一种生物质灰渣基介孔硅吸附剂的制备方法

文档序号:32797252发布日期:2023-01-03 22:41阅读:33来源:国知局
一种生物质灰渣基介孔硅吸附剂的制备方法

1.本发明涉及固废利用技术领域,具体涉及一种生物质灰渣基介孔硅吸附剂的制备方法。


背景技术:

2.生物质能作为负碳潜力的可再生能源,随着国家的不断发展,对于能源需求不断增加,生物质直燃发电的快速发展的同时,产生了大量的灰渣。这些生物质灰渣作为工业废物大量堆积,不仅占用大量土地,而且其中包含的重金属等有害物质也可能对环境产生一定的危害。因此,将生物质灰合理的资源化利用具有重要的现实意义。
3.目前,co2的捕获主要是通过一些基于物理和化学吸附、低温蒸馏、吸收、微生物和膜分离技术的常规方法实现的。在这些方法中,通过液体胺(如单乙醇胺、二乙醇胺和甲基二乙醇胺)进行化学吸收是目前从电厂烟气中大规模捕获co2的最先进和最具成本效益的方法,但该技术仍存在一些主要缺点,如溶剂分解、吸收能力低、毒性、设备腐蚀和溶剂再生的高能耗。为了克服这些缺点,仍然需要寻找有效且可逆的co2捕获的新材料。生物质灰渣中含有大量的sio2组分(含量超50%),使用生物质灰渣中的硅元素制备的介孔硅材料具有比表面积大、孔径可调、表面易修饰和改性、结构规则有序等优势。将介孔硅用于co2的吸收,达到减少温室气体的排放目的。对于生物质灰渣的资源化利用以及减少碳排放都具有重要意义。


技术实现要素:

4.针对现有技术不足,本发明提供一种生物质灰渣基介孔硅吸附剂的制备方法,以此来克服背景技术中提及的问题,制备出比表面积大、结构规则的介孔硅吸附材料并用于co2的吸附,以减少温室气体co2的排放,同时实现对生物质灰渣的资源化利用。
5.为实现以上目的,本发明的技术方案通过以下技术方案予以实现:
6.一种生物质灰渣基介孔硅吸附剂的制备方法,具体包括以下步骤:
7.(1)将生物质灰渣破碎研磨后与氢氧化钠混匀,随之置于坩埚中并在马弗炉中焙烧,得到生物质灰渣熟料。其中,生物质灰渣破碎研磨,过筛筛网目数优选大于等于200目,进一步优选大于等于300目,更优选大于等于400目。
8.(2)将生物质灰渣熟料与去离子水混合,搅匀后过滤,滤液转移至容量瓶定容,得到硅提取液。
9.(3)将硅提取液与十六烷基三甲基溴化铵混合,调节混合液的ph 值并进行水热合成,反应结束后,通过离心分离出沉淀物,将沉淀物烘干后放入马弗炉中焙烧,制得生物质灰渣基介孔硅吸附剂。
10.优选的,步骤(1)中,所述生物质灰渣中二氧化硅含量占50%以上,且生物质灰渣和氢氧化钠的质量比为1:(0.75-2),进一步优选为1:(1-1.75),更优选为1:(1.2-1.75)。
11.优选的,步骤(1)中,所述焙烧温度为400-650℃,进一步优选为450-600℃,更优选
为500-600℃。焙烧时间为0.5-3h,进一步优选为1-3h,更优选为1.5-2.5h。
12.优选的,步骤(2)中,所述去离子水体积和生物质灰渣质量比为 (10-25):1ml/g,进一步优选为(10-20):1ml/g,更优选为(10-15): 1ml/g。所述滤液定容体积与生物质灰渣质量比为(20-50):1ml/g,进一步优选为(20-40):1ml/g,更优选为(20-30):1ml/g。所述搅匀时间为1-3h,进一步优选为1.2-2.8h,更优选为1.5-2.5h。
13.优选的,步骤(3)中,所述十六烷基三甲基溴化铵质量和硅提取液使用量体积比为(0.003-0.015):1g/ml,进一步优选为(0.0063-0.015): 1g/ml,更优选为(0.006-0.012):1g/ml。
14.优选的,步骤(3)中,利用盐酸调节混合液的ph值为9.5-10.5。
15.优选的,步骤(3)中,控制水热合成的温度为75-135℃,进一步优选为90-135℃,更优选为105-135℃。反应时间为12-36h,进一步优选为16-32h,更优选为20-28h。
16.优选的,步骤(3)中,离心条件为:在3000-4000r/min的转速下离心3-5min。
17.优选的,步骤(3)中,将所述沉淀物先用去离子水洗涤2-3遍,于100-120℃下烘干12-16h,然后在500-650℃焙烧4-8h。其中,进一步优选为在500-600℃焙烧4-7h,更优选为在520-580℃焙烧5-7h。
18.本发明中的一种生物质灰渣基介孔硅吸附剂可应用于二氧化碳的吸附。
19.本发明提供一种生物质灰渣基介孔硅吸附剂的制备方法,与现有技术相比优点在于:
20.(1)本发明利用生物质灰渣中较高含量的硅,通过碱熔法对其中的硅元素进行提取,制备出比表面积较大,孔径结构优异的介孔硅材料吸附剂。
21.(2)本发明利用生物质灰渣作为原料制备介孔硅材料,不仅原料成本低,节省了大量的工业级原料,同时促进了生物质灰渣的资源化利用,减少生物质灰渣对环境的污染。
22.(3)本发明制得的介孔硅材料可以应用于催化剂载体、吸附等领域,所制备的生物质灰渣基介孔硅材料具有较好co2吸附性能。
附图说明
23.图1为本发明介孔硅吸附剂的工艺流程图;
24.图2为本发明实施例1中介孔硅吸附剂的x射线衍射图谱;
25.图3为本发明实施例1中介孔硅吸附剂的傅里叶红外光谱图;
26.图4为本发明实施例1中介孔硅吸附剂的扫描电镜图;
27.图5为本发明实施例1中介孔硅吸附剂的氮气吸附脱附曲线;
28.图6为本发明实施例1中介孔硅吸附剂的孔径分布图;
29.图7为本发明实施例1-5中介孔硅吸附剂co2的吸附量;
30.图8为本发明实施例1及实施例6-9中介孔硅吸附剂co2的吸附量;
31.图9为本发明实施例1及实施例10-13中介孔硅吸附剂co2的吸附量。
32.实施方式
33.为使本发明实施例的目的、技术方案和优点更加清楚,下面结合本发明实施例对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创
造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
34.实施例1
35.将生物质灰渣破碎研磨后,过200目筛,取5g生物质灰渣,将生物质灰渣与氢氧化钠(naoh)按照质量比1:1.5的比例进行混合,置于镍坩埚中在马弗炉中以550℃焙烧2h,得到生物质灰渣熟料。将得到的生物质灰渣熟料置于烧杯中加入50ml去离子水,磁力搅拌2h后,过滤得到滤液并转移至容量瓶中定容至100ml,得到硅提取液,其中 sio
32-浓度为0.237
±
0.005mol/l。
36.将0.45g十六烷基三甲基溴化铵(ctab)与50ml的硅提取液进行混合,待十六烷基三甲基溴化铵(ctab)充分溶解后,使用盐酸调节混合液的ph值为10
±
0.5,磁力搅拌2h使溶液充分混合后,转移至 100ml反应釜内,将反应釜置于120℃的烘箱内水热反应24h后,待反应釜自然冷却后,将反应釜内混合物置于离心管中,在3500r/min下离心4min,并用去离子水反复冲洗3遍,得到的沉淀物在烘箱中以 105℃烘干12h,将干燥后的沉淀物研磨至粉末,将粉末样品在马弗炉中以550℃焙烧6h以去除其中的十六烷基三甲基溴化铵(模板剂),最终的到的粉末样品即为生物质灰渣基介孔硅吸附剂。
37.将本实施例制备的介孔硅吸附剂进行x射线衍射,结果如图2所示,从图中可以看出,在x射线衍射检测下,本实施例制备的介孔硅吸附剂具有明显的特征峰,在其2θ角度20
°‑
30
°
出现的宽峰为无定形 sio2的特征峰,说明材料为硅基吸附剂。
38.将本实施例制备的介孔硅吸附剂进行傅里叶红外光谱检测,红外光谱图如图3所示,从图中可以看出,在1626cm-1
位置处出现的吸收峰为吸附水的h-o-h弯曲振动峰,在1100cm-1
位置处出现的吸收峰代表了硅氧键(si-o-si)的反对称伸缩振动,在563cm-1
位置处出现的吸收峰代表了耦合四元硅氧环([sio]4),都进一步证实了本实施例制备的吸附剂为硅基吸附剂。
[0039]
将本实施例制备的介孔硅进行扫描电子显微镜检测,电镜图片如图4所示,从图中可以看出,本实施例所制备的生物质灰渣基介孔硅吸附剂为球状聚集体,初级粒子的粒径约为50-100nm。
[0040]
将本实施例制备的介孔硅吸附剂进行了bet测试,图5和图6分别为介孔硅的氮气吸附脱附曲线和孔径分布图,由图5和图6可以看出,氮气吸附脱附曲线符合典型的介孔材料,制备的介孔硅的孔体积为0.555cm3/g,比表面积为467.09m2/g,平均孔径为3.537nm。证实本实施例中的制备的吸附剂为介孔硅材料。
[0041]
实施例2-5
[0042]
参照实施例1的方法制备生物质灰渣基介孔硅吸附剂,其他条件与实施例1相同,不同之处为:
[0043]
模板剂十六烷基三甲基溴化铵(ctab)的添加量分别调节为 0.15g、0.30g、0.60g和0.75g。
[0044]
co2吸附性能测试:co2吸附量通过物理吸附仪测试得到的,首先对样品进行105℃真空脱气处理8h,之后在25℃下进行co2吸附测试。对实施例1-5制备介孔硅材料的co2吸附量进行测试,结果如图7所示,从图中可以看出十六烷基三甲基溴化铵(ctab)添加量分别为 0.15g(实施例2)、0.30g(实施例3)、0.45g(实施例1)、0.60g(实施例4)和0.75g(实施例5)时,co2的吸附量分别为2.492cm3/g、 6.758cm3/g、11.568cm3/g、11.805cm3/g和10.698cm3/
g,因此,十六烷基三甲基溴化铵(ctab)添加量为0.60g时,生物质灰制备的介孔硅材料的co2吸附性能最佳。
[0045]
实施例6-9
[0046]
参照实施例1的方法制备生物质灰渣基介孔硅吸附剂,其他条件与实施例1相同,不同之处为:
[0047]
水热反应的时间分别调整为12h、16h、20h和28h。对实施例1 与实施例6-9制备介孔硅材料的co2吸附量进行测试,结果如图8所示,从图中可以看出,水热反应的反应时间分别为12h(实施例6)、 16h(实施例7)、20h(实施例8)、24h(实施例1)和28h(实施例 9)时,co2的吸附量分别为11.977cm3/g、11.818cm3/g、11.123cm3/g、 11.805cm3/g和16.770cm3/g,因此,反应时间为28h时,生物质灰制备的介孔硅材料的co2吸附性能最佳。
[0048]
实施例10-13
[0049]
参照实施例1的方法制备生物质灰渣基介孔硅吸附剂,其他条件与实施例1相同,不同之处为:
[0050]
水热反应的温度分别调整为75℃、90℃、105℃、135℃。对实施例1与实施例10-13制备介孔硅材料的co2吸附量进行测试,结果如图9所示,从图中可以看出,水热反应的反应温度分别为75℃(实施例10)、90℃(实施例11)、105℃(实施例12)、120℃(实施例1) 和135℃(实施例13)时,co2的吸附量分别为6.043cm3/g、4.887cm3/g、 9.321cm3/g、11.805cm3/g和6.834cm3/g,因此,反应温度为120℃时,生物质灰制备的介孔硅材料的co2吸附性能最佳。
[0051]
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品所固有的要素。在没有更多限制的情况下,由语句“包括一个
……”
限定的要素,并不排除在包括所述要素的过程、方法、物品中还存在另外的相同要素。
[0052]
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1