用于HEPA空气过滤介质的包括纳米纤维和珠的纳米材料的制作方法

文档序号:18825811发布日期:2019-10-09 01:33阅读:322来源:国知局
用于HEPA空气过滤介质的包括纳米纤维和珠的纳米材料的制作方法

本发明涉及纳米材料,特别是hepa空气过滤介质。



背景技术:

纳米纤维具有理想的特性,使其能够具有广泛的技术和商业应用。纳米纤维可用作过滤介质,但由于其纳米尺寸而缺乏物理强度。需要具有更好机械完整性的纳米材料的改进。



技术实现要素:

一个示例性实施例是包括多个纳米纤维的纳米材料,所述纳米纤维形成在其中限定三维孔隙的随机交织网络。所述纳米材料进一步包括多个珠粒直径为2至20μm的珠粒,所述珠粒随机分布在所述多个纳米纤维内。所述珠粒支撑所述纳米纤维以防止所述孔隙塌陷。

示例性实施例涉及提供包括基材层、纳米纤维层和多个珠粒的过滤介质的设备和方法。所述纳米纤维层涂覆基材层,并包括多个纳米纤维,所述纳米纤维形成在其中限定三维孔隙的随机交织基质。多个珠粒随机散布在所述多个纳米纤维内,并支撑所述纳米纤维以防止孔隙塌陷。在一个示例性实施例中,所述珠粒具有2至20μm的珠粒直径。

示例性实施例涉及一种制备过滤介质的方法,包括:提供至少一个基材层;生产纳米纤维的线,其包含沿每个纳米纤维的长度不规则和随机分散的珠粒,以产生多个带珠粒纳米纤维;以及将所述带珠粒纳米纤维沉积在所述基材层的表面上,以产生具有5至50μm的三维孔隙的随机定向交织的纳米纤维的涂层,以产生至少一个纳米纤维过滤层。

这里讨论了其他示例性实施例。

附图说明

图1是根据示例性实施例的纳米材料的图。

图2是根据示例性实施例的纳米材料的扫描电子显微镜显微照片。

图3a是根据示例性实施例的微纤维的图。

图3b是根据示例性实施例的纳米纤维的图。

图4是根据示例性实施例的过滤介质的图。

图5是示出根据示例性实施例的大气等离子体处理(apt)系统和自由液面静电纺丝的不同部件的图。

图6是根据示例性实施例的制备过滤介质的方法的流程图。

具体实施方式

纳米纤维具有小纤维直径、高孔隙率和高表面积/体积比等特性,使其成为能够广泛应用的重要材料。一种这样的应用是hepa空气过滤介质。鉴于其高过滤效率和高比表面积,纳米纤维是理想的过滤介质。然而,纳米纤维的一个问题是它们的机械完整性较弱。常规过滤介质中使用的纳米纤维本身就很弱。常规过滤介质已经尝试以各种方式克服这种弱点,但尚未能提供具有增强的机械完整性的纳米材料。示例性实施例解决了这个问题。

示例性实施例涉及包括多个纳米纤维和多个珠粒的纳米材料。珠粒可以是与纳米纤维相同的材料的一部分,并且随着纳米纤维形成而沿着纳米纤维的长度形成为直径2至20μm的较厚或不规则的液滴。所述多个纳米纤维形成在其中限定三维孔隙的随机交织网络。多个珠粒直径为2至20μm的珠粒随机分布在所述多个纳米纤维内,并支撑所述纳米纤维以防止孔隙塌陷。珠粒改善了纳米材料的机械完整性。

示例性实施例涉及空气过滤介质,其包括基材层、纳米纤维层和多个珠粒。所述纳米纤维层涂覆基材层,并包括多个纳米纤维,所述纳米纤维形成在其中限定三维孔隙的随机交织基质。多个珠粒直径为2至20μm的珠粒随机散布在所述多个纳米纤维内,并支撑所述纳米纤维以防止孔隙塌陷。

示例性实施例涉及一种制备空气过滤介质的方法,包括:提供至少一个基材层;生产纳米纤维的线,其包含沿每个纳米纤维的长度不规则和随机分散的珠粒,以产生多个带珠粒纳米纤维;以及将所述带珠粒纳米纤维沉积在所述基材层的表面上,以产生具有5至50μm的三维孔隙的随机定向交织的纳米纤维的涂层,以产生至少一个纳米纤维过滤层。

在一个示例性实施例中,所述纳米纤维过滤层中的珠粒增强纳米纤维,并防止它们塌陷,从而为纳米纤维过滤层提供增加的透气度。在示例性实施例中,珠粒和纳米纤维同时形成。

在示例性实施例中,纳米纤维具有10至1000nm的直径。在另一示例性实施例中,孔隙具有1至10μm的孔径。在示例性实施例中,纳米纤维具有100至500nm的直径。在另一示例性实施例中,孔隙具有3至8μm的孔径。在示例性实施例中,每个珠粒是至少一个纳米纤维的一部分。在另一示例性实施例中,每个珠粒是沿着至少一个纳米纤维的长度形成凸起的不规则物。在示例性实施例中,所述珠粒具有5至15μm的珠粒直径。在一个示例性实施例中,所述珠粒支撑纳米纤维以防止脱层(delamination)。

在示例性实施例中,纳米纤维由选自聚偏二氟乙烯(pvdf)、聚偏二氟乙烯-六氟丙烯共聚物(pvdf-co-hfp)、聚酰胺6(pa-6)、聚己二酰己二胺、聚苯乙烯、聚砜、聚醚砜、聚环氧乙烷、聚氯乙烯、乙酸纤维素、壳聚醣和玉米醇溶蛋白的一种或或其组合的组中的聚合物材料制成。

如图3b所示,纳米纤维的高比表面示出了大量孔隙360,允许改善纳米材料的功能和性能的各种试剂的高负载能力。在示例性实施例中,可以用抗微生物剂和挥发性有机化合物(voc)去除剂处理纳米纤维。抗微生物剂可包括但不限于百里酚、葡萄糖酸氯己定和聚六亚甲基双胍(phmb)。voc去除剂可以包括但不限于埃洛石、黄土和沸石。

在示例性实施例中,空气过滤介质的基材层包括多个微纤维。在示例性实施例中,所述微纤维具有2至30μm的直径。在另一示例性实施例中,所述基材层选自但不限于聚丙烯(pp)、聚乙烯(pe)、聚对苯二甲酸乙二醇酯(pet)、pet增强玻璃纤维或其组合。在示例性实施例中,纳米纤维共价结合到具有高于0.01n的粘合强度的微纤维。在示例性实施例中,过滤介质可以由化学键组成,包括但不限于c-c、c-n、co和conh。

在示例性实施例中,纳米纤维层的基重为0.1至10克/平方米(gsm)。在另一示例性实施例中,纳米纤维层的基重为0.5至1gsm。在示例性实施例中,纳米纤维层在125帕斯卡(pa)的气流压力下具有4至20cm3/cm2/s的透气度范围。

一个示例性实施例使用为空气过滤介质提供附加特性的试剂来使空气过滤介质功能化。在示例性实施例中,用抗微生物剂处理纳米纤维层,以防止过滤介质用作过滤器的滤液中的微生物活性。在另一示例性实施例中,抗微生物剂防止空气过滤介质的生物污染。用抗微生物剂处理纳米纤维防止空气过滤介质所截留的微生物的增殖,并延长空气过滤介质的保质期。

抗微生物剂可以包括但不限于百里酚、葡萄糖酸氯己定和聚六亚甲基双胍(phmb)。在另一示例性实施例中,用挥发性有机化合物(voc)去除剂处理纳米纤维层。所述voc去除剂包括但不限于埃洛石、黄土和沸石。在示例性实施例中,过滤介质可具有病毒去除能力。在另一示例性实施例中,过滤介质中和气味和化学物质并去除包括灰尘、花粉和霉菌的过敏原。

在示例性实施例中,空气过滤介质可以是折叠的或打褶的。在另一示例性实施例中,空气过滤介质是具有e13水平的过滤效率的高效颗粒空气(hepa)过滤器。

在示例性实施例中,空气过滤介质打褶成“v”构造,在褶皱之间具有波纹铝隔离件以形成过滤元件。然后使用特殊的聚氨酯化合物将过滤元件结合到刚性框架中并密封以形成hepa过滤器。当安装在设备中时,hepa过滤器被进一步密封,以防止空气流动和其包含的亚微米颗粒绕过hepa过滤器。在示例性实施例中,hepa过滤器通过使用闭孔氯丁橡胶垫圈进一步密封。在示例性实施例中,hepa过滤器具有150mm的深度。在另一示例性实施例中,hepa过滤器具有300mm的深度。

在示例性实施例中,空气过滤介质可以通过机构捕获空气污染物,所述机制包括但不限于惯性碰撞、截留作用和布朗扩散。

在示例性实施例中,将带珠粒纳米纤维沉积在基材层之前,用大气等离子体处理(apt)系统处理基材层中的微纤维。在一个示例性实施例中,apt的持续时间是2至10秒。在另一示例性实施例中,apt的持续时间是3至6秒。apt系统以1至2khz的低频向微纤维施加稳定均匀的等离子体。在另一示例性实施例中,频率是1.3至1.5khz。氦气(he)和氧气(o2)的混合物用作he∶o2比率为100∶0至98∶2的等离子体载气。在示例性实施例中,he∶o2比率为99∶1。在示例性实施例中,氦气的气体流量为10至30l/分钟。在另一示例性实施例中,氦气的气体流量为18至22l/分钟。在示例性实施例中,氧气的气体流量为0.1至0.5l/分钟。在另一示例性实施例中,氧气的气体流量为0.2至0.4l/分钟。在示例性实施例中,apt处理的结束和带珠粒纳米纤维沉积的开始之间的时间间隔为5至30秒。在另一示例性实施例中,时间间隔是8至12秒。

在示例性实施例中,通过自由液面静电纺丝生产所述带珠粒纳米纤维。在示例性实施例中,所述带珠粒纳米纤维由不限于聚偏二氟乙烯(pvdf)和聚偏二氟乙烯-六氟丙烯共聚物(pvdf-co-hfp)的聚合物树脂生产,其溶解在浓度范围为10%至20%的包括二甲基甲酰胺的有机溶剂中。在另一示例中,所述浓度范围是13%至17%。将包括但不限于四乙基氯化铵(teac)、四乙基溴化铵(teab)和苄基三乙基氯化铵(bteac)的有机溶剂可溶性盐加入到聚合物溶液中,而浓度为0.1%至5%。在另一示例性实施例中,浓度为0.5%至2%。在示例性实施例中,包括teac、teab和bteac的有机溶剂可溶性盐改变聚合物溶液的电导率并使聚合物溶液不稳定以形成带珠粒纳米纤维。在一个示例性实施例中,静电纺丝室中的条件为5%至50%或10%至20%的相对湿度、50至100m3/分钟或70至90m3/分钟的向内空气流量,以及100至170m3/分钟或120至140m3/分钟的向外空气流量。

静电纺丝的处理参数(包括但不限于电场、空气流量差、载体速度和基材速度)都进行了优化。例如,电场为0.1至0.5kv/mm。在另一示例性实施例中,电场为0.2至0.4kv/mm。在示例性实施例中,空气流量差为0至120m3/h。在另一示例性实施例中,空气流量差为30至70m3/h。在示例性实施例中,载体速度是25至100mm/秒。在另一示例性实施例中,载体速度是40至80mm/秒。在示例性实施例中,基材速度是20至8000mm/分钟。在另一示例性实施例中,基材速度是100至2000mm/分钟。

在一个示例性实施例中,纳米纤维具有10至1000nm的直径,珠粒具有2至20μm的直径,并且珠粒之间的距离为5至50μm。在另一示例性实施例中,纳米纤维具有100至500nm的直径,珠粒具有5至15μm的直径,而珠粒之间的距离为10至30μm。

在一个示例中,折叠的空气过滤介质与其他微纤维层组装在一起,形成hepa过滤器,当在最具穿透性的颗粒尺寸以气溶胶测试,同时保持50mmh2o或更低的压降时,所述hepa过滤器的过滤效率为99.97%或更高。

图1是根据示例性实施例的纳米材料100的图,所述纳米材料100包括:多个纳米纤维140,其形成在其中限定三维孔隙160的随机交织网络;以及多个珠粒直径为2至20μm的珠粒120,其随机分布在所述多个纳米纤维140内。根据示例性实施例,珠粒120为纳米纤维140提供结构支撑,以防止孔隙160塌陷。

图2是纳米材料的扫描电子显微镜显微照片200,所述纳米材料包括:多个随机交织的纳米纤维210,其限定交织网络内的三维孔隙220、230、240;以及多个珠粒250,其随机散布在所述多个纳米纤维210内。

图3a是根据示例性实施例的包括孔隙340的微纤维300的图。图3b是根据示例性实施例的包括孔隙360的纳米纤维320的图。根据示例性实施例,图3a中的微纤维300具有比图3b中的纳米纤维320中的孔隙360少的孔隙340。

图4是根据示例性实施例已经被折叠400的过滤介质420。过滤介质420包括基材层440和涂覆所述基材层440的纳米纤维层460。

图5示出了根据示例性实施例的用于制备过滤介质505的apt系统和自由液面静电纺丝的不同部件500。

放卷系统520放卷(unwind)基材层515,而大气等离子体处理(apt)系统530将均匀且稳定的等离子体525施加到基材层515,以生产已经经历apt处理510的基材层。移动储液器545将聚合物溶液施加到纺丝电极540上,产生聚合物射流535,所述聚合物射流535在溶剂蒸发后变成纳米纤维,并将带珠粒纳米纤维沉积在已经经历apt处理510的基材层的表面上以产生纳米纤维过滤层,并且包含基材层和纳米纤维过滤层505的过滤介质被收卷系统550收卷(rewind)。在示例性实施例中,基材层包含微纤维。

图6示出了根据示例性实施例的制备空气过滤介质600的方法。

提供基材层610。生产纳米纤维的线,其包含沿每个纳米纤维的长度不规则分散的珠粒,以产生多个带珠粒纳米纤维620。将带珠粒纳米纤维沉积在基材层610的表面,以产生具有5至50μm的三维孔隙的随机定向交织的带珠粒纳米纤维620的涂层,以产生纳米纤维过滤层630。

在示例性实施例中,空气过滤介质600经过另外的处理,包括但不限于层压和打褶以形成hepa空气过滤介质。

因此充分描述了本发明的示例性实施例。尽管描述涉及特定实施例,但是本领域技术人员将清楚的是,可以通过变化这些具体细节来实践本发明。因此,本发明不应被解释为限于在此阐述的实施例。

在不同的图中讨论的方法可以添加到其他图中的方法或与之交换。此外,为了讨论示例性实施例,特定数字数据值(例如具体数量、数目、类别等)或其他特定信息应解释为说明性的。这样的具体信息不是为了限制示例性实施例而提供的。

如本文所用,“纳米材料”是包含纳米级尺寸的颗粒或成分的材料,包括但不限于直径为10至1000nm的纳米纤维。

如本文所用,“珠粒”是具有大约2至20μm的直径的规则或不规则形状的材料块。珠粒是不规则的膨胀或隆起,其沿着至少一个纳米纤维的长度、沿着至少一个纳米纤维变化的长度,和/或沿着至少一个纳米纤维随机的长度形成凸起。可沿着至少一个纳米纤维的长度形成单个珠粒、多个珠粒或不形成珠粒。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1