使用低温冷凝的CO<sub>2</sub>回收方法

文档序号:5053451阅读:313来源:国知局
专利名称:使用低温冷凝的CO<sub>2</sub>回收方法
使用低温冷凝的CO2回收方法本发明涉及一种在包含至少一种比二氧化碳(X)2更具挥发性的化合物,例如甲烷 CH4、氧气O2、氩气Ar、氮气队、一氧化碳CO、氦气He和/或氢气吐的流体中俘获二氧化碳的方法。本发明可特别适用于由碳燃料如煤、烃类(天然气、燃料油、石油化学残留物等)、 家庭废料、生物质生产电和/或蒸汽的单元,而且还可适用于来自精炼装置、化工装置、炼钢装置或水泥装置的气体,处理来自生产井的天然气。它还可适用于来自用于加热建筑物的锅炉中的烟道气或甚至适用于来自交通工具的废气,更通常适用于产生含(X)2烟道气的任何工业方法。二氧化碳为温室气体。由于环境和/或经济原因,日益变得希望通过俘获0)2,然后,例如通过将(X)2储存在适当地质层中或通过实现它的自身资产价值而降低或甚至消除 CO2向大气中的排放。已知一定量的俘获二氧化碳的技术,例如基于用通过化学反应分离(X)2的化合物溶液洗涤流体的方法,例如使用MEA洗涤的方法。这些方法通常具有以下缺点-高能耗(与用于与(X)2反应的化合物的再生有关),-与二氧化碳反应的化合物的降解,-与二氧化碳反应的化合物的腐蚀。在低温冷凝,即冷却直至出现固体(X)2的领域中,可提及文献FR-A4820052,它公开了一种使(X)2通过反升华(anti-sublimation),即通过由气体凝固而不经由液态提取的方法。所需冷量借助制冷流体的分馏提供。该方法消耗大量能量。文献FR-A-2894838公开了相同类型的方法,其中将产生的部分液体(X)2再循环。 冷量可通过汽化LNG(液化天然气)而供应。该协同作用降低了该方法的特定能耗,然而尽管这样它还需要大量能量并需要LNG终端。文献US-A-3614872描述了一种分离方法,其中二氧化碳的绝热和等熵膨胀产生制冷流体。本发明的一个目的是提供一种从含有(X)2和至少一种比二氧化碳更具挥发性的化合物的流体俘获二氧化碳的改善方法。本发明首先涉及一种由含有CO2和至少一种比(X)2更具挥发性的化合物的工艺流体生产至少一种贫(X)2气体和一种或多种富(X)2主要流体并实施下列步骤的方法a)所述工艺流体通过热交换而不改变状态的第一冷却;b)至少部分在步骤a)中冷却的所述工艺流体的第二冷却以获得至少一种主要含有(X)2的固体和至少所述贫(X)2气体;和c)包括液化和/或升华至少部分所述固体并使其可获得所述一种或多种富(X)2主要流体的步骤;所述方法特征在于进行所述第一冷却和/或所述第二冷却所需的冷量至少部分由一个或多个各自包含至少一个气体准等熵膨胀(entente quasi isentropique d’ un gaz)的制冷循环而提供。
该工艺流体通常来自锅炉或产生烟道气的任何装置。这些烟道气可进行各种预处理,特别是为了除去NOx(氮的氧化物)、灰尘、SOx(硫的氧化物)和/或水。分离之前,工艺流体为单相,呈气态或液体形式,或者为多相的。“气态”形式是指 “基本气态”形式,也就是说它可特别含有灰尘、固体颗粒如烟灰和/或液滴。该工艺流体含有要将其与所述流体的其他组分通过低温冷凝分离的C02。这些其他组分包括一种或多种就冷凝而言比二氧化碳更具挥发性的化合物,例如甲烷CH4、氧气 O2、氩气Ar、氮气N2、一氧化碳CO、氦气He和/或氢气H2。该工艺流体通常主要包含氮气或主要包含CO或主要包含氢气。在步骤a)中,将该工艺流体首先冷却而不改变状态。该冷却可有利地至少部分通过与来自分离工艺的富CO2流体热交换而进行。此外或作为可选方案,它还可有利地至少部分通过与来自分离工艺的贫CO2气体热交换而进行。使来自分离工艺的这些冷流体加热, 而使该工艺流体冷却。这使得可减少冷却操作所需能量。步骤b)包括通过使工艺流体升高至(X)2三相点以下的温度,而工艺流体中(X)2分压在CO2三相点压力以下而固化初始气态co2。例如工艺流体的总压接近大气压力。该凝固操作有时已知为(X)2和通过扩展,工艺流体的“低温冷凝”或“反升华”。根据一个特定实施方案,在步骤a)中不凝固或不与固体(X)2结块在一起的工艺流体的所有组分仍呈气态。这些构成贫CO2气体。比(X)2更具挥发性的特定化合物不凝固并仍呈气态。与未凝固的(X)2 —起,这些将构成所述贫(X)2气体,即将构成包含小于50体积% CO2,优选小于10体积% CO2的所述气体。根据一个特定实施方案,所述贫CO2气体含有小于1体积%co2。根据另外的特定实施方案,它含有大于2% C02。根据另外的特定实施方案,它含有大于5% C02。形成的固体主要包含CO2,即含有至少90体积%,如果考虑到气态,优选含有至少95体积%,更优选还含有至少99体积% CO2。除了(X)2以外,该固体可包含其他化合物。例如可提及也可能已凝固的其他化合物,或含在所述固体块中的气泡和/或流体滴。这解释了该固体可如何潜在地不仅仅由固体CO2构成。该“固体”可含有非固体部分如流体夹杂物(滴、气泡等)。然后将该固体与低温冷凝后还未凝固的化合物分离并回收。接下来,在步骤C) 中,将其回到温度和压力条件以使其变为流体、液体和/或气态状态。然后至少部分所述固体可液化。然后这产生一种或多种富CO2初级流体。将这些流体描述为“初级(primaires),, 的以将它们与描述为“次级(secondaires)”处理流体区分。“富C02”是指在上文定义的含义内的“主要包含CO2”的某事物。本发明人证实使用一个或多个各自包含至少一个气体准等熵膨胀的制冷循环进行工艺流体的第一冷却和/或第二冷却是特别有利的。这些制冷循环由几个步骤构成,其引起所谓的“工作”流体经由几个特征在于给定的组成、温度、压力等条件的物理状态通过。 在该循环的各步骤中存在至少一个准等熵膨胀,即引起膨胀流体的熵增加小于25%,优选小于15%,更优选还小于10%的膨胀,使得可改善该分离工艺的能耗。按照惯例,认为在 OK(开尔文)的温度下熵为0。根据各种情况,本发明方法可包含一个或多个下列特征-各自包含至少一个准等熵膨胀的所述制冷循环采用选自如下流体的工作流体
-含有氮气和/或氩气和/或各空气气体混合物的辅助流体;-包含所有或部分所述贫(X)2气体或由所有或部分所述贫(X)2气体得到的流体;和 /或-包含所有或部分所述工艺流体或由所有或部分所述工艺流体得到的流体。-进行所述第二冷却所需的冷量至少部分通过与下列流体交换而供应-各自包含至少一个准等熵膨胀的所述制冷循环之一的工作流体;-含有氮气和/或氩气和/或各空气气体混合物的辅助流体;-含有所有或部分所述贫(X)2气体或由所有或部分所述贫(X)2气体得到的流体;和 /或-含有所有或部分所述工艺流体或由所有或部分所述工艺流体得到的流体。-进行所述第二冷却所需的冷量至少部分由直接交换而供应。-至少一个各自包含至少一个准等熵膨胀的所述制冷循环采用所有或部分所述工艺流体作为工作流体。-至少一个各自包含至少一个准等熵膨胀的所述制冷循环包含至少一个提供外功的准等熵膨胀。-该方法进一步包括通过冷压和/或通过与辅助流体热交换加热至少一种所述富 CO2初级流体和/或所述贫(X)2气体的步骤d)。-至少一个各自包含至少一个准等熵膨胀的所述制冷循环的所述准等熵膨胀包括一个或多个如下步骤-使该工艺流体绕着基本平行于所述工艺流体流动方向的轴旋转;-提高该工艺流体的速度;-使用离心效应从该工艺流体中分离固体(X)2;-使变得贫(X)2的气体减速。-在步骤b)中,使在步骤a)中冷却的所述工艺流体至少部分以使得进一步得到主要包含(X)2的液体的方式冷却。-所述工艺流体来自工业烟道气。-所述工艺流体来自炼钢装置。-所述工艺流体至少部分来自高炉。-使所述贫(X)2气体至少部分再循环到所述高炉。-所述工艺流体至少部分来自精炼装置和/或化工装置。-所述工艺流体至少部分来自给定碳燃料的气化和/或部分氧化和/或氧重整。-所述工艺流体来自包含空气分离单元的装置。-至少一个各自包含至少一个气体准等熵膨胀的所述制冷循环的所述准等熵膨胀在所述空气分离单元中进行。-进行所述第一冷却和/或所述第二冷却所需的冷量部分由至少一个包含非准等熵膨胀的流体膨胀的制冷循环而提供。-所述至少一个提供外功的准等熵膨胀提供至少部分用于压缩所述生产方法的流体的功。为了提供进行所述第一冷却和/或所述第二冷却所需冷量的另一部分,来源可能必须为一个或多个包含非准等熵膨胀的流体膨胀的循环,例如逆向兰金循环。这些循环被称为逆向,因为它们用作制冷循环。作为采用准等熵膨胀的制冷循环的补充,它们的益处是它们不需要大量工作流体。相反,它们较少能效。根据一个实施方案,制冷循环的准等熵膨胀的部分提供功。它们例如通过将工作流体引入汽轮机而进行。该工作流体可具有各种种类。根据各实施方案,这些流体可包含氮气和/或氩气。 它们还可包含所有或部分所得贫(X)2气体或工艺流体。这些流体可与其他流体混合或进行压缩、膨胀等的中间步骤。如果制冷循环的工作流体包含所有或部分工艺流体,则不提供外功的准等熵膨胀可引起工作流体冷却使得固体CO2出现。这可构成工艺流体的所有或部分的第二冷却。根据一个特定实施方案,这些准等熵膨胀通过文丘里管(具有文丘里效应的喉管)进行。上述使流体旋转可通过任意常规方式,例如通过合适的定向叶片而实现。速度的增加通过文丘里效应实现。工作流体的温度降低。CO2固体颗粒出现。流体绕着基本平行于流动方向的轴如螺旋拔木塞旋转移动。这形成离心效应,使这些固体颗粒可在料流的外围回收。根据优选实施方案,可由准等熵膨胀产生的任意功部分用于压缩该方法的其他步骤中流体。本发明还涉及适用于工业烟道气以俘获(X)2的方法。根据一个特定实施方案,这些烟道气来自产生能量(蒸汽,电)的装置并可已经进行预处理。参考附图阅读以下所给说明,其他细节和优点将变得显而易见-

图1示意性描绘了采用本发明提纯CO2的方法的装置,其中制冷循环采用辅助流体作为工作流体。-图2示意性描绘了采用该方法的替换形式的装置的一部分,其中制冷循环使用贫(X)2气体作为工作流体并包含产生功的准等熵膨胀。-图3示意性描绘了采用该方法的另一替换形式的装置的一部分,其中制冷循环使用贫(X)2气体作为工作流体并包含产生功的准等熵膨胀。-图4示意性描绘了采用该方法的替换形式的装置的一部分,其中制冷循环使用工艺流体作为工作流体并包含产生功的准等熵膨胀,在此过程中不低温冷凝co2。-图5示意性描绘了采用该方法的替换形式的装置的一部分,其中制冷循环使用工艺流体作为工作流体并包含产生功的准等熵膨胀,在此过程中低温冷凝C02。-图6示意性描绘了采用该方法的替换形式的装置的一部分,其中制冷循环使用工艺流体作为工作流体并包含不产生功的准等熵膨胀,在此过程中低温冷凝co2。-图7示意性描绘了采用该方法的替换形式的装置的一部分,其中第二冷却还包括液化且进一步包含使用工艺流体作为工作流体并包含不产生功的准等熵膨胀且在此膨胀过程中低温冷凝(X)2的制冷循环。-图8示意性描绘了本发明方法在基于煤在空气中燃烧而发电的装置中的用途。-图9示意性描绘了本发明方法在基于煤混杂燃烧或在氧气中燃烧而发电的装置中的用途。
-图10示意性描绘了本发明方法在炼钢装置中的用途。-图11示意性描绘了本发明方法在含氧下运行的生产合成气的装置中的用途。-图12示意性描绘了本发明方法在由来自合成气的蒸气重整的合成气生产一氧化碳的装置中的用途。-图13示意性描绘了本发明方法的用途,其具有一方面使用固体CO2熔融的冷量产生能量的循环,和另一方面通过蒸馏比(X)2更低挥发性的化合物,然后蒸馏比(X)2更具挥发性的化合物而进行的另外提纯。-图14和15描绘了根据本发明进行工艺流体的准等熵膨胀且产生外功的汽轮机。图1所示的装置实施如下所述的步骤。将由烟道气构成的流体对在压缩机101中压缩,特别是为补偿在该装置的各设备器件中的压力损失。注意到该压缩也可与已知作为产生烟道气的锅炉的牵引压缩的压缩组合。它还可在该方法的其他步骤之间进行,或在(X)2分离方法的下游进行;将压缩流体30注入过滤器103以消除颗粒降低至lmg/m3以下,优选100 μ g/m3以下的浓度水平。接下来,使无尘流体32冷却至接近0°C的温度,通常为0-10°C,从而冷凝它含有的水蒸气。该冷却在塔105中进行,其中水分两级,冷却水36和温度接近环境温度的水34注入。还可构造为间接接触。该塔105可具有或不具有填料。将流体38送至消除残留水蒸气的单元107,例如使用以下方法的一种和/或另一种-在固定床、流化床和/或旋转干燥器上吸附,其中吸附剂可为活性氧化铝、硅胶或分子筛(3Α、4Α、5Α、13Χ· · ·);-在直接接触或间接接触的交换器中冷凝。然后,将干燥流体40引入交换器109,其中使流体冷却至接近,但在所有情况下高于(X)2凝固温度的温度。该温度可通过熟悉工艺流体40的压力和组成的本领域熟练技术人员确定。如果工艺流体的CO2含量为约15体积%且压力接近大气压力,则该温度为约-100°C左右。然后,将已经进行第一冷却109的流体42引入容器111,在其中继续冷却至提供 CO2俘获所需水平的温度。低温冷凝至少部分含在流体42中的(X)2 —方面产生贫(X)2气体 44,另一方面产生主要包含CO2的固体62。气体44以约-120°C的温度离开容器111。选择该温度作为(X)2俘获的目标水平的函数。在该温度下,气体44的(X)2含量为约1. 5体积%, 即由含有15% CO2的工艺流体开始的俘获水平为90%。有许多中技术可用于该容器111 中-将在其中固体(X)2以二氧化碳雪花的形式产生的连续固体低温冷凝交换器例如使用螺杆提取并加压以将其引入液体CO2浴121中,在其中获得高于CO2H相点压力的压力。该加压也可在庞大容器系统中分批进行。连续固体低温冷凝本身可以以各种方式进行-刮面交换器,其中刮板例如呈螺杆形式以促进固体的提取;-流化床交换器,从而携带二氧化碳雪花一起并使用例如具有大于二氧化碳雪花的密度的颗粒清理各管;
-交换器,在其中固体通过振动、超声、气力或热作用(间歇加热从而使二氧化碳雪花降落)提取;-在光滑表面上聚集,周期性“自然”落入罐中;-分批固体低温冷凝在这种情况中,平行的几个交换器可交替使用。然后将它们分离,加压至高于(X)2三相点压力的压力,从而使固体(X)2液化并可能部分汽化。然后,将流体46在交换器109中加热。随着它离开,也可将流体48特别用于再生用于消除残留蒸气的单元107和/或用于通过蒸发在直接接触塔115产生冷却水的单元 36,在其中引入干燥流体50,然后用水饱和,使其部分汽化。然后潜在地,冷却水可在制冷单元119中进行另外的冷却。将主要包含(X)2的固体62转移至液体CO2浴121。该浴121需要加热从而保留液体以补偿来自固体62的另外冷量(熔化潜热和显热)。这可以以各种方式进行-通过与较热流体72热交换。来自流体74的冷能量可在该方法的别处使用,-通过直接交换,例如通过放出来自浴121的流体80,将其在交换器109中加热, 并将其再注回浴121。将主要包含CO2的液体64从浴121放出。将该液体分为三股料流。在各实例中, 第一股通过膨胀65至5. 5巴(绝对)产生双相、气-液的流体66获得。第二股,68,通过压缩67,例如至10巴获得。将第三股,70,压缩例如至55巴。该5. 5巴水平提供了处于接近CO2三相点温度的温度的冷量。该10巴水平使在约_40°C下流体68的蒸发潜热转移。 最后,在55巴下,流体70不在交换109过程中汽化。有效使用在交换109过程中含在流体 64中的冷能量,而同时限制产生CO2的提纯和压缩料流5所需的能量。第一冷却109和第二冷却111所需冷量的一部分由采用为氩气的工作流体51的制冷循环200提供。它依次包含压缩129,可能的两个压缩56和57,由间接交换109冷却,引起冷却的准等熵膨胀131,在容器111中加热和加热109。在冷却109过程中,放出一部分工作流体,然后进行准等熵膨胀130,随后间接交换109,最后为在达到压缩阶段1 之前的压缩128。准等熵膨胀130和131提供功,它的一部分可用于压缩56和57。该循环200产生用于低温冷凝111的约-100°C至_120°C的冷量和用于补充交换 109过程中冷量缺乏的约5°C和-100°C的冷量。第一冷却109所需冷量的另一部分由另外制冷循环181、183提供,例如为逆向兰
金类型。第二冷却111所需冷量的另一部分由另外制冷循环191、193提供,例如为逆向兰
金类型。间接交换109之后,将富0)2初级流体66、68、70在阶段141、142、143中压缩。例如,第一阶段压缩气态料流。如果需要,将压缩的C027 5通过间接-接触交换器冷却而使其转化为液体形式。然后,使它与料流73混合。将该液体混合物泵压至运输压力(流体5)。 由于该运输压力通常为超临界,通过扩展,超临界流体将认为是处于(X)2临界点以下温度的液体。图2-7描绘了根据本发明特定实施方案的实例,没描绘在其第一冷却109之前施用于工艺流体40的步骤,也没描绘在热交换109之后富(X)2初级流体的压缩。它们仅描述了与图1相比的变化,基本与为交换109和111提供冷量的制冷循环有关。图2显示了产生功的准等熵膨胀的替换形式,在其中工作流体为贫CO2气体44。低温冷凝方法与图1相同。以下仅详细描述变化。例如通过多阶段压缩机315,压缩贫CO2气体44。离开时,如果需要,将流体303通过交换器316冷却至交换器109的入口温度。这可为直接接触或间接接触交换器。将压缩的贫(X)2气体304在交换器109中冷却使得它可在汽轮机312中膨胀(准等熵膨胀)从而提供交换111所需部分冷量。使离开交换器111的流体307再次膨胀(准等熵膨胀)以经由流体308为交换器111提供功和冷量。贫CO2气体在其中膨胀的该回路可按需重复多次。在交换器111之后,将贫CO2气体46在交换器109中加热。如图1中的流体48处理流出的流体48。交换器111所需冷量部分可由兰金类型的制冷循环191、193供应。图3显示了产生功的准等熵膨胀的另一替换形式。贫(X)2气体44在交换器111和109中放出冷能量。然后通过多阶段压缩机415使它压缩。接下来,如果需要,在交换器416中将它冷却至交换器109的入口温度。这可为直接接触或间接接触交换器。将贫(X)2气体404在交换器109中再次冷却,然后使它通过汽轮机412膨胀。该准等熵汽轮机产生补偿交换器111中缺乏冷能量的一部分所需的冷量。接下来,使流体407通过准等熵汽轮机414再次膨胀。流体408放出其冷能量以补偿交换器111中缺乏冷能量的一部分。贫CO2气体在其中膨胀的该回路可按需重复多次。在交换器111之后,将贫CO2气体46在交换器109中加热。最后,如图1中的流体48处理流出的流体48。图4显示了产生功的准等熵膨胀的另一替换形式。使工艺流体40在可为多阶段压缩机的压缩机512中压缩。使贫(X)2气体在准等熵汽轮机514中膨胀。流体503的温度必须保持在(X)2低温冷凝温度以上。然后,含在流体503中的CO2的一部分在容器111中冷凝。使固体C0262倾于液体浴121中且接下来的步骤与图1所述那些(从浴121和料流64向前)相同。贫(X)2气体 44将它的冷能量传递给交换器111和109。如图1中的流体48处理流出的流体48。图5显示了产生功的准等熵膨胀的另一替换形式,在其中工作流体为工艺流体。对于流体42,产生功的准等熵膨胀在汽轮机612中进行从而将该流体冷却至CO2 低温冷凝温度以下的温度,由此产生呈二氧化碳雪花形式的固体ω2与贫(X)2气体602。该膨胀汽轮机612需要十分小心地设计。它必须适合高流动速度如工业装置的烟道气40的那些,具有非常良好的等熵效率且耐受由于存在固体(X)2而潜在的另外侵蚀。为此,可使二氧化碳雪花存在于汽轮机的转子部件(图14和15中含在前沿951和尾沿%4之间的区域)中并在转子上游的定子部件960(含在定子叶片950的尾沿上游的区域)中禁止或最小化从而特别是不引起转子部件的叶片952前沿的侵蚀。为了区分,优选在定子部件中CO2呈蒸气或过饱和蒸气状态或优选它具有足够小(水力直径小于10 μ m,优选1 μ m) 的二氧化碳雪花核以避免侵蚀转子部件。该汽轮机可为径向汽轮机(向心或离心)。它可为超声冲击波汽轮机。它可为轴向的。后提到的技术最适合高流动速度,但是确实需要许多连续的定子和转子段。为了避免侵蚀,优选在流体进入下一个定子段之前将二氧化碳雪花从各个定子段的下游分离出。首先提到的两种技术具有有效保持高膨胀率(大于10)的优点,由此使得其可避免必须进行许多分离操作。此外,优选必须采取其他预防措施从而形成该汽轮机-需要最小化异向成核(在定子和转子表面),例如通过加热这些表面的一部分或通过施加特定的涂层;-成核需要通过在它们进入汽轮机之前消除比CO2更低挥发性的化合物(包括固体颗粒)延迟,从而它们不形成核促进固体(X)2的成核;-需要通过使用较强的金属如钛或通过使用特定涂层或表面处理而提高表面的耐侵蚀性;-在向心径向汽轮机的情况下,优选清扫气体通过叶轮953背部。该气体与膨胀的气体在定子部件(叶片)和转子部件(叶轮)之间的界面混合,由此避免了固体在叶轮后侧的形成和积累。然后,在分离器612中将该二氧化碳雪花从贫(X)2气体中分离而得到主要包含CO2 的固体62和贫CO2气体44。该分离可在转子部件的下游通过使转子部件中的流体旋转并通过使用离心效应而将处于外围的富CO2级分与处于中心的贫(X)2级分分离而进行。还可有利地提高速度,并由此在会聚喷嘴956(已知为Laval汽轮机的汽轮机)中实现该流体的另外膨胀。通过在使气体减速之前降低压力可提高凝固的CO2的量。大多数贫(X)2气体在料流959的中心回收且大部分固体(X)2在外围958回收,混入气体级分中。用于进行固体低温冷凝的汽轮机的益处是与间接交换系统相比可以以非常小的体积产生大量的固体co2。如果需要,为兰金类型或包括工作流体的产生或不产生功的准等熵膨胀的另外制冷循环191、193为分离器612提供冷能量。将主要包含(X)2的固体62倾于液体浴121中且接下来的步骤与图1中所述的那些相同。使贫(X)2气体44通过与工艺流体在交换器109中热交换而加热。然后,将流体605 压缩至大于或等于大气压力的压力。最后,如图1处理流出的流体48。图6显示了具有不产生功的准等熵膨胀的一个实施方案。仍使工艺流体42在容器111中冷却至(X)2低温冷凝温度以下从而产生冷却的贫 CO2气体701。该容器还可位于该方法的“膨胀/文丘里”部分702之后,并现在将进行描述。部分待俘获的CO2以主要包含CO2的固体62形式固化且由容器111中提取。为了改进(X)2的俘获,使用固定叶片717的系统使流体701绕着基本平行于它流动方向的轴旋转。使流体703随着它离开叶片和冷却至(X)2低温冷凝温度以下而膨胀且不产生功。 该膨胀可通过文丘里效应通过使流体通过节流(restriction) 718而进行。主要包含CO2的固体颗粒形成且由于通过流体旋转而引起的离心效应而在料流的外围回收。
回收主要包含(X)2的固体和气体的混合物705。流出的不凝性气体44、46在交换器111和109中放出它们的冷能量。料流705主要由固体构成,但是它可能需要在分离器731中将残留气体与固体分离。然后,不凝性部分在交换器111和109中放出它们的冷能量。将主要包含(X)2的固体62倾入液体浴121并进行与图1中所述那些相同的步骤。以与图1中料流50相同的方式将料流48用于冷却水。图7显示了具有不产生功的准等熵膨胀的另一实施方案。工艺流体40处于压力下例如高达60巴(通过压缩机101或通过另外压缩机进行压缩)的压力下。潜在地,它可比其他实例的CO2浓度大,通常含有50-90体积%。交换809包含与图1中交换109相同的特征。交换器811使工艺流体42冷却至 CO2液化温度以下的温度。由此出现了冷却的工艺流体801,将其送至分离器812。将富CO2液体816通过分离器812提取。通过固定叶片817的系统使残余流体802 绕着基本平行于它流动方向的轴旋转。随着它离开803叶片(已旋转并冷却至(X)2低温冷凝温度以下)而膨胀且不产生功。该膨胀可通过文丘里效应通过使流体通过节流818而进行。主要包含(X)2的固体颗粒形成且由于通过流体旋转而引起的离心效应而将其在料流的外围回收。料流805主要由固体构成,但是可能需要在分离器841中将残余气体与固体分离。不凝性物44在交换器811和809中放出它们的冷能量。为了改善CO2的俘获水平,可增加流体806在其中进行具有文丘里效应的准等熵膨胀的第二(或甚至第三或更多个)步骤。该步骤与之前那个相同-使用固定叶片系统807使流体806绕着基本平行于它流动方向的轴旋转;-使它旋转之后,使离开叶片808的流体膨胀以将其冷却至CO2低温冷凝温度以下且不产生功。该膨胀可通过文丘里效应通过使流体通过节流822而进行。将在分离器841和可能的851的出口回收的主要包含CO2的固体62倾入液体浴 121中并如图1处理。以与图1中料流50相同的方式将料流48用于冷却水。图8描绘了由煤发电的装置,其采用各种单元4、5、6和7以提纯烟道气19。初级空气流15通过单元3,使煤15在其中粉碎并一起携带至锅炉1的燃烧器。将次级空气流16直接用于燃烧器从而为煤几乎完全燃烧提供所需的另外氧气。将进料水17 送至锅炉1以产生蒸汽18,其在叶轮机中膨胀。将由燃烧所得并包含氮气、CO2、水蒸气和其他杂质的烟道气19进行各种处理以除去部分所述杂质。单元4除去NOx,例如通过在氨存在下催化。单元5除去灰尘,例如使用静电过滤器,并且单元6为用于除去和/或SO3的脱硫系统。取决于所需产物的组成, 单元4和6可为多余的。然后将来自单元6(或5,如果6不存在的话)的提纯料流24送至低温的低温冷凝提纯单元7以产生较纯的(X)2料流沈和富氮残留料流25。该单元7还已知为(X)2俘获单元并实施构成本发明主题的方法,如例如图1-7所示。图9描绘了由煤发电的装置,其采用各种单元5和7以提纯烟道气19。初级空气流15通过单元3,其中使煤15粉碎并携带至锅炉1的燃烧器。将氧化剂16的次级料流直接供应给燃烧器从而为煤的几乎完全燃烧提供所需的另外氧。该次级氧化剂为使用鼓风机91再循环的烟道气94与由用于分离各空气气体的单元10产生的氧气90混合的结果。将进料水17送至锅炉1以产生蒸汽18,其在汽轮机8中膨胀。使来自煤燃烧且包含氮气、CO2、水蒸气和其他杂质的烟道气19进行各种处理以除去部分所述杂质。单元5(ESP)除去灰尘,例如使用静电过滤器。将来自单元5的无尘料流 24送至低温的低温冷凝提纯单元7以产生较纯(X)2料流沈和富氮残余料流25。该单元7 还已知为(X)2俘获单元并进行构成本发明主题的方法,如例如图1-7所示。此时,用于分离各空气气体的单元的存在用于为单元7中的(X)2固体低温冷凝提供低水平冷量并进行低温冷凝,优选通过直接与工艺气体交换。流体93可呈液体、气态或两相形式且由冷却的各空气气体混合物构成。例如这可为冷气态氮气或空气(在_56°C 和-196°C之间),或液体氮气或空气。它将要引入图1-4和图6中标记为111,图5中标记为612,图6中标记为731以及图7中标记为841、851的容器。单元7还可产生流体92,其用于分离各空气气体的单元。这可例如为离开图1-4 和图6中的容器111,图5中的容器612,图7中的容器731以及图8中的容器841、851的贫气级分。该贫气在大于由单元10通过流体9提供的温度水平下以某种方式将冷量归还给单元10。这对于流体93的注入流动速度随温度变化是有利的。例如液体氮可在夜晚产生和储存,当能量可用且廉价时,液体氮此时可在白天注入从而降低能耗。在其中由单元 10(例如液体氮)产生冷量的时间与将其用于单元7的时间分开。在这种情况下,气体准等熵膨胀可在单元10而不是单元7中进行。可证明该方案非常适合许多情况,其中修改了现存的装置,其中可证明再循环烟道气和氧气的混合物取代送至煤粉碎器的初级空气是复杂的,部分是因为水含量增加,烟道气含有比湿空气大得多的水,且部分是由于安全原因,但是不应估计过高。此外,可证明将单元7和10组合为单个单元,特别是通过在两个单元的流体之间进行一次(或多次)热交换是有利的。图10示意性描绘了本发明方法在炼钢装置中的用途。用于分离各空气气体的单元10为高炉900供应氧气90,还在其中引入铁矿901和碳产品902(煤和焦炭)。在这种情况下,高炉在极少氮气存在下操作。由例如47% CO, 36% CO2,8% N2以及9%其他化合物如H2和H2O构成的高炉气体 903可分为两股。大部分905送至(X)2俘获单元,而另一部分904用于降低回路中的氮气浓度。事先在直接接触交换器906中将流体905冷却,在过滤器103中除尘,然后通过压缩机 901压缩,在交换器105中冷却并在干燥器107中干燥,然后进入低温交换器109,将它在其中冷却,然后部分液化为接近(X)2三相点的温度且不形成固体。将所得两相气-液流体912 在分离器9 中分离为气态级分502和液体级分920。然后,将气态级分502通过准等熵膨胀而冷却,例如在汽轮机514中,从而得到两相气-固流体503。这在容器111中分离为气态级分44和富(X)2固体级分62。将固体级分62压缩,例如通过蜗杆,并在浴121中与液体 920混合,其通过由在交换器109中汽化液体74而产生的气体72加热。将液体C0264通过泵69压缩以获得加压液体70并在交换器109中加热且不进行汽化或假汽化(如果压力在超临界压力以上)。将贫气通过压缩机315和交换器109而连续加热。本发明还可适合在富含空气上操作的高炉类型,例如通过增加使用低温蒸馏,冷却气体44至所需温度的C0/N2分离。图11示意性描绘了本发明方法在由含氧工艺(部分氧化、气化、自动热重整等)生产合成气的装置中的用途。用于分离各空气气体的单元10将氧气90供应至反应器900, 在其中引入碳产品902 (煤、天然气、生物质、家庭废料等)。合成气903主要包含化合物CO、CO2, H2和H20。CO可在水蒸气存在下转化(在所谓的转移反应中)为(X)2和H2 :C0+H20<->C02+H2。流体905可能在过滤器103中除尘,然后由压缩机101压缩,在交换器105中冷却并在干燥器107中干燥,然后进入低温交换器109, 其中将它在接近(X)2三相点的温度下部分液化。将两相气-液流体912在分离器928中分离为气态级分502和液体级分920。然后,将气态级分502通过准等熵膨胀而冷却,例如在汽轮机514中,从而得到两相气-固料流503。这在容器111中分离为气态级分44和富(X)2 固体级分62。将固体级分62在浴121中与液体920混合,将其用由在交换器109中汽化液体72而产生的气体74加热。将液体C0264通过泵压缩并在交换器109中加热且不进行汽化或假汽化(如果压力在超临界压力以上)。将贫气44经由压缩机拟4和交换器109而连续加热。可将基本由氢气构成的贫气送至气体汽轮机燃烧且不放出C02。单元10可供应热氮气90a (其在干燥器910的下游引入)和/或直接引入容器111中以增加俘获(X)2量的冷氮气90b。在第一情况下,存在于料流502中的热氮气在汽轮机514中的膨胀为(X)2在汽轮机514中的固体低温冷凝提供了另外冷能量;在第二情况下,冷氮气90b,通过在与流体 503接触时加热,导致CO2固体低温冷凝。热氮气90a的其他益处是它增加了气体502的分子量,其可证明有利地降低了膨胀514和/或压缩924的成本。实际上发生的是当这些气体十分富含氢气时,使用最适于高流动速度的技术,即轴向、径向或超声冲击波类型的技术不易压缩/膨胀这些气体。然后,变得必须使用正位移类型的技术,例如使用活塞或螺杆, 其的实现非常昂贵。图12示意性描绘了本发明方法在由蒸气重整生产合成气的装置中的用途。将碳产品902(天然气、甲醇、石脑油等)引入反应器900中。在反应器900中产生的合成气903主要包含化合物CO、CO2A2和H20。潜在地,流体905可由压缩机101压缩,在交换器105中冷却并在干燥器107中干燥,然后进入低温交换器109,在其中将它在接近(X)2三相点的温度下部分液化。将所得两相气-液流体912在分离器928中分离为气态级分502和液体级分920。然后,将气态级分502通过准等熵膨胀而冷却,例如在汽轮机514中,从而得到两相气-固混合物503。这在容器111中分离为气态级分44和富(X)2固体级分62。将固体级分62在浴121中与液体920混合,将其用由在交换器109中汽化液体72而产生的气体74加热。将液体C0264通过泵压缩并在交换器 109中加热且不进行汽化或假汽化(如果压力在超临界压力以上)。然后可将贫气44就CO2 而言在低温下提纯,例如通过使用分子筛12X吸附,然后引入低温单元924以产生CO。该单元例如通过甲烷洗涤或CO部分冷凝而操作。该单元拟4产生富氢气体9 和富CO气体 925。该单元的一种或多种流体可在低温下压缩,然后再引入热交换器926中。此时,固体低温冷凝代替了通过用胺(MDEA或MEA)吸收而消除C02。如果需要产生纯氢,则可将&PSA在该固体低温冷凝提纯的上游,即在重整装置900出口侧在合成气冷却之后,或在富吐气体9 上加入该方案。可假定这些固体低温冷凝方法缺乏冷量。实际上,根本不是这种情况。相反,具有工艺气体准等熵膨胀的这些固体低温冷凝方法产生过量冷量,尤其是如果该方法还提供外功。此时该问题在于富0)2流体和贫CO2气体以低温放出,其为可评估的能量损失。为了使该方法的能耗最小化,可进行一个或多个如下操作-内部:〇冷压缩低温冷凝方法的以下流体之一■压缩之前冷却至低温的工艺气体;■在低温下压缩(参见图幻的贫CO2气体。然后,可使它再次膨胀或在真空下压缩以使它回到大气压力或它可在它已经在产生工艺气体的方法的热部分中加热之后膨胀;〇在交换器中间接固体低温冷凝;-外部〇冷压缩该装置的任意流体;〇产生液体氮和/或液体空气;〇CO2上的跨临界兰金循环。图13示意性描绘了本发明方法在进行CO2上的跨临界兰金循环中的用途。它还包括如下的方法特征其中依次进行液体低温冷凝和然后的固体低温冷凝且其中产生的CO2 纯度使用两个蒸馏塔改善(其中一个消除比(X)2更低挥发性的化合物(NO2或队04,SO2等) 且另一个消除更具挥发性的化合物)。流体M由烟道气构成并可处于约150°C的温度且注入过滤器103以除去颗粒降低至lmg/m3以下,优选100μ g/m3以下的浓度水平。使无尘流体30冷却至接近0°C的温度,通常为0-10°C,从而冷凝它含有的水蒸气。 该冷却在塔10 中进行,其中水分两级,冷水36b和温度接近环境空气的湿球温度的水34b 注入。还可构造为间接接触。该塔105可具有或不具有填料。该塔还可用作SO2洗涤塔。离开该第一塔时,该可能已经去饱和的流体在压缩机101中压缩至5-50巴(绝对)的压力。使流体32冷却至接近0°C的温度,通常为0-10°C,从而冷凝它含有的水蒸气。 该冷却在塔105中进行,其中水分两级,冷水36和温度接近环境空气的湿球温度的水34注入。还可构造为间接接触。该塔105可具有或不具有填料。将流体38送至消除残留水蒸气的单元107,例如使用以下方法中一种和/或另一种-在固定床、流化床和/或旋转干燥器上吸附,其中该吸附剂可为活性氧化铝、硅胶或分子筛(3A、4A、5A、13X等);-在直接接触或间接接触的交换器中冷凝。将工艺流体40冷却,然后在蒸馏塔79中与纯CO2接触从而以含(X)2的液体形式回收比(X)2更低挥发性的化合物,例如NO2(或它的二聚体N2O4)。该液体可泵压并在单元78中汽化,然后送至燃烧室以减少NO2或送至通过低压洗涤而提纯料流30的单元,其中它作为试剂直接以NO2形式或以与水反应的硝酸形式起作用。然后,使工艺流体7 冷却并部分冷凝为液体形式且送至分离器76。将液体级分 76a送至浴121中。将气态级分76b送至膨胀汽轮机从而在其中产生气-固两相料流42, 然后将其送至容器111,在其中它分离为贫CO2气体44和固体C0262。潜在地,辅助流体93, 例如来自各空气气体分离单元,可为固体低温冷凝供应另外冷量。当确实如此时,可有利地由贫(X)2气体44放出流体92,其回到供应流体93的单元。压缩固体62 (例如通过蜗杆) 并将其注入液体(X)2的浴121,由其放出液体64。潜在地,该液体可泵压并引入蒸馏塔75,在其中消除了它的比CO2更具挥发性的化合物。将纯液体68加热且不汽化或假汽化(如果它为超临界的)。可将其再次泵压而获得易于运输的流体5。流体5的一部分可放出以在单元72中汽化或假汽化。该单元72例如为任何产生该工艺流体的装置的任意热源。然后,将该流体80的部分在所用汽轮机73中膨胀以产生电或机械功率,然后在交换器109中冷却且通过在浴121中直接交换而冷凝,同时融化固体C02。在离开交换器109时,流体48仍可特别用于再生除去残留蒸气107和/或通过在直接接触塔115中蒸发而生产冷水36a的单元,在其中将干燥流体50引入并用于水变饱和,使其部分汽化。潜在地,冷水可在制冷单元119中进行另外冷却。此后,该冷水可在压缩之前和/或之后在塔105和10 中一个和/或另一个中用于冷却工艺气体。图14和15描绘了根据本发明进行工艺流体的准等熵膨胀且产生外功的汽轮机。 上游定子部件960由蜗壳(没有描绘)开始,然后是可为固定或可变的叶片950。接下来是转子部件960,其例如包含叶片952,该叶片952具有转子部件960开始处的前沿951和结束处的尾沿954。在转子部件的下游,如果在固体部件上不使用离心力,则转子部件可由简单的减速维(deceleration cone)构成。如果下游定子部件961要用于实现第一分离,则已经使流体在转子部件中旋转的事实和离心效应可用于分离处于外围的富(X)2级分与处于中心的贫(X)2级分。还可能有利地是提高速度,由此在会聚喷嘴956(所谓的“Laval”汽轮机)中进行流体的另外膨胀。通过在使气体减速之前降低压力可提高固化(X)2的量。将大多数贫CO2气体在料流959的中心回收并且大多数固体(X)2在外围958与回收,混入气体级分中。
权利要求
1.一种由含有CO2和至少一种比CO2更具挥发性的化合物的工艺流体GO)生产至少一种贫CO2气体04)和一种或多种富CO2初级流体(66、68、70)的方法,其实施a)所述工艺流体GO)通过热交换而不改变状态的第一冷却(109);b)至少部分在步骤a)中冷却的所述工艺流体0 的第二冷却(111)以获得至少一种主要含有(X)2的固体(62)和至少所述贫CO2气体04);和c)包括液化和/或升华至少部分所述固体(6 并使其可获得所述一种或多种富CO2 初级流体(66,68,70)的步骤;所述方法的特征在于进行所述第一冷却(109)和/或所述第二冷却(111)所需的冷量至少部分由一个或多个各自包含至少一个气体准等熵膨胀(130、131、612)的制冷循环 (200)而供应。
2.如权利要求1所述的方法,其特征在于各自包含至少一个准等熵膨胀(130、131、 312、314、412、414、514、612)的所述制冷循环(200)采用选自如下的工作流体-含有氮气和/或氩气和/或各空气气体混合物的辅助流体(51);-包含所有或部分所述贫CO2气体04)或由所有或部分所述贫CO2气体04)得到的流体;和/或-包含所有或部分所述工艺流体GO)或由所有或部分所述工艺流体GO)得到的流体。
3.如权利要求1或2所述的方法,其特征在于进行所述第二冷却(111)所需的冷量至少部分通过与下列流体交换而供应-各自包含至少一个准等熵膨胀(130、131、312、314、412、414、514、612)的所述制冷循环(200)之一的工作流体;-含有氮气和/或氩气和/或各空气气体混合物的辅助流体(51);-含有所有或部分所述贫CO2气体04)或由所有或部分所述贫CO2气体04)得到的流体;和/或-含有所有或部分所述工艺流体GO)或由所有或部分所述工艺流体G0)得到的流体。
4.如权利要求3所述的方法,其特征在于进行所述第二冷却(111)所需的冷量至少部分由直接交换而供应。
5.如权利要求2所述的方法,其特征在于至少一个各自包含至少一个准等熵膨胀 (131、131、612)的所述制冷循环(200)采用所有或部分所述工艺流体00)作为工作流体。
6.如权利要求1-5中任一项的方法,其特征在于至少一个各自包含至少一个准等熵膨胀(130、131、312、314、412、414、514、612)的所述制冷循环包含至少一个供应外功的准等熵膨胀(130、131、312、314、412、414、514、612)。
7.如权利要求6的方法,其特征在于其进一步包括通过冷压缩(31 和/或通过与辅助流体(191)热交换而加热至少一种所述富CO2初级流体(66、68、70)和/或所述贫CO2气体(44)的步骤d)。
8.如权利要求5的方法,其特征在于至少一个各自包含至少一个准等熵膨胀(131、 131,612)的所述制冷循环O00)的所述准等熵膨胀(70 包括一个或多个如下步骤-使(717)工艺流体(701)绕着基本平行于所述工艺流体(701)流动方向的轴旋转;-提高(703)工艺流体(701)的速度;-使用离心效应(718)从所述工艺流体中分离固体(X)2 ;-使已变得贫(X)2的气体(704)减速。
9.如权利要求1-8中任一项的方法,其特征在于在步骤b)中,使至少部分在步骤a)中冷却的所述工艺流体0 以使得进一步得到主要包含CO2的液体(816)的方式冷却。
10.如权利要求1-9中任一项的方法,其特征在于所述工艺流体(905)来自工业烟道气。
11.如权利要求1-10中任一项的方法,其特征在于所述工艺流体(905)来自炼钢装置 (902a)。
12.如权利要求11的方法,其特征在于-所述工艺流体(905)至少部分来自高炉(902a);和 -使所述贫(X)2气体(927)至少部分再循环到所述高炉(902a)。
13.如权利要求1-10中任一项的方法,其特征在于所述工艺流体(905)至少部分来自精炼装置和/或化工装置(902a)。
14.如权利要求13的方法,其特征在于所述工艺流体(905)至少部分来自给定碳燃料的气化和/或部分氧化和/或氧重整(902a)。
15.如权利要求11的方法,其特征在于-所述工艺流体(905、24)来自包含空气分离单元(10)的装置;和 -至少一个各自包含至少一个气体准等熵膨胀(130、131、612)的所述制冷循环(200) 的所述准等熵膨胀(130、131、612)在所述空气分离单元(10)中进行。
全文摘要
本发明公开了一种由待处理且含有CO2和至少一种比CO2更具挥发性的化合物的流体生产至少一种具有低CO2浓度的气体和一种或多种具有高CO2浓度的初级流体的方法。所述方法包括下列步骤a)使用热交换使待处理的流体进行第一冷却工艺而不改变该流体状态;b)使至少部分待处理且在步骤a)中冷却的所述流体再次冷却以获得主要含有CO2的固体和至少具有低CO2浓度的气体;和c)其中液化和/升华至少部分所述固体使得获得一种或多种具有高CO2浓度的初级流体的步骤。所公开方法的特征在于所述第一冷却工艺和/或第二冷却工艺所需冷量至少部分由一个或多个各自包含至少一个气体准等熵膨胀的制冷循环而供应。
文档编号B01D53/62GK102326044SQ200980156957
公开日2012年1月18日 申请日期2009年12月14日 优先权日2008年12月19日
发明者A·拉沃, C·韦伯, F·洛克伍德, J-P·特拉尼耶 申请人:乔治洛德方法研究和开发液化空气有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1