒径较大的粒状体脱水的同时将其从排出漏斗249排出,对处理材料进行分级处理。
用浮游分级机24进行过脱水处理的粒径较大的粒状体被送至二次细粒化机22。因此,由于在二次细粒化机22中投入了经过脱水处理、且分离出不利于粉碎、解胶作用的、粒径较小的粒状体的处理材料,所以,在这些投入材料中添加适量的水就能够进行上述解胶处理。因此,能使附着了污染物的粒状体进行有效地细粒化,同时又能够切实地从上述各粒状体中分离出牢牢附着在上述各粒状体中的污染物。
另一方面,用上述洒水机248除去的粒径较小的粒状体随着处理用水一起通过设置在上述传送带243水平部分的折返部分243c下方的图中未标出的处理用水通道被暂时储存在第1供液槽40中(参考图23)。
这样,在本实施状态5中,用筛选用振动筛23对经过一次细粒化机21细粒化的附着了污染物的粒状体进行筛选后,用浮游分级机24对通过上述振动筛23的包含粒径在10mm以下的粒状体的处理用水进行脱水处理和分级处理,然后,将上述经过分级的粒径较大的粒状体投入二次细粒化机22,在投入材料中添加适量的水就能够进行上述解胶处理。因此,能够有效地使附着了污染物的粒状体细粒化,同时又能够切实地从牢牢附着在上述粒状体表面的污染物中分离出粒状体。
上述实施状态5中,利用浮游分级机24对经过一次细粒化机21细粒化、并通过筛选用振动筛23的包含粒状体的处理用水进行了脱水处理和分级处理,此外,还可使用脱水振动筛等其他脱水装置。
此外,也可使用上述实施状态4所用的负压式液体旋风分离器51X对上述包含粒状体的处理用水进行脱水处理和分级处理。如上所述,负压式液体旋风分离器51X是使粒径较小的粒状体有效地从上部排出的同时,在连接喷嘴514的开口部分514s附近蓄积了由泥水中粒径较大的粒状体构成的固形组分,使固形组分较多的淤浆从上述开口部分514s排出的装置(参考图23)。因此,利用上述负压式液体旋风分离器51X对经过一次细粒化机21细粒化、并通过振动筛23的、包含粒状体的处理用水进行分级处理,将从上述开口部分514s排出的固形组分较多的淤浆投入二次细粒化机22,能够提高二次细粒化机22中的粉碎、解胶效率。
此外,从上述负压式液体旋风分离器51X上部排出的包含粒径较小的粒状体的处理用水则被送至供液槽40储存。
实施状态6图28是本发明的实施状态6的污染土壤的处理系统的简图。本实施状态6中,在筛选用振动筛23的后段设置了从上述振动筛23筛选出的10mm以上的粒状体中选出粒径为10~30mm的石子和砂粒等粒状体的第2筛选用振动筛25,同时,将上述筛选出的10~30mm的石子和砂粒等粒状体分别通过传送带26和27送至一次细粒化机21和二次细粒化机22,这样,在一次细粒化机21和二次细粒化机22中,作为污染土壤的处理材料是在混合有10~30mm的石子和砂粒等粒状体的状态下进行粉碎解胶处理的。
如图29(a)所示,在进行污染土壤粗粉碎的一次细粒化机21中,转子2的偏心量较小,这样旋转滚筒6和转子7的间隔D1就较宽,旋转速度较慢。如图29(b)所示,在以污染土壤的解胶处理为主体的二次细粒化机22中,转子7的偏心量较大,旋转滚筒6和转子7的间隔D2较窄,旋转速度比上述一次细粒化机21的速度快,与图6(b)所示的细粒化装置20B相同,下游侧转子的直径大于上游侧转子,这样污染土壤的处理空隙就沿向下游方向不连续地变窄。图29(a)和(b)中,斜线部分S表示投入的处理材料,黑色部分表示用上述第2筛选用振动筛25选出的粒径为10~30mm、硬度较高的石子和砂粒等粒状体(以下,称其为硬质材料)。
如图30所示,在一次细粒化机21或二次细粒化机23中,由于在作为处理空隙的旋转滚筒6和转子7间投入的由污染土壤P和硬质材料K构成的处理材料S′通过旋转滚筒6的外叶轮6W向上方拢,同时又通过转子7的内叶轮7W向下方吸引,所以,污染土壤P和硬质材料K同时受到压缩应力和剪切应力的作用,上述污染土壤的团粒状粒状体被粉碎、解胶。
即如图31(a)所示,粒状体间通过固着面r固定成团粒状态的污染土壤的团粒状各粒状体P或粒状体间未固定的较大粒状体p及硬质材料如果受到了压缩应力和剪切应力的作用,则上述团粒状各粒状体P会从上述固着面r分离出来,被粉碎成大致独立的较细粒状体p(粉碎处理),此时,上述硬质材料K未在一次细粒化机21和二次细粒化机22中粉碎,而是与上述团粒状粒状体P冲撞,使上述粒状体P粉碎成更细的粒状体p。因此,混入上述硬质材料K可促进粉碎作用。
更具体来讲,硬质材料K通过外叶轮6W或内叶轮7W向上拢,然后,因任一叶轮的旋转力作用而被加速,在一次细粒化机21内或二次细粒化机22内以例如10m/sec的速度移动。因此,不仅由于上述硬质材料K硬度高,而且由于上述硬质材料被加速移动,所以,冲撞时的能量很大,与大部分投入材料为粒径较小、硬度较小的粒状体形成的块状处理材料(污染土壤)间冲撞产生的粉碎作用相比,利用上述硬质材料K和团粒状粒状体P的冲撞产生的粉碎作用更有效。而且,由于上述硬质材料K被加速而以高速移动,所以,上述硬质材料K和作为处理材料的团粒状粒状体P的冲撞次数也显著提高,因此,与以往的情况相比,粉碎作用就更显著。
如图31(b)所示,利用粒状体或粒子间的研磨力,能够使附着在各粒状体表面的重金属类等污染物q从粒状体p中分离出来(解胶作用)。此时,由于污染土壤P中混合有硬质材料K,所以,不仅可利用上述粒状体p互相冲撞产生的摩擦,还可利用上述硬质材料K与上述粒状体p的冲撞所产生的硬质材料K和上述粒状体p之间的摩擦来进行解胶处理。上述硬质材料K的粒径和硬度均大于上述粒状体p,且移动速度较快,所以,与上述粉碎处理的情况相同,与仅利用上述粒状体p间冲撞的情况相比,其解胶作用更显著。因此,能够使碳或油性组分等粘性较大的污染物和牢牢附着在各粒状体上的重金属等污染物充分脱落。
此外,由于在一次细粒化机21和二次细粒化机22中硬质材料K也会互相摩擦,所以,上述硬质材料K的表面因研磨而变得光滑。
以下,对本实施状态6的污染土壤的处理方法进行说明。
用传送带搬运投入漏斗11的污染土壤,与预选经过细粒化装置21粉碎的通过第2振动筛24筛选出的粒径为10~30mm左右的石子和砂粒等粒状体一起投入细粒化装置21。上述硬质材料的投入量为作为处理材料的污染土壤的10~30%。在细粒化装置21的较宽敞的处理空间内对投入的污染土壤和硬质材料进行粗粉碎,使上述污染土壤向一次细粒化机21的下游侧移动,从图中未标出的排出口排出。此时,不太牢固地附着于污染土壤表面的重金属类等微粒片被剥离,浮游在上述处理用水中。此外,易溶的重金属类溶解于上述处理用水中。此外,由于一次细粒化机21中作用于污染土壤的应力较小,所以,在将污染土壤粉碎成粒径较小的淤浆状的同时,上述硬质材料及混合在投入的污染土壤中的硬质砂粒和砾石等粒状体未经粉碎就被排出。
从上述细粒化机21排出的较大金属类和杂质等固形物被约30mm的分级用网21a捕获而除去,约30mm以下的粒状体和包含硬质材料的污染土壤被送至第1振动筛23进行筛选,10mm以下的粒状体被送至二次细粒化机23。另一方面,10mm以上的粒状体被送至第2振动筛25,筛选出的10~30mm的石子和砂粒等粒状体分别通过传送带26和27被送至一次细粒化机21和二次细粒化机22,混合入污染土壤,作为投入的硬质材料使用。即,从投入一次细粒化机21的污染土壤中混合的石子和砂粒等粒径较大的粒状体中筛选出的10~30mm的粒状体作为硬质材料K自动被投入到二次细粒化机22中。投入一次细粒化机21的硬质材料K的量根据包含在污染土壤中的石子和砂粒等硬质材料的混合率来决定。有时投入的污染土壤中未混入硬质材料。
如上所述,二次细粒化机22作用于污染土壤的应力大于一次细粒化机21,且上述污染土壤中混合了振动筛25筛选出的10~30mm的石子和砂粒等硬质材料,所以,利用上述硬质材料和污染土壤的各粒状体的互相摩擦进行的解胶作用,能够使粘性较大的碳或油性组分及牢牢附着在污染土壤的各粒状体上的重金属类的微粒片脱落。此时,易溶重金属类在溶于上述处理用水的同时,从污染土壤的各粒状体分离出的碳或油性组分及重金属类等微粒片以浮游在处理用水中的状态,与上述污染土壤一起从图中未标出的排出口排出。
由于二次细粒化机22的下游侧转子直径大于上游侧转子,污染土壤的处理空隙朝下不连续地变窄,所以,处理材料不能够顺利流到下游侧,部分处理材料返回至上游侧而滞留,这样,处理材料的解胶处理就可更好地进行。此外,上述混入的硬质材料和污染土壤中的砂粒及砾石等粒状体不经粉碎,利用解胶处理以表面较光滑的状态排出。也可直接使上述硬质材料残留在二次细粒化机22中。
通过振动筛30,从二次细粒化机23排出的污染土壤的淤浆和砂粒及砾石等粒状体中筛选出粒径在5mm以上的粒状体,5mm以下的粒状体则在暂时储存于供液槽40后被送至分级装置50,被分成各种大小的粒状体。关于分级装置50以后的处理,因上述实施状态2的情况相同,故省略了。
上述实施状态6中,作为混合入处理残留的硬质材料,使用的是从上述细粒化装置排出的混合在上述处理材料中的石子和砾石等粒径较大的粒状体,作为硬质材料,也可采用粒径大于处理材料的玉石或铁珠、陶瓷珠等硬质材料,其效果是同等的。
在上述例子中,对污染土壤的处理方法进行了说明,但在处理材料为焚烧灰或包含焚烧灰的污染土壤的情况下,也可利用同样的处理系统进行处理。但是,由于附着在焚烧灰中的二肟类物质为超微粒子,所以,为了分离出浮游在处理用水中的二肟类微粒片,需要使用如离心分离器等来进行去除处理。对包含大量用离心分离器分离出二肟类等微粒片的有害淤泥则在进行熔融固化等处理后废弃。
如上所述,权利要求1记载的发明是,通过将附着了污染物的粒状体投入处理空隙内,一边加水一边使其产生压缩力及粒状体间的研磨力,使上述粒状体分离为独立的粒状体,同时将附着在上述粒状体表面的污染物分离出来的细粒化装置使上述粒状体细粒化,由于依次增加了作用于上述粒状体的应力,对上述粒状体进行细粒化处理,所以,能够有效进行附着了污染物的粒状体的粉碎处理和解胶处理,切实地从上述粒状体中分离出污染物。
权利要求2记载的发明是,利用1台细粒化装置,在对附着了污染物的粒状体进行细粒化处理后,再次将其投入同一细粒化装置进行再处理时,施加在上述粒状体上的应力大于前一次,由于仅用1台装置对附着了污染物的粒状体进行了粉碎、解胶处理,所以很经济,而且,可实现设备的小型化。
权利要求3记载的发明是,使用具备圆筒状旋转滚筒和转子的细粒化装置,对附着了污染物的粒状体进行细粒化处理,该圆筒状旋转滚筒具有沿轴方向设置在内周面上的向中心方向突出的多个外叶轮,转子具有沿轴方向设置在外周面上的径向突出的多个内叶轮、转子被安装在上述旋转滚筒的内部、其中心与旋转滚筒有所偏离、旋转方向与上述旋转滚筒相反。由于压缩力及粒状体间的研磨力能够有效作用于上述粒状体,所以,能够有效且切实地进行粉碎解胶处理。
权利要求4记载的发明是,在附着了污染物的粒状体中混合入硬质材料的状态下,使上述旋转滚筒和上述转子以反方向旋转,从而加快上述硬质材料的速度,对上述粒状体进行细粒化处理,利用被加速的硬质材料和上述粒状体间的粉碎作用和解胶作用来促进上述粒状体的细粒化处理,所以,能够有效地对污染土壤和焚烧灰等块状粒状体进行细粒化处理,同时,能够切实且有效地分离出附着在上述粒状体的各粒子中的污染物。
权利要求5记载的发明是,在具备1台一边向投入处理空间的附着了污染物的粒状体中加水一边使其产生压缩力及粒状体间的研磨力,使上述粒状体分离为独立的粒状体的同时,又将附着在上述粒状体表面的污染物分离出来的细粒化装置的附着了污染物的粒状体的处理装置中,由于上述细粒化装置的粒状体处理空间被设计成沿下游方向变窄的结构,所以,仅通过1台装置,就能够连续地对附着了污染物的粒状体进行粉碎、解胶处理,这样就能够同时达到设备有效化和小型化的目的。
权利要求6记载的发明是,多段设置一边向投入处理空间的附着了污染物的粒状体中加水一边使其产生压缩力及粒状体间的研磨力,使上述粒状体分离为独立的粒状体,同时又将附着在上述粒状体表面的污染物分离出来的细粒化装置,使上述粒状体依次通过各细粒化装置,同时又逐渐缩小上述细粒化装置的处理空隙的下游段,这样就能够有效地进行附着了污染物的粒状体的粉碎、解胶处理,切实地从上述粒状体中分离出有害重金属类和二肟类等污染物。
权利要求7记载的发明是,设置对前段细粒化装置排出的淤浆进行脱水处理的装置,将上述经过脱水的材料投入后段细粒化装置中,这样,在后段细粒化装置的投入材料中加入适量的水就能够进行上述解胶处理,有效地使粒状体达到细粒化的目的。
权利要求8记载的发明是,作为权利要求6记载的细粒化装置,使用具备圆筒状旋转滚筒和转子的细粒化装置,对附着了污染物的粒状体进行细粒化处理,该圆筒状旋转滚筒具有沿轴方向设置在内周面上的向中心方向突出的多个外叶轮,转子具有沿轴方向设置在外周面上的径向突出的多个内叶轮、转子被安装在上述旋转滚筒的内部、其中心与旋转滚筒有所偏离、旋转方向与上述旋转滚筒相反。这样,就可使压缩力及粒状体间的研磨力有效地作用于附着了污染物的粒状体,能够有效且切实地对上述粒状体进行粉碎、解胶处理。
权利要求9记载的发明是,对从前段细粒化装置中排出的淤浆中的混合在附着了污染物的粒状体中的石子和砾石等粒径较大的粒状体进行分级,将分离出的粒径较大的粒状体投入后段的细粒化装置,在上述粒状体和上述粒径较大的粒状体混合的状态下,对上述粒状体进行细粒化处理,由于上述旋转滚筒与上述转子以相反方向旋转而加快了的粒径较大的粒状体的移动速度,所以,进一步促进了粉碎、解胶处理,能够有效地使污染土壤和焚烧灰等块状粒状体细粒化,同时又能够切实且有效地分离出附着在上述粒状体的各粒子中的污染物。
权利要求10记载的发明是,利用液体旋风分离器,从权利要求1记载的细粒化装置排出的粒状体中分离出不含污染物的粒径较大的粒状体,以及包含上述被分离出的污染物、且比上述粒状体小的粒状体,所以,能够切实地分离不含污染物的粒径较大的粒状体和包含污染物的微粒片。
权利要求11记载的发明是,在位于液体旋风分离器主体下部的排出口设置由弹性体构成的喷嘴,采用使上述液体旋风分离器的排压增大的负压式液体旋风分离器,从上述经过细粒化的粒状体中分离出不含污染物的粒径较大的粒状体,所以,能够从上述负压式液体旋风分离器底部有效地排出较多由粒径较大的粒状体形成的固形组分的淤浆。因此,能够有效地分离不含污染物的、粒径较大的粒状体,使分级效率显著上升。
此外,由于用弹性体形成的喷嘴来构成使上述下部排出口的直径缩小的装置,所以,能够以简单的结构分离出固形组分较多的淤浆。
权利要求12记载的发明是,在向附着了污染物的粒状体加水使其细粒化后,将其储存在液体旋风分离器的液体供给槽中,从上述液体供给槽下部向液体旋风分离器提供包含上述粒状体的处理用水,使上述粒状体分级,同时又使从上述液体旋风分离器上部排出的包含粒径较小的处理用水返回至上述液体供给槽,这样,返回后混合在上述粒径较小的粒状体中的粒径较大的粒状体也被送至液体旋风分离器,进行再次分级,这样就可切实地使粒径较大的粒状体分级。
图1表示本发明实施状态1的附着了污染物的粒状体的处理装置的结构方框图。
图2是本实施状态1的细粒化装置的结构图。
图3表示本实施状态1的细粒化装置的设定条件。
图4是对细粒化装置的粉碎、解胶作用进行说明的简图。
图5是对细粒化装置的粉碎、解胶作用进行说明的简图。
图6是本发明的细粒化装置的另一例子。
图7是本实施状态2的附着了污染物的粒状体的处理系统的结构和处理流程图。
图8表示本实施状态2的附着了污染物的粒状体的处理系统的结构和处理流程图。
图9是液体旋风分离器的结构模式图。
图10是供液槽的结构模式图。
图11是经过本实施状态2的连续处理系统处理的焚烧灰的分析结果表。
图12是经过本实施状态2的连续处理系统处理的焚烧灰的分析结果曲线图。
图13是对经过本实施状态2的连续处理系统处理的焚烧灰的分析结果表。
图14表示使用1台液体旋风分离器的附着了污染物的粒状体的处理系统。
图15是本实施状态3的一次细粒化机的结构图。
图16是本实施状态3的二次细粒化机的主要部分的结构图。
图17表示本实施状态3的一次细粒化机的内叶轮的详细情况。
图18表示本实施状态3的二次细粒化机的上游侧的内叶轮的详细情况。
图19表示本实施状态3的二次细粒化机的下游侧的内叶轮的详细情况。
图20是对本实施状态3的一次细粒化机和二次细粒化机的结构进行比较的剖视图。
图21是一次细粒化机的外叶轮的结构图。
图22是二次细粒化机的外叶轮的结构图。
图23是本实施状态4的负压式液体旋风分离器的结构模式图。
图24表示使用负压式液体旋风分离器的附着了污染物的粒状体的处理系统。
图25表示使用2台负压式液体旋风分离器的附着了污染物的粒状体的处理系统。
图26表示本实施状态5的附着了污染物的粒状体的处理系统。
图27是浮游分级机的一个结构实例。
图28表示本实施状态6的污染土壤的处理系统。
图29是对本实施状态6的一次细粒化机和二次细粒化机的结构进行比较的剖视图。
图30是对混合了硬质材料的状态下的粉碎、解胶作用进行说明的图。
图31是对混合了硬质材料的状态下的粉碎、解胶作用进行说明的图。
图32是传统粉碎机的结构图。
图中,2表示铁容器,3表示动力机,4表示处理材料投入口,5表示处理材料排出口,6表示旋转滚筒,6W表示外叶轮,7表示转子,7W表示内叶轮,11表示漏斗,12表示预选装置,20表示细粒化装置,21表示一次细粒化机,22表示二次细粒化机,23表示筛选用振动筛,23M表示磁性除金属机,24表示浮游分级机,25表示第2筛选用振动筛,26和27表示传送带,30表示振动筛,40表示第1供液槽,41表示第2供液槽,50表示分级装置,51、51R和51Z表示液体旋风分离器,51X和51Y表示负压式液体旋风分离器,52和52R表示连接槽,53、53R、53X和53Y表示脱水振动筛,54表示垃圾处理回转筛,55表示连续沉降浓缩槽,56和58表示淤浆槽,57表示离心分离器,59表示脱水机,60表示给水部分,61表示二次处理用水槽,70表示污水处理部分,71表示一次处理水槽,72表示装返回的过滤水的槽,73表示液体过滤装置。
权利要求
1.一种附着了污染物的粒状体的处理方法,所述方法通过将附着了污染物的粒状体投入处理空隙内,一边加水一边使其产生压缩力及粒状体间的研磨力,使上述粒状体分离为独立的粒状体,同时又将附着在上述粒状体表面的污染物分离出来的细粒化装置使上述粒状体细粒化,其特征在于,在上述细粒化过程中,依次增加了作用于上述粒状体的应力。
2.如权利要求1所述的附着了污染物的粒状体的处理方法,其特征还在于,利用1台细粒化装置,对投入的附着了污染物的粒状体进行细粒化处理后,再次将其投入同一细粒化装置进行再处理时,施加在上述粒状体上的应力大于前一次。
3.如权利要求1所述的附着了污染物的粒状体的处理方法,其特征还在于,上述细粒化装置具备圆筒状旋转滚筒和转子,上述圆筒状旋转滚筒具有沿轴方向设置在内周面上的向中心方向突出的多个外叶轮,转子具有沿轴方向设置在外周面上的径向突出的多个内叶轮、转子被安装在上述旋转滚筒的内部、其中心与旋转滚筒有所偏离、旋转方向与上述旋转滚筒相反。
4.如权利要求1所述的附着了污染物的粒状体的处理方法,其特征还在于,在附着了污染物的粒状体中混合了硬质材料的状态下,使上述旋转滚筒和上述转子以反方向旋转,从而加快上述硬质材料的移动速度,对上述粒状体进行细粒化处理。
5.一种附着了污染物的粒状体的处理装置,具备1台一边向投入处理空间的附着了污染物的粒状体中加水一边使其产生压缩力及粒状体间的研磨力,使上述粒状体分离为独立的粒状体,同时又将附着在上述粒状体表面的污染物分离出来的细粒化装置,其特征在于,上述细粒化装置的粒状体处理空间被设计成沿下游方向变窄的结构。
6.一种附着了污染物的粒状体的处理装置,其特征在于,多段设置一边向投入处理空间的附着了污染物的粒状体中加水一边使其产生压缩力及粒状体间的研磨力,使上述粒状体分离为独立的粒状体,同时又将附着在上述粒状体表面的污染物分离出来的细粒化装置,使上述粒状体依次通过各细粒化装置,同时又逐渐沿下游方向缩小上述细粒化装置的处理空隙。
7.如权利要求6所述的附着了污染物的粒状体的处理装置,其特征还在于,设置对前段细粒化装置排出的淤浆进行脱水处理的装置,同时又将上述经过脱水的材料投入后段细粒化装置中。
8.一种附着了污染物的粒状体的处理装置,其特征在于,作为权利要求6所述的细粒化装置,使用了具备圆筒状旋转滚筒和转子的细粒化装置,上述圆筒状旋转滚筒具有沿轴方向设置在内周面上的向中心方向突出的多个外叶轮,转子具有沿轴方向设置在外周面上的径向突出的多个内叶轮、转子被安装在上述旋转滚筒的内部、其中心与旋转滚筒有所偏离、旋转方向与上述旋转滚筒相反。
9.如权利要求8所述的附着了污染物的粒状体的处理装置,其特征还在于,对从前段细粒化装置中排出的淤浆中的混合在附着了污染物的粒状体中的石子和砾石等粒径较大的粒状体进行分级,将分离出的粒径较大的粒状体投入后段的细粒化装置,在上述粒状体和上述粒径较大的粒状体混合的状态下,使上述旋转滚筒和上述转子以反方向旋转,从而加快上述粒径较大的粒状体的移动速度,对上述粒状体进行细粒化处理。
10.一种附着了污染物的粒状体的处理方法,其特征在于,利用液体旋风分离器,从权利要求1记载的细粒化装置排出的粒状体中分离出不含污染物的粒径较大的粒状体,以及包含上述被分离出的污染物、且比上述粒状体小的粒状体。
11.如权利要求10所述的附着了污染物的粒状体的处理方法,其特征还在于,在位于液体旋风分离器主体下部的排出口设置由弹性体构成的喷嘴,采用使上述液体旋风分离器的排压增大的负压式液体旋风分离器,从上述经过细粒化的粒状体中分离出不含污染物的粒径较大的粒状体。
12.如权利要求10所述的附着了污染物的粒状体的处理方法,其特征还在于,向附着了污染物的粒状体加水使其细粒化后,将其储存在液体旋风分离器的液体供给槽中,从上述液体供给槽下部向液体旋风分离器提供包含上述粒状体的处理用水,在使上述粒状体分级的同时,使从上述液体旋风分离器上部排出的包含粒径较小的粒状体的处理用水返回至上述液体供给槽。
全文摘要
使污染土壤和焚烧灰等附着污染物的粒状体细粒化,并将上述污染物有效分离并除去,使分离出了上述污染物的无害粒状体可再利用。其方法是利用一次细粒化机对附着污染物的粒状体进行粗粉碎使上述粒状体细粒化后,主要利用二次细粒化机使粒状体间产生研磨力而进行粒状体间的相互研磨,从而分离出牢牢附着在上述粒状体表面的重金属类或二肟类等污染物,同时利用振动筛和分级装置从经过一次细粒化机和二次细粒化机细粒化的粒状体中分离出不含污染物的粒状体。
文档编号B09C1/02GK1256977SQ9912328
公开日2000年6月21日 申请日期1999年10月29日 优先权日1998年10月30日
发明者反后尧雄, 伊藤洋, 柴田浩彦, 川口谦治, 信太丰, 中山泛 申请人:株式会社熊谷组, 溶融资源株式会社, 新六精机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1