具有特定模态振型的微机电压电超声波换能器的制作方法

文档序号:15005446发布日期:2018-07-24 21:08阅读:404来源:国知局
本发明属于微机电系统(mems)
技术领域
:中的换能器领域,特别是涉及一种特定模态振型的高效率压电超声波换能器。
背景技术
::压电超声波换能器是一种既可以将电能转换为机械能,又可以将机械能转化为电能的集收发超声波为一体的器件。传统的超声波换能器采用机械加工的方式,其体积大、功耗高、不利于集成化,且由于其声阻抗与传统声传递介质(空气、水)不匹配,其声发射效率较低。结合微机电系统技术采用的微制造工艺加工出的微机电超声波换能器则有效的克服了上述缺点。微机电超声波换能器按其工作原理可主要分为微机电电容式超声波换能器和微机电压电式超声波换能器:电容式超声波换能器的灵敏度和带宽较于压电式超声波换能器有一定优势,但其需要很高的直流偏置电压和极窄的电容间隙来实现,同时限于有限的振幅,其发射的声压也很有限[1];本发明所设计的具有特定模态振型的微机电压电超声波换能器可以有效的提高发射声压和空间利用效率,在日常的应用场合如:指纹识别[2]、距离检测[3]和能量采集[4]等具有更大的优势。引用文献:[1]jungj,kims,leewandchoih2013fabricationofatwo-dimensionalpiezoelectricmicromachinedultrasonictransducerarrayusingatop-crossover-to-bottomstructureandmetalbridgeconnections,j.micromechanicsmicroengineering23125037.[2]przybylarj,tanghy,sheltonse,horsleydaandboserbe201412.13dultrasonicgesturerecognitiondig.tech.pap.-ieeeint.solid-statecircuitsconf.57210–1.[3]przybylarj,tangh,members,guedesa,sheltonse,horsleydaandboserbe20153dultrasonicrangefinderonachipieeej.solid-statecircuits50320–34[4]heq,liuj,yangb,wangx,chenxandyangc2014mems-basedultrasonictransducerasthereceiverforwirelesspowersupplyoftheimplantablemicrodevicessensorsactuators,aphys.21965–72技术实现要素:本发明的目的在于解决现有技术中存在的声压不高,空间利用率低的问题,并提供一种具有特定模态振型的微机电压电超声波换能器。本发明解决其技术问题所采用的技术方案是:具有特定模态振型的微机电压电超声波换能器,其包括基底、底电极、压电层和上电极,基底背面中间部分开设槽形空腔,使基底正面形成弹性结构层,槽形空腔周边的基底作为弹性结构层的固定端;所述的槽形空腔由4个相同的圆柱形空腔单元相切形成,且四个圆柱形空腔单元之间夹持的柱形的基底也同时掏空;每个空腔单元上方的弹性结构层的正面依次堆叠底电极、压电层和上电极,与弹性结构层共同构成四个振动薄膜单元;其中底电极连续覆盖基底的正面,压电层和上电极均呈圆形且圆心与所述的空腔单元同轴;所述压电层面积大于上电极面积。该换能器整体效果为四个相同的换能器小单元相切,上电极分别布置在每个小单元的中间。换能器作为发射端时,通过在上、底电极施加交变电压利用逆压电效应驱动振膜做平面外振动,从而产生超声波;作为接收端时,利用正压电效应将在外部超声波激励下引起的振膜振动转化为电信号输出。作为优选,所述的振动薄膜单元的厚度为5~20μm,空腔单元半径为25μm~1mm。作为优选,所述的基底的厚度为100μm~1mm。作为优选,所述的上电极半径为0.55r~0.7r,r为空腔单元的半径。作为优选,所述的振动薄膜单元与圆柱形空腔单元同心。作为优选,所述的基底和弹性结构层为半导体材料硅,包括单晶硅或多晶硅。作为优选,所述的槽形空腔通过在基底背面选择性刻蚀形成。作为优选,所述的压电层中的压电材料为氮化铝、氧化锌或锆钛酸铅压电陶瓷。作为优选,所述的底电极为硼掺杂的硅,或金属材料金、铂、铝或锡。作为优选,所述的上电极为金属材料金、铂、铝或锡。本发明的换能器工作原理是利用正、逆压电效应实现机械能到电能或电能到机械能的转换。在结构层上通过连接4个小换能器单元,达到特定模态振型提高发射声压。同时,该特定模态振型相当于4个小换能器单元相连,省去了单元间的支撑面积,从而提高换能器的面积利用率。附图说明下面结合附图和实施例对本发明进一步说明图1是本发明中具有特定模态振型的微机电压电超声波换能器的结构示意图;图2是图1的局部三维剖面示意图;图3是图1a-a剖面示意图;图4是仿真该微机电压电超声波换能器的作为发射端时的模态振型图;图中:上电极1、压电层2、底电极3、基底4、弹性结构层41、振动薄膜单元00、空腔单元01。具体实施方式下面结合附图和具体实施方式对本发明做进一步阐述和说明。本发明中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。如图1~3所示,具有特定模态振型的微机电压电超声波换能器,包括基底4、底电极3、压电层2和上电极1,基底4背面中间部分开设槽形空腔,使基底4正面形成弹性结构层41。该槽形空腔由4个相同大小、高度的圆柱形空腔单元01两两相切形成,四条圆柱的中心线分别位于正方形的四个角点上,且四个圆柱形空腔单元01之间夹持形成了一个截面为弧边菱形的柱形基底4,该柱体也需要同时被掏空,因此弹性结构层41实际呈四叶花瓣形状。槽形空腔周边的基底4作为弹性结构层41的固定端。每个空腔单元01上方的弹性结构层41的正面依次堆叠底电极3、压电层2和上电极1,与弹性结构层41共同构成四个振动薄膜单元00,每个振动薄膜单元00呈圆形。其中底电极3连续覆盖基底4的正面,压电层2和上电极1均呈圆形片状,且两者的圆心与空腔单元01均同轴。换能器整体效果为四个相同的换能器小单元相切。上电极1分别布置在每个小单元的中间。压电层2面积稍大于上电极1面积。换能器作为发射端时,通过在上、底电极施加交变电压利用逆压电效应驱动振膜做平面外振动,从而产生超声波;作为接收端时,利用正压电效应将在外部超声波激励下引起的振膜振动转化为电信号输出。另外,本实施例中,各部件的结构参数如下:上电极1材料为铝电极,厚度为1μm;压电层2材料为氮化铝,厚度为0.5μm。压电层2和上电极1的半径分别为0.65r和0.6r,r为振动薄膜单元00的半径(即空腔单元01的半径),取300μm。振动薄膜单元00与圆柱空腔单元01同轴。底电极3材料为硼掺杂的硅,厚度为1μm。基底4材料为半导体硅,厚度为400μm,通过从背部选择性刻蚀部分硅来释放振动薄膜单元00,刻蚀后形成的弹性结构层41的厚度为5μm。刻蚀形成的空腔的轮廓为4个圆柱空腔相切的外轮廓,其内部三维结构如图2所示。刻蚀后形成的弹性结构层41在4个对称压电层受电压的激励下产生共振,达到特定工作模态,如图4所示。如图3所示,该具有特定模态振型的微机电压电超声波换能器作为发射端,通过在上电极1、和底电极3给压电层2施加一定频率的交变电压,根据逆压电效应,会产生和电场方向垂直和平行的两个方向的应力,由于在本实例中氮化铝材料的d31压电常数更为显著,因此主要考虑与电场方向垂直的应力的作用。应力的方向随着交变电压的电场方向变化而不断变化,在交变应力的驱动下,4个振动薄膜单元00受迫做平面外运动,由于其边缘约束为3/4圆周约束,容易通过外部激励使其达到图4振型,其综合振型大致相当于4个单个振动薄膜单元00振型的相连。其暗色部分与亮色部分代表振动方向相反。本发明所提出一种具有特定模态振型的微机电压电超声波换能器,通过采用特定模态振型,可有效地集成四个小换能器单元,使底部空腔相连,使其工作在特定模态振型上,省去了换能器单元间的间隔,减弱了换能器固定约束,从而达到了提高发射声压的效果。综上,具有特定模态振型的微机电压电超声波换能器具有大带宽、高灵敏度的优势。当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1