一种板式碳化硅纳米陶瓷过滤滤芯及其制备方法与流程

文档序号:15880808发布日期:2018-11-09 17:55阅读:563来源:国知局
一种板式碳化硅纳米陶瓷过滤滤芯及其制备方法与流程

本发明涉及陶瓷膜技术领域,具体是一种板式碳化硅纳米陶瓷过滤滤芯及其制备方法。



背景技术:

国内对陶瓷膜的研究始于上世纪90年代后期,主要集中在氧化铝膜材料,并在污水处理方面开展了应用,取得了良好的效益。但是在工业废水方面,其废水往往存在排放量大、高温、高碱度、高酸度、含重金属等特点,对无机陶瓷膜的过滤性能提出了更高的要求。目前广泛使用的氧化铝膜材料,难以抵抗强酸、强碱环境,高温热稳定性能差,在上述苛刻环境条件下工作使用寿命将大大缩短,导致污水处理成本增加。此外,氧化铝膜材料亲水性能一般,导致污水处理效率低,在一定程度上也增加了治污成本。另外,膜材料要承受到来自泵压马达的振动所产生的机械和热应力、膜分离过程中反复受到脉冲式气、水等冲击或反冲洗,由于氧化铝陶瓷膜材料脆性大,在遭受高的机械应力时容易破碎和裂开,耐高温能力差,大大限制了它的工业推广应用。有机膜更是无法耐强酸强碱,无法耐高压,无法耐高温,易被氧化,易被腐蚀,过滤寿命短。

碳化硅化学稳定性极好,耐强酸、碱,可在ph值0-14的范围内使用,高温稳定性好,且亲水性能好,其性能特点使碳化硅陶瓷膜在污水处理方面具有天然的优势,是今后无机陶瓷膜发展的重要方向。

但是目前的碳化硅陶瓷膜大多是由粗颗粒碳化硅及粘结剂堆积烧结而成,其孔隙为颗粒堆积间隙形成,存在孔径分布不均匀,对水中微小悬浮颗粒、大的胶体粒子和细菌的分离非常有效,但在小分子溶质、病毒等的分离方面存在严重不足,孔径分布不均匀和孔径过大导致过滤精度差,这极大地限制了陶瓷膜在分离精度要求高的许多领域的应用。



技术实现要素:

本发明的目的是克服现有技术的不足,公开一种板式碳化硅纳米陶瓷过滤滤芯,本发明的另一目的是公开这种板式碳化硅纳米陶瓷过滤滤芯的制备方法。

为实现本发明的第一个发明目的,本发明采取的技术方案是:

一种板式碳化硅纳米陶瓷过滤滤芯,包括平板状的基体,所述基体内均匀设置若干个管腔,所述基体由碳化硅颗粒烧结而成,组成所述基体的颗粒间的立体网状孔隙的平均孔径为5-8微米,其特征在于:除所述管腔外的所述基体表面设置由碳化硅颗粒烧结而成的纳米层,组成所述纳米层的颗粒间的立体网状孔隙的平均孔径为50-100纳米。

进一步地,所述管腔贯通所述基体或不贯通所述基体。

为实现本发明的第二个发明目的,本发明采取的技术方案包含如下步骤:

①将粒度为#200(日本工业标准jisr6001-1998,以下同)粗碳化硅陶瓷粉、水和聚乙二醇按照质量百分比为60%:35%:5%的比例混合,利用喷雾造粒机制成粒径为300微米到500微米颗粒;

②将粒度为#3000细碳化硅陶瓷粉、水和聚乙二醇按照质量百分比为60%:35%:5%的比例混合,利用喷雾造粒机制成粒径为30微米到50微米颗粒;

③将步骤①的颗粒和步骤②的颗粒按照3:2的比例调配,通过模具利用1500吨压力机挤压成内均匀设置若干个管腔的平板状坯料;

④将平均粒径为100纳米的纳米碳化硅陶瓷粉、水和聚乙二醇按照质量百分比为37%:60%:3%的比例混合成悬浮液;

⑤将步骤④的悬浮液均匀喷涂在平板状坯料的外表面;

⑥将步骤⑤的坯料放在高温烧结炉中烧结,烧结过程首先在300℃初加温3小时,然后用70小时缓慢从300℃升温到800℃,在800℃恒温10小时,再用70小时从800℃缓慢升温到1800℃,恒温保持3小时,最后空冷降温到常温。

与现有技术相比,本发明整体材料均为碳化硅颗粒烧结而成,因而具有强度高,耐高压、抗氧化,不易被微生物腐蚀破坏、具有抗强酸强碱抗腐蚀的优点,大大增加了碳化硅陶瓷过滤滤芯的工作寿命,在1000℃高温时,可以把碳化硅陶瓷过滤膜上附着的杂质或微生物高温碳化清除,滤芯可以重新再利用,节约成本。同时利用粗细不同的碳化硅陶瓷粉的合理分布,使得基体形成均匀且较小的5-8微米的孔隙,同时在基体外表面烧结出一层平均孔径为50-100纳米的纳米层,可阻挡污水中有机分子、盐类分子、微生物等,大大提高过滤精度,在污水处理中可减少过滤层级,而且5-8微米的孔隙不容易被有机分子、盐类分子、微生物堵塞。

附图说明

图1是本发明的结构示意图。

图2是图1的横剖视图。

图3是本发明的局部纵剖视图。

具体实施方式

参见附图:一种板式碳化硅纳米陶瓷过滤滤芯的制备方法,包含如下步骤:

①将粒度为#200粗碳化硅陶瓷粉、水和聚乙二醇按照质量百分比为60%:35%:5%的比例混合,利用喷雾造粒机制成粒径为300微米到500微米颗粒;

②将粒度为#3000细碳化硅陶瓷粉、水和聚乙二醇按照质量百分比为60%:35%:5%的比例混合,利用喷雾造粒机制成粒径为30微米到50微米颗粒;

③将步骤①的颗粒和步骤②的颗粒按照3:2的比例调配,通过模具利用1500吨压力机挤压成内均匀设置12个管腔的平板状坯料;

④将平均粒径为100纳米的纳米碳化硅陶瓷粉、水和聚乙二醇按照质量百分比为37%:60%:3%的比例混合成悬浮液;

⑤将步骤④的悬浮液均匀喷涂在平板状坯料的外表面;

⑥将步骤⑤的坯料放在高温烧结炉中烧结,烧结过程首先在300℃初加温3小时,然后用70小时缓慢从300℃升温到800℃,在800℃恒温10小时,再用70小时从800℃缓慢升温到1800℃,恒温保持3小时,最后空冷降温到常温。

通过上述工艺步骤,可以得到包括一种板式碳化硅纳米陶瓷过滤滤芯,其包括平板状的基体1,所述基体1内均匀设置12个贯通其上下两侧的管腔11,管腔11的一端用塑料堵头封堵;所述基体1由如上两种不同粒度的碳化硅颗粒烧结而成,由于采取两种不同粒度的碳化硅颗粒烧结,在烧结为一体的颗粒间形成的立体网状孔隙,孔隙的平均孔径为5-8微米,除所述管腔外的所述基体1表面设置由碳化硅颗粒烧结而成的纳米层2,组成所述纳米层2的颗粒间的立体网状孔隙的平均孔径为50-100纳米。

使用时,通过降低板式碳化硅陶瓷过滤滤芯管腔11的内部压力,产生负压,外部污水中水分子在常压下,通过了碳化硅陶瓷纳米过滤膜,进入过滤层再进入管腔11中,而污水中有机分子、盐类分子、微生物等无法通过碳化硅陶瓷纳米过滤膜的纳米级孔隙,被阻挡在污水中。



技术特征:

技术总结
本发明公开一种板式碳化硅纳米陶瓷过滤滤芯及其制备方法,其滤芯包括平板状的基体,所述基体内均匀设置若干个贯通其上下两侧的管腔,所述基体由碳化硅颗粒烧结而成,组成所述基体的颗粒间的立体网状孔隙的平均孔径为5‑8微米,除所述管腔外的所述基体表面设置由碳化硅颗粒烧结而成的纳米层,组成所述纳米层的颗粒间的立体网状孔隙的平均孔径为50‑100纳米。与现有技术相比,本发明整体材料均为碳化硅颗粒烧结而成,因而具有强度高,耐高压、抗氧化,不易被微生物腐蚀破坏、具有抗强酸强碱抗腐蚀的优点。

技术研发人员:刘焕新
受保护的技术使用者:山东华恩新材料科技有限公司
技术研发日:2018.06.12
技术公布日:2018.11.09
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1