用于过滤含有细粒物质的空气的空气过滤器组件的制作方法

文档序号:4976581阅读:184来源:国知局
专利名称:用于过滤含有细粒物质的空气的空气过滤器组件的制作方法
技术领域
本发明涉及具有带非平面侧壁外壳的空气过滤系统。
背景技术
许多工业领域常常遇到悬浮在大气中的细粒物质。在有些工业领域中,这种细粒物质是有用的产物,例如淀粉等;如果这种悬浮的细粒能够被回收并重新引入到生产过程中则是有利的。对其它的工业领域、例如金属或木材加工业而言,这种细粒物质可能只是尘埃;为了净化工作环境,就需要从空气中去除尘埃颗粒。
用来净化充满细粒物质的空气或其它气体流的系统包括具有在外壳内装有过滤器元件的空气过滤器组件。该过滤器元件可以是合适的纤维织物或打褶纸袋或保护套。被细粒污染的气体流通常通过外壳,这样,细粒被捕获并保持在过滤器元件中。通过定期向过滤器元件的内部注入短暂的脉动的压力空气,以使空气流反向通过过滤器元件,从而使集合的污染物收集起来,从而完成清洁工作。这样的空气过滤器组件公开在美国专利中,例如美国专利号4,218,227(Frey)和美国专利号4,395,269(Schuler)。
过滤元件通常用于空气过滤器组件,以便从空气流中处理掉尘埃颗粒。在空气过滤器组件的标准设计中,一空气过滤器组件具有一清洁空气室和一脏空气室。这两个腔室被一金属板隔开,该金属板通常称作为管板。该管板具有许多开口,过滤器元件从开口对齐。该过滤器向下悬挂进入脏空气室,与管板开口有一夹角或无夹角。充满细粒的空气引入到脏空气室,而细粒则收集到过滤器上。过滤过的空气通过过滤器到过滤器的内部,并向上出来通过管板的开口进入到干净空气室。从干净空气室排出干净空气到环境中,或再循环用于其它的用途。例如,美围专利号4,424,070(Robinson)、4,436,546(Robinson)、4,443,237(Ulvestad)、4,445,915(Robinson)、5,207,812(Tronto等人)、4,954,255(Muller等人)、5,22,488(Forsgren)和5,211,846(Kott等人)为打褶筒型的现有技术的圆柱形过滤器元件的现有技术的实例。
非圆柱形过滤器元件有时用来从一空气流中处理尘埃颗粒,并比圆柱形过滤器元件在外壳内提供增加的过滤面积。例如,美国专利号5,730,766(Clements)公开了一种非圆的一体的过滤器盒,它具有围绕集尘器一穿孔内芯牢固形成的折褶过滤器介质的一体结构。美国专利号4,661,131(Howeth)公开非圆柱形的过滤器,它比装在同样尺寸的封壳内的多个圆柱形元件具有更大的净化空气流面积。
在一具有非圆柱形过滤器元件的空气过滤器组件的传统设计中,非圆柱形过滤器元件仅取代圆柱形过滤器元件。由于相邻过滤器元件之间较小的空间,较之圆柱形过滤器元件,更多的非圆柱形过滤器元件可放置在一外壳内。美国专利号5,730,766(Clements)公开这种类型非圆柱形过滤器元件的使用。在另一具有非圆柱形过滤器元件的空气过滤器组件的传统设计中,多个圆柱形元件被一单一的非圆柱形过滤器元件所取代。美国专利号4,661,131(Howeth)公开了这种类型的非圆柱形过滤器元件的使用。遗憾的是,这些利用非圆柱形过滤器元件的传统的设计中的各设计都有其缺点和不足。
在许多传统的系统中,已经证实以增加空气流来操作这种类型的集尘器的企图会导致空气速度的增加,这反过来导致过滤器寿命的缩短。增加的空气流,例如,每分钟8315立方英寸(cfm)(大约233m3/min)或更大些,导致高的室空气/尘埃速度,它引起尘埃细粒在过滤器元件或盒中磨损出孔洞。高的室空气/尘埃速度也可阻碍尘埃细粒落下并进入收集器的斗仓。这导致过滤器被塞住并损失总的集尘气流。

发明内容
本发明公开的空气过滤器组件的结构和布置有助于克服现有技术的诸问题。尤其在一实施例中,本发明的组件的结构和布置能处理至少10%以上的含尘的空气,与传统的系统相比,一般处理至少20%以上的含尘空气流。在一优选的系统中,本发明的组件导致含尘空气流的增加,增加量大于10%,较佳地至少为20%,且最好至少为25%,而不必对过滤器外壳装置的整体尺寸有显著的改变或改变所要求的过滤器盒的数量。本发明的设计通过二种措施提供这种增加,或者保持可供过滤脏空气的过滤介质的数量,或者减少可供的过滤介质的量,而不是增加过滤介质的量。还有,这种空气过滤组件的结构和布置提供更有效的过滤器固位/密封,过滤器外壳装置制造和过滤器处理。
在另一实施例中,本发明的组件的结构和布置导致空气速度比传统空气过滤组件过滤的同样体积的空气的空气速度小至少10%,较佳地小至少20%,最好小至少25%。
在一个方面,本发明描述了一种适合从大容量空气流中移去细粒物质的空气过滤器组件。
在一特定的实施例中,本发明涉及一种具有扩张的侧壁的空气过滤器组件,具体来说,一空气过滤器组件包括一外壳,它包括一将脏空气提供给组件的空气入口,一空气出口,以及一将外壳分隔成过滤室和空气净化室的分隔壁。该外壳包括多个形成过滤室的侧壁,至少有一个侧壁是非笔直的壁,它具有一第一壁部分和一第二壁部分。术语所谓“非笔直”是指该壁是非平坦的;即,第一和第二壁部分之间定位有一夹角。一过滤器结构位于与在分隔壁上一空气流动小孔连通的空气流中,过滤器结构包括一过滤器介质的延伸,该介质形成一内空气净化室的过滤器结构。有时,可包括一第三壁部分。较佳地,空气过滤器组件的外壳具有两个相向面对的壁,每个侧壁具有一由第一壁部分和第二壁部分形成的扩张的部分。
在另一特定的实施例中,本发明涉及一种空气过滤器组件,它采用注入卵形或椭圆形过滤器元件的非圆柱形过滤器元件。这样的组件能处理比使用圆柱形过滤器元件(它具有可供过滤的相等或较小的表面积)的空气过滤器组件多25%的空气。具体来说,本发明的空气过滤器组件包括一外壳,它包括一空气入口,一空气出口以及一分隔外壳为过滤室和空气净化室的分隔壁,该分隔壁包括一在其上的第一空气流动孔。空气入口将脏空气容量提供给空气过滤器组件,其中,脏空气容量具有一空气流动方向。空气过滤器组件还包括一位于与在分隔壁上的第一空气流动孔连通的空气流中的第一过滤器结构;该第一过滤器结构包括设置在近端帽和远端帽之间的过滤器介质的延伸。过滤器介质,近端和远端帽形成净化空气室内的过滤器结构。第一过滤器结构定向在与分隔板上第一空气流动孔连通的空气流中的空气净化室内的过滤器之内;第一过滤器结构具有一横截面积,当平行于第一空气流动孔截取时,横截面积的一长轴线垂直于短轴线;且具有沿长轴线的一宽度和沿短轴线的—宽度,长轴线宽度大于短轴线宽度,且长轴线平行于空气流动方向。
附图简介

图1A是根据本发明的一具有平面侧板的空气过滤系统的一种类型的运行装置的立体图;图1B是根据本发明的一具有扩张的侧板和非圆柱形过滤器元件的空气过滤系统的另一种类型运行装置的立体图;图2是使用非圆柱形过滤器元件的图1A和1B的空气过滤系统的一实施例的侧视图,其中,局部切去;图3A是图1A所示空气过滤系统的正视图;图3B是图1B所示空气过滤系统的正视图;图4是应用在图1A和1B的空气过滤系统的一安装结构的一部分的立体图;图5A是一空气过滤系统的一部分的俯视图,示出用于本发明的空气过滤系统的一平面的侧板;图5B是一空气过滤系统的一部分的俯视图,示出用于本发明的空气过滤系统的一扩张的侧板;图6是应用在本发明的空气过滤系统的非圆柱形元件的一实施例的侧立体图;图7是示于图6中的非圆柱形过滤器元件的一放大的端视图;图8是安装在根据本发明的一空气过滤系统的一排非圆柱形过滤器元件的端视图;以及图9是安装在一空气过滤系统中的一排圆柱形过滤器元件的端视图。
较佳实施例的详述参照图1A和1B,一空气过滤系统或组件一般分别示为10和10’。示出的系统10,10’用构造成平排布置在一起的三个单元或组件来表示。例如,这样排列可以是2米×3米×3米的空间大小(近似为6英尺×10英尺×10英尺)。
图1A和1B中的各组件一般呈箱形并包括一上壁板16和侧壁板17或17’。正入口门13和副入口门14,例如,为了维修的目的,允许进入到每个组件的内部。每个组件还包括一管道11,用来接收脏的或污染的空气(即,其中带有细粒物质的空气)进入到过滤器组件。设置同样的管道12,用来从过滤器组件10中排出干净的或过滤过的空气。
图1A和1B还示出了一标准构造的电机和链条传动组件118,用来操作在组件底部的一螺旋推运器。该螺旋推运器用来移走从空气过滤组件内部收集到的细粒,这将在下文中详细介绍。
现参照图2,过滤器系统表示为具有一侧壁板17的侧视图,另一侧壁板17’已切去,以便于描述组件各元件的布置。在该实施例中,上壁板16具有一内壁表面16’,它具有一位于上壁板16上的空气入口20,这样,进入的含尘埃的空气或其它污染的气体沿向下的方向(参见如空气流动方向101)引入到脏空气室22。对于一个圆柱过滤器元件,进入的脏空气的一般容量约为每分钟500立方英寸(cfm)(约14m3/min);根据本发明,进入的脏空气的一般容量至少可约为550cfm(约15.4m3/min),较佳地至少约为600cfm(约16.8m3/min)且更佳地至少约为625cfm(约17.5m3/min)。在许多工业部门中,安装了这种类型的空气过滤器组件,在脏空气流中的尘埃或其它细粒型污染物大约每立方英寸空气含细粒为1格令(英制质量单位,等于0.0648克)。经过滤的,或“净化的空气”则每立方英寸空气含的细粒约小于0.001格令。
顶部入口20允许该组件利用重力移动尘埃通过组件10到达收集区。脏空气室22由门13,上壁板16,两对相对的、从上壁板16向下延伸的侧壁板17,17’,台阶形的管板结构28(图2中虚线表示),以及一对倾斜壁表面23,24组成。倾斜壁表面23,24部分形成在组件底部内的一收集区或斗仓25。脏空气室22是一密封室,以防止任何污染空气或液体在过滤之前跑逸。底板或框26以任何合适的、标准的方式密封到侧壁板17,17’。脏空气室22的容积一般约小于176立方英寸,且通常约为73至121立方英寸,常见的容积约为97立方英寸。
侧板17,17’是包围和密闭脏空气室22的结构。侧板17,17’通常由金属或塑料制成。侧板17,17’的俯视图示于图5A和5B。在对应于图1A和3A的图5A中,侧板17是平面板或壁。当从空气过滤系统10的外部观察时,侧板17是二维的,即平面或平板。侧板17的内部可包括一单一的加强筋或多元的加强筋29,例如,横梁、杆等,它们加强侧板17。由于平面侧板17本身固有的强度通常不能有效地牢固抵抗通过脏空气室22的大量的脏空气,所以建议采用加强筋29。通常,这种加强筋布置在内部,且从上壁板16垂直延伸到底板26(图5A中未示出),虽然在某些实施例中可能采用水平的加强筋。
仍旧参照图5A,过滤器元件32和侧板17之间的距离“a”大约为10.4cm(4.1英寸),而加强筋29和过滤器元件32之间的距离“b”大约为5.3cm(2.1英寸)。
示出另一实施例的图5B显示移去了加强筋29和图5A的平面侧板,代之以延伸或扩张的侧板17’;扩张的侧板17’是非笔直的侧板或壁。构成外壳的所有侧板可设计成扩张的侧板,或在某些情况中,可能要求有两个相对的侧板为扩张的侧板。侧板17’从过滤器元件32向外扩张且包括斜板18和突出板19。突出板19从平面侧板17(如图5A所示)的位置向外位移一距离“e”,由此提供介于过滤器元件32和突出侧板17’之间的最大距离“c”。斜板18与平面侧板17夹角为“α”。如图5B所示,侧板17’的一部分可仍保持平行于过滤器元件32且是非扩张的。总的说来,扩张的侧板17’增加了脏空气能流入的空间,由此降低了通过过滤器元件32的空气的速度,且确保了空气量的增加。通过在侧板17’内应用突出的部件,如图5A所示的加强筋29或其它这种部件不再需要来加强侧板,这是因为由斜板17’形成的形状提供了所需的刚度。
扩张的侧板17’包括不同的壁部分或区段,例如,斜板18和突出板19,并可包括一平行壁部分71。在一优选实施例中,平行壁部分71和突出板19均与过滤器元件32平行,斜板18的位置与各平行壁部分71和突出板19夹一角度。通常,平行壁部分71和斜板18之间的角度与斜板18和突出板19之间的角度相同。
如图5B所示的介于过滤器元件32和平行壁部分71之间的距离“a”至少约为5cm,约小于30cm,一般约为5至20cm,在一实例中,大约取10cm,但通常类似于图5A所示的平面型实施例中的介于侧板17和过滤器元件32之间的距离。介于过滤器元件32和突出壁板19之间的距离“c”至少约为10cm,约小于50cm,通常约为10至25cm,且在一实例中,大约取17cm。壁部分71的长度“d”(如存在的话)可约小于20cm,通常约小于10cm,且在一实例中,大约取8cm。在某些实例中,“d”可以是0cm(零)。壁部分71可存在于侧板17的任一端或两端。侧板17’从壁部分71突出的量“e”至少约为2cm,约小于20cm,通常约为2至15cm,且在一实例中,大约取6cm。突出量是基于壁部分71和斜板18之间的夹角“α”;该角度一般约大于2°,小于90°,通常约为5至20°。过滤器元件32和侧板17’的各个部件之间的实际距离很大程度上取决于可供给整个空气组件单元10的空间量。突出板19的长度“f”主要取决于侧板17’的总长度,过滤器元件32的长度以及壁部分71和斜板部分18的长度。长度“f”一般约小于150cm,通常约为10至100cm,且在一实例中,大约取65cm。在某些实施例中,不存在有长度“f”的突出板19,相反,两个斜板部分18相交,提供一三角形的突出区域。
介于过滤器元件32和突出侧壁17’的任何部分之间的诸距离(例如,过滤器元件32和壁部分71之间的“a”以及过滤器元件32和突出部分19之间的“c”)应这样量测,即,获得最小距离的测量值。例如,量测时应垂直于过滤器元件32,而不是倾斜的,这样,可测量到最小的距离。
在一实施例中,介于过滤器元件32和侧板17’的端部之间的距离“a”近似为10.4cm(4.1英寸),类似于图5A所示平面实施例中的距离。在一应用本发明的侧板17’的特定的优选的实施例中,“a”是10.4cm(4.1英寸),“c”是16.7cm(6.6英寸),“d”是8.6cm(3.4英寸),“e”是6.4cm(2.5英寸),突出板19的长度“f”是66.0cm(26.0英寸),且夹角“α”约为14.2°。这些尺寸是对最大宽度(垂直于长度进行量测)约为38cm(约15英寸)和长度约为132.1cm(52.0英寸)的过滤器元件32的建议尺寸。在另一优选的实施例中,“a”是11.0cm(4.3英寸),“c”是17.3cm(6.8英寸),“d”是8.6cm(3.4英寸),而“e”,“f”和夹角“α”同上。过滤器元件32事实上可以是两个堆叠的过滤器元件32,每个具有长度约为66cm(约26英寸)。
与没有突出侧板的平面型外壳相比,突出的侧板确保增加外壳内的容积,特别是在脏空气室22内。增加的脏空气室容积允许处理比没有突出侧板的脏空气室更多体积的脏空气;较佳地,本发明的、具有非平面突出侧板的空气过滤器组件确保增加的空气体积至少为10%,较佳地至少为20%,且最好至少为25%。与在平面侧板的脏空气室内的脏空气速度相比,该增加的脏空气室容积还确保降低脏空气循环通过脏空气室22时的速度。较慢的空气速度通过减少由撞击在过滤器元件上的细粒污染物引起的磨损而延长过滤器元件的寿命。较佳地,通过使用根据本发明的一非平面的、突出的侧板,空气速度减小至少10%,较佳地减小至少20%,且最好减小至少25%。
根据可供空气过滤器组件10’放置的空间来控制突出侧板17’的特殊形状,尺寸和型式。要求尽量减小组件10’所需的占地空间;然而,最好增加脏空气室22的面积。在某些空气过滤器组件的设计中,可能要求设计侧壁板17’具有长而薄的突出板19(即,长“f”和短“c”),或者短而厚的突出板19(即,短“f”和长“c“),或者甚至多个突出板19。在某些情形中,可较佳地逐渐缩小或倾斜突出板19的顶部或底部;例如,见图3。突出板19在侧板17’内可以也可以不垂直或水平地对中。此外,突出板19,斜板18以及侧板17’的其它部件可沿侧板17’的高度或宽度变化。
现再次参照全部组件10,10’,沿各侧壁板17,17’安装有一分隔壁或管板结构28,密封在一结构框架件27上,该组件的分离的过滤器元件32安装在上述管板结构上。管板结构28密封在它的所有四个侧边,以将脏空气室22与净化空气室60气密地密封隔开。净化空气室60的容积一般约小于35立方英寸(约1m3),且通常约为19至35立方英寸(约0.5至1m3)。常见的容积为34.9立方英寸约(1m3)。连同脏空气室32,总的腔室容积约为92至211立方英寸(约2.6至6m3)。
在所示的实施例中,分隔壁或管板结构28具有一台阶形的设计,尽管知道可使用平面的管板结构,或具有其它几何形状的结构。在所示实施例中的结构28具有三个台阶或突出部分。每个台阶部分包括一向上延伸的背板30和从背板30折成直角延伸的腿件31。管板结构28最好由单一件钢板构造成,因而,各个台阶部分是直接在其上面和下面连续延伸的台阶部分。
如图2,3A和3B所示,安装在结构28上的过滤器元件32以台阶式的、部分重叠的关系设置在脏空气室22内。过滤器元件32可放置成一般的向下的方向,相对于上表面板16的水平平面倾斜成一锐角。以这种方式,分配空间33形成在过滤器组件10的最上方部分,它由一倾斜的挡板50,侧壁板17,17’,上壁板的内表面16’以及前入口门13所限定。设置倾斜的挡板50用来分散进入的空气流散布到整个脏空气室22。当脏空气从入口20进入组件10时,在尚未过滤之前,它被接纳进入到分配空间33。
通过过滤器元件32,尘埃颗粒从脏空气中移走。各过滤器元件32通常包括一打褶的过滤介质35,它基本上沿过滤器元件32的长度延伸,以及一外套筒36,它保护过滤介质35免受机械的损伤。同样地,在过滤介质35的内侧设置一内套筒34,以保护和支承过滤介质35。打褶介质的每一端通常具有一端帽。用于本发明的过滤器组件10,10’的过滤器元件32可以是圆柱形的或非圆柱形的。关于非圆柱形的过滤器元件的其它细节将在下文中提供。此外,非圆柱形过滤器元件32的结构的细节公开在美国专利号4,171,963(Schuler)。
过滤介质35的每一端最好用一端帽(或套圈件)封装或箍住。一第一端帽82(文中称之为“近端”)是一环形的端帽,且允许进入到过滤器元件32的内部。相对的“远端帽”44是一连续的帽,它封闭进入到过滤介质35的内部。过滤介质35和端帽82,44形成一过滤的或净化的空气室(未示出)。在某些实施例中,例如,当两个过滤器元件32轴向堆叠时,第一元件32的远端帽44可以是一环形帽,以允许空气可自由地在该两堆叠的元件的内部腔室之间流动。
一般地认为介质35被端帽覆盖的部分是不透空气的,因为它已被端帽屏蔽。当通过箍圈36安装到结构28上时,近端帽82定位抵靠在结构28上。在某些实施例中,在近端帽82和结构28之间放置一垫圈。通过将过滤器元件32压向结构28,并压迫垫圈,从而在近端帽82和板结构28之间形成一轴向的密封以防止空气的泄漏。
过滤器元件32(圆柱形或非圆柱形)如何被支承在板结构28上的一实例公开在美国专利号4,395,269和5,562,746。特别是,用于支承过滤器元件的支承组件示于图4。结构28的背板部分30具有一开口(未示出),通过该开口设置一文杜里(Venturi)管70(图2中用虚线表示)。文杜里管70以与过滤器元件32如下的关系设置在管板结构28上,即,文杜里管70设置在净化空气室60内。一套箍组件36构造成延伸通过文杜里管70并进入过滤器元件32的中心,该组件用来支承过滤器元件32。套箍组件36包括固定(例如,通过焊接)在结构28上,并从结构28上延伸的诸钢杆。设置套箍组件36从结构28延伸到脏空气室22。或者,(尽管未在图中示出)套箍组件的诸钢杆可在近端加工有螺纹,并延伸通过在文杜里管安装部分上的诸槽和在文杜里管70的突缘上的诸孔。在这种情形中,一杆可以这样构造通过放置在管板结构的净化空气侧的螺母,该杆可连同文杜里管70的突缘一起固定在管板结构28上。可通过各种方法实现上述的构造。例如,杆在靠近其近端可具有一个一体的螺纹部,当杆的近端延伸通过管板结构28的一孔而被螺母固定时,它起止动螺钉的作用。这种结构的优点在于,没有杆延伸通过文杜里管70的喉部。将过滤器元件固定在管板结构28上的另一实用的变体类似于美国专利号4,218,227(Frey)所公开的结构。
在图4所示的实施例中,每个套箍组件36基本上垂直固定于结构28,这样,过滤器元件32以与水平或锐角的方式悬置。(套箝组件36所定位的背板30与水平成一夹角)。然而,在某些实施例中,背板30可以是垂直的,即与水平向垂直,且套箍组件36构造成使过滤器组件32还是定位成与水平向有一锐角的夹角。尽管系统可在任何倾斜角(包括无角度)的情况下工作,但过滤器元件32的倾斜角的优选的范围是与水平向夹角约为15°-30°。在图2,3A和3B所示的实施例中,结构28的每个背板30具有两个安装在其上的水平隔开的套箍组件36。较佳地,在结构28上的所有过滤器元件32相互之间平行。
图2示出一对过滤器元件32放置在每个套箍组件36上;两个过滤器元件32相互之间成轴向放置。具有中心定位的开口的一环形远端帽44与端板39对齐,这样,密封地覆盖在每对中第二过滤器元件的外侧端上。这使得用来轴向压紧过滤器元件32的诸垫圈(图2-3中未示出),以将它们与管板结构28密封的夹紧装置变得可拆卸,而且相互之间也可拆卸。还有,带有特殊手柄47的一固定螺栓46插入到端板39和端帽44上的诸对齐孔,以将两者固定在一起。
直接在管板结构28后面的是净化空气室60,它由组件的背表面板62和上表面板16的一部分,两个相对侧板17,17’的一部分以及台阶形的管板结构28的背侧限定。安装在背表面板62上的是一净化空气出口64,用来将净化的、经过滤的空气排出到管道12,以返回到工厂的环境中。
直到本发明公开之前,平的平面侧板一直用于本文所述的空气过滤器组件中。然而,业已发现,在某些传统的系统中,企图在增加的空气流中操作这种类型的集尘器会导致空气速度的增加,它反过来导致过滤器寿命的缩短。一增加的空气流,例如,每分钟8315立方英寸或更大些,常导致高的室空气/尘埃速度,它可在过滤器盒中磨出孔洞。这种高的室空气/尘埃速度也可阻碍尘埃颗粒落入到收集斗仓中。这就导致过滤器堵塞并损失整体尘埃收集的空气流。本发明的空气过滤器组件克服了上述问题。
现参照图6-7,将对一非圆柱形的过滤器元件32的实施例作详细说明。业已发现,使用非圆柱形的过滤器元件通过空气流速度的降低而增加可能的空气容量。
过滤器元件32具有一过滤介质35(较佳地为折褶的)的非圆柱形套筒,它从近端帽82延伸到远端帽44。通常,近端帽82是环形的,确保通入净化空气或过滤过的空气室。远端帽44根据实施情况可以是环形的或连续的。在本发明的范围内,一“环形端帽”是一环形的且允许通入到过滤介质35的内部的端帽,而一“连续端帽”是一跨越过滤介质35的径间延伸的端帽,且不允许通入到过滤介质35的内部。一般地,对两个堆叠的过滤器元件32来说,堆叠过滤器元件32中的第一个的远端帽44将是环形的且具有一中央孔,用于通过其间的第二元件的插销。一中央孔(最小尺寸)可包括在一连续的端帽内,以允许通过一螺栓或其它的紧固件,这样,将过滤器元件32固定到台阶形的管板28上,然而,任何孔均由紧固件紧密地密封。
过滤器元件32的长度,图6中表示为“x“,一般它从近端帽82的最外端量到远端帽44的最外端,该长度约至少为45.7cm(18英寸),约小于122cm(48英寸),一般约为55.9-76.2cm(22-30英寸),通常约为61.0-71.1cm(24-28英寸),尽管所用的过滤器元件可以长些和短些,但最佳的约为66.0cm(26英寸)。此外,多个过滤器元件32,例如,两个,三个或更多个过滤器元件32可沿轴向堆叠,以提供更大的过滤面积。
因为过滤器元件32是非圆柱形的,所以过滤介质35和各端帽82,44也都是非圆柱形的;当垂直于过滤介质35截取时,每个端帽具有一长轴75和一短轴76。图7示出了具有长轴75和短轴76的近端帽82。
纵横比,即,端帽的短轴76和端帽的长轴75之间的比例,一般至少约为0.5,小于1.0,且较佳地约为0.7至0.9。在某些系统中,约为0.80的纵横比是首选的。业已发现,当空气流过脏空气室22并绕过过滤器元件32时,纵横比越小,则空气速度也越小。其结果不会损坏过滤器元件32并延长元件的寿命。还有,具有纵横比约为0.8的一非圆柱形过滤器元件较之一圆柱形过滤器元件,提供增加的空气流约25%,而保持室内速度不变。然而,当非圆柱形过滤器元件的纵横比下降时(即,短轴76对长轴75的比下降时),由于空气脉动必须通过其间的元件的狭窄性,所以脉动净化空气返回到元件32以松弛紧凑的细粒变得困难。
如沿长轴75截取,端帽82(和端帽44)的外尺寸至少约为15cm,约小于60cm,一般约为27.9-45.7cm(11-18英寸),且最好约为33.0-38.1cm(13-15英寸)。如沿长轴75截取,端帽82(和端帽44)的内尺寸至少约为5cm,小于55cm,一般约为20.3-38.1cm(8-15英寸),且最好约为25.4-30.5cm(10-12英寸)。如沿短轴76截取,端帽82(和端帽44)的外尺寸至少约为10cm,但约小于55cm,一般约为20.3-38.1cm(8-15英寸),且最好约为25.4-30.5cm(10-12英寸)。一般来说,如沿短轴76截取,端帽82(和可选择的端帽44)的内尺寸至少约为5cm,但约小于50cm,一般约为12.7-30.5cm(5-12英寸),且最好约为17.8-22.9cm(7-9英寸)。近端帽82和远端帽44的尺寸通常是相同的;即,一般来说,过滤器元件32是不逐渐收缩的,但对某些实施例来说,事实上要求有渐缩。
在一非圆柱形过滤器元件32的优选实施例中,端帽82,44的外尺寸沿长轴75是37.7cm(14.844英寸),沿短轴76是30.08cm(11.844英寸)。如果端帽是环形的,端帽82,44的内尺寸沿长轴75是27.88cm(10.976英寸),沿短轴76是20.26cm(7.976英寸)。过滤器元件32的长度较佳地大约是66.0cm(26英寸)。因而,如果两个元件32是堆叠的,则过滤器元件32的总长度将是132.1cm(52英寸)。在另一优选的实施例中,端帽82,44的外尺寸沿长轴75是36.47cm(14.360英寸),沿短轴76是28.85cm(11.36英寸)。
本发明的空气过滤器组件设计成从比传统的空气过滤器组件大的速度进入的脏空气流中过滤细粒,而上述传统的空气过滤器组件采用圆柱形的过滤器元件和平面侧板型的外壳。本发明的一实施例提供了过滤脏空气而形成净化空气的方法。具体来说,进入的脏空气具有至少为每立方英寸空气中1格令的细粒污染物浓度,它通过一空气过滤器组件,最好具有非圆柱形过滤器元件。进入的脏空气的容量至少是550cfm(约为15.4m3/min),较佳地至少为600cfm(约为16.8m3/min),且最好至少为625cfm(约为17.5m3/min)。离开空气过滤器组件的净化空气的污染物浓度小于每立方英寸0.001格令。
实验运用计算机模型来比较侧壁板的形状,即,内部垂直加强筋对突出的侧板,以及圆柱形过滤器对非圆柱形过滤器。通过使用由Fluent公司(Lebanon,NewHampshire)销售的“计算机的流体动力学”(CFD)软件来建立模型,该软件是通常用来分析流体层流和湍流问题的程序。采用惠普(Hewlett-Packard)带有16个微处理器的V级计算机来建立模型。
CFD通过使用两个方程,由一体积(即,一域)来预测流动,两个方程为连续性方程,ρ1A1V1=ρ2A2V2=常数,其中ρ是流体密度,A是横截面积,V是流体速度;动量守恒方程,δ/δt(ρui)+δ/δxj(ρuiuj)=-δp/δxi+διij/δxj+ρgi+Fi,其中,p是静压,u是轴向速度,dιij是应力张量(分子速度的函数),ρgi是重量体力,Fi是外部体力。CFD还利用标准k-ε模型通过域来预测流动。标准k-ε模型是一半经验的模型,它基于针对湍流能(k)及其耗散率(ε)的模型传递方程。针对k的模型传递方程由精确方程导出,而针对ε的模型传递方程利用物理推导而得出。在针对本系统的k-ε模型推导中,假定流动是完全湍流的,且忽略分子粘度的作用。根据上述方程,速度,压力和域任何点上的湍流,可以预测流道。
各种模型(即,突出的侧板和平面的侧板,以及圆柱形过滤器和非圆柱形过滤器)可利用由Fluent公司提供的GAMBIT软件包来创立,上述软件设计来建立和网格化用于CFD的模型。每个模型应用16个过滤器元件以形成8排过滤器元件对;每个带有16个过滤器的模型采用1,457,024个Tet/Hybrid单元。所有的模型用标准ABR(耐磨损)的入口,其为18英寸(约45.7cm)直径的入口管道以及37英寸×20英寸(约94cm×51cm)的矩形出口来编程。在将模型从GAMBIT输出到Fluent之后,CFD中的结构如下

利用非圆柱形过滤器元件和9145cfm(约为256m3/min)的空气流,按如上所述建立两个模型。其中一个模型采用具有平面侧板的外壳,而另一个模型采用具有突出侧板的外壳。根据图5B,突出侧板的尺寸如下“a”10.4cm(41英寸),“c”16.7cm(6.6英寸)“d”8.6cm(3.4英寸),“e”6.4cm(2.5英寸),“f”66.0cm(26.0英寸)以及夹角“α”为14.2°。
模型显示,非圆柱形过滤器元件和具有突出侧板的外壳的结合,提供了一约为700英寸/分的空气速度,如与在具有垂直内部加强筋的外壳内的非圆柱形过滤器相比,该速度减小大约30%。
建立第三个模型来比较非圆柱形过滤器元件和在具有平面侧板的外壳内的圆柱形过滤器元件。圆柱形过滤器元件的模型具有总的系统空气流量为7315cfm(约为205m3/min),而非圆柱形元件系统具有总的系统空气流量为9145cfm(约为256m3/min)。模型计算结果显示,类似的速度场存在于带有圆柱形过滤器元件的空气过滤器组件的脏空气室内以及带有非圆柱形过滤器元件的空气过滤器组件的脏空气室内。通过带有非圆柱形过滤器元件的模型的空气容量比使用圆柱形过滤器元件的模型大25%。
然而,应该知道,在上述的描述中即使列出了本发明的许多特征和优点,以及本发明的结构和功能的细节,但这些公开仅是说明性的,在本发明的原理范围内,并在附后的权利要求书所表达的诸条款的广泛且一般的意义所指明的程度上,在细节上可作许多变化,特别是涉及零件的形状,大小和结构。
权利要求
1.一种空气过滤器组件包括(a)一外壳,它包括一空气入口,一空气出口,一将外壳分隔成过滤室和空气净化室的分隔壁;(i)外壳包括多个形成过滤室的侧壁,至少有一个侧壁具有非笔直的壁一第一壁部分和一第二壁部分,其间夹有一第一角;(ii)提供脏空气容量到空气过滤器组件的空气入口,该脏空气容量具有一空气流动方向;且(b)过滤器结构位于与分隔壁上的一空气流动小孔连通的空气流中,该过滤器结构包括一过滤器介质的延伸,介质形成了在空气净化室内的过滤器结构;该过滤器结构延伸入过滤室。
2.如权利要求1所述的空气过滤器组件,其特征在于,夹角为5至20度。
3.如权利要求2所述的空气过滤器组件,其特征在于,夹角约为14度。
4.如权利要求1至3中的任何一项权利要求所述的空气过滤器组件,其特征在于,过滤器结构是一圆柱形的过滤器结构。
5.如权利要求1至3中的任何一项权利要求所述的空气过滤器组件,其特征在于,过滤器结构是一非圆柱形的过滤器结构。
6.如权利要求5所述的空气过滤器组件,其特征在于,如平行于第一空气流动孔截取,则非圆柱形过滤器结构具有一横截面积;(i)非圆柱形过滤器结构在横截面积内具有一垂直于一短轴的长轴;且(ii)非圆柱形过滤器结构具有沿长轴的一宽度和沿短轴的一宽度,长轴宽度大于短轴宽度,长轴位于平行于空气的流动方向。
7.一种空气过滤器组件包括(a)一外壳,它包括一空气入口,一空气出口,一将外壳分隔成过滤室和空气净化室的分隔壁;(i)提供脏空气容量到空气过滤器组件的空气入口,该脏空气容量具有一空气流动方向;(b)过滤器结构位于与分隔壁上的一空气流动小孔连通的空气流中,该过滤器结构包括一过滤器介质的延伸,该介质位于近端帽和远端帽之间;过滤器介质,近端和远端帽限制了在净化空气室内的过滤器结构;(i)过滤器结构在净化空气室内的过滤器内定向在与分隔壁上的第一空气流动孔连通的空气流中;(ii)当平行于空气流动孔截取时,过滤器结构具有一横截面积,该横截面积具有一垂直于一短轴的长轴;且(iii)过滤器结构具有沿长轴的一宽度和沿短轴的一宽度,长轴宽度大于短轴宽度,长轴位于平行于空气的流动方向。
8.如权利要求6和7中的任何一项权利要求所述的空气过滤器组件,其特征在于,长轴对短轴的比的范围约在2∶1至1.1∶1。
9.如权利要求8所述的空气过滤器组件,其特征在于,短轴对长轴的比约为0.8。
10.如权利要求7至9中的任何一项权利要求所述的空气过滤器组件,其特征在于,外壳包括至少一个形成过滤室的平面侧壁。
11.如权利要求7至9中的任何一项权利要求所述的空气过滤器组件,其特征在于,外壳包括形成过滤室的多个侧壁,至少其中一个侧壁具有非笔直的壁,它包括一第一壁部分和一第二壁部分,其间夹有一第一夹角。
12.如权利要求1至11中的任何一项权利要求所述的空气过滤器组件,其特征在于,还包括一第二过滤器结构,它位于与分隔壁上的空气流动孔连通的空气流中;该过滤器结构包括一过滤器介质的延伸,介质形成了在空气净化室内的过滤器结构;该过滤器结构延伸入过滤室。
13.如权利要求1至5和11中的任何一项权利要求所述的空气过滤器组件,其特征在于,还包括一至少与一侧壁相对的第二侧壁,该第二侧壁具有一第一壁部分和一第二壁部分,其间有一第二夹角,过滤器结构和第二过滤器结构在至少一侧壁和第二侧壁之间互相平行地布置。
14.如权利要求13所述的空气过滤器组件,其特征在于,还包括一第三壁部分,第二壁部分和第三壁部分之间具有一第二夹角。
15.如权利要求14所述的空气过滤器组件,其特征在于,(i)第一壁部分平行于过滤器介质的延伸部分;(ii)第二壁部分与第一壁部分夹角约为5至20;且(iii)第三壁部分平行于过滤器介质的延伸部分。
16.如权利要求14所述的空气过滤器组件,其特征在于,还包括一介于第壁部分和过滤器介质的延伸部分之间的第一最小距离,以及一介于第三壁部分和过滤器介质的延伸部分之间的第二最小距离,第二最小距离大于第一最小距离。
17.如权利要求16所述的空气过滤器组件,其特征在于,第一最小距离约为10cm,第二最小距离约为17cm。
18.如权利要求17所述的空气过滤器组件,其特征在于,第一最小距离比第二最小距离约小5cm。
19.如权利要求1至28中的任何一项权利要求所述的空气过滤器组件,其特征在于,还包括一安装在分隔壁上第一空气流动孔中的文杜里管,且放置成突伸入净化空气室内的第一过滤器结构中。
20.一种净化空气的方法,它包括(a)将脏空气输入到如权利要求1至19中任何一项所述的过滤器组件中;(b)通过过滤器结构过滤脏空气;且(c)通过空气出口从过滤器组件的空气净化室接纳净化空气。
21.如权利要求20所述的方法,其特征在于,将脏空气输入到一过滤器组件的步骤包括(a)以一部分脏空气容量通过非笔直的壁的方式将脏空气输入到过滤器组件。
22.如权利要求20所述的方法,其特征在于,从净化空气室接纳净化空气的步骤包括(a)以一部分脏空气容量通过非笔直的壁的方式从净化空气室接纳净化空气。
23.如权利要求20所述的过滤脏空气的方法,提供一包括一过滤室的外壳(该过滤室具有不大于约6m3的容积)的步骤,该步骤包括提供一包括一过滤室的外壳,该过滤室具有一不大于约176立方英寸的容积。
全文摘要
本发明提供一种用来从进入的脏空气流中移走细粒物质的空气过滤器组件,该组件包括一外壳,它具有一入口,一出口,一脏空气室和一净化空气室以及一布置在脏空气室内的细长的过滤器元件,其构造成从进入的空气流中移走细粒物质。根据本发明的过滤器组件提供一在脏空气室内降低的空气流速度,而同时保持空气流容量。或者,根据本发明的过滤器组件提供一保持空气流速度的一增加的空气流容量。脏空气室具有的侧壁可以是平面的或带有一突出部分的非平面的。用于过滤器组件的过滤器元件可以是圆柱形的或非圆柱形的过滤器元件。
文档编号B01D46/00GK1438912SQ01812011
公开日2003年8月27日 申请日期2001年6月29日 优先权日2000年6月30日
发明者T·D·雷特尔, S·A·约翰逊, K·G·科斯米德尔 申请人:唐纳森公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1