用于对小体积样品进行高速离心的方法与流程

文档序号:18922893发布日期:2019-10-19 03:45阅读:1155来源:国知局
用于对小体积样品进行高速离心的方法与流程

传统的离心机过大并且对于处理小体积的液体样品的离心效率较低。它们还未能包括处理小样品体积时所期望的某些特征。

援引并入

本说明书中提及的所有出版物、专利和专利申请均通过引用并入本文,其程度如同具体地且单独地指明每个单独的出版物、专利或专利申请均通过引用而并入。



技术实现要素:

应当理解,本公开内容中的实施方式可以适于具有本文所描述的特征中的一个或多个特征。

在一个非限制性示例中,提供了用于分离生物流体中的一个或多个组分的自动化系统。该系统可以包括:(a)离心机,其包括被配置用于接收容器的一个或多个勺斗以实现对流体样品中的一个或多个组分的所述分离;以及(b)所述容器,其中所述容器包括一个或多个塑形特征,所述塑形特征与所述勺斗的塑形特征互补。

应当理解,本文的实施方式可以适于具有以下特征中的一个或多个特征。在一个非限制性示例中,所述系统可以具有一个或多个勺斗,所述勺斗是摆动式勺斗,所述摆动式勺斗在所述离心机静止时处于或靠近垂直位置而在所述离心机旋转时处于或靠近水平位置。可选地,所述系统可以具有在所述离心机上径向对称地间隔开的多个摆动式勺斗。可选地,所述流体样品是生物流体。可选地,所述生物流体是血液。可选地,所述容器被配置用于包含100uL或更少的样品流体。可选地,所述容器被配置用于包含50uL或更少的样品流体。可选地,所述容器被配置用于包含25uL或更少的样品流体。可选地,所述容器在一端上是封闭的而在相对端上是敞开的。可选地,所述容器是离心器皿。可选地,所述离心器皿具有圆形末端,所述圆形末端具有一个或多个内部小块。可选地,所述系统包括具有一个或多个塑形特征的提取尖端,所述塑形特征与所述离心器皿的塑形特征互补,并且被配置用于配合在所述离心器皿内。可选地,所述勺斗的塑形特征包括一个或多个搁板,所述容器的凸出部分被配置成搁置在所述一个或多个搁板上。可选地,所述勺斗被配置成能够接纳具有不同配置的多个容器,并且其中所述勺斗的塑形特征包括多个搁板,其中具有第一配置的第一容器被配置成搁置在第一搁板上,而具有第二配置的第二容器被配置成搁置在第二搁板上。

在本文描述的又一实施方式中,提供了一种紧凑型高速离心机,所述离心机包括离心机本体;用于使所述离心机本体旋转的马达;以及检测器,其与所述马达集成并且被配置用于至少确定所述马达的旋转部分的旋转位置,其中所述检测器使用至少两种不同类型的编码器信息来确定所述旋转位置。

应当理解,本文的实施方式可以适于具有以下特征中的一个或多个特征。在一个非限制性示例中,所述检测器至少使用光学编码器和霍尔效应技术来确定旋转位置。可选地,所述检测器至少使用光学编码器和霍尔效应技术来至少确定旋转位置和旋转速度。可选地,所述检测器具有针对检测一种类型的编码器信息的第一表面和针对检测另一种类型的编码器信息的第二表面。可选地,所述第一表面和所述第二表面朝向不同的方向。可选地,所述第一表面和所述第二表面朝向相同的方向。可选地,所述马达包括用于确定旋转位置的多个检测器。可选地,所述马达还包括提供第一类型编码器信息的第一编码器盘和提供第二类型编码器信息的第二编码器盘。可选地,可选地,所述马达还包括提供光学编码器信息的第一编码器盘和提供磁性编码器信息的第二编码器盘。可选地,所述马达包括提供第一类型编码器信息和第二类型编码器信息的编码器盘。可选地,所述马达包括提供光学编码器信息和磁性编码器信息两者的编码器盘。应当理解,虽然具有集成编码器组件的马达是在离心机的背景下描述,但所述马达还可适于用在期望将位置和/或速度检测器特征集成到所述马达中的其他场景中。

在本文所描述的又一实施方式中,提供了一种方法,该方法包括:提供马达;将第一类型编码器集成到所述马达中;将第二类型编码器集成到所述马达中;使用所述第一类型编码器来确定所述马达的旋转部分的旋转位置,并且使用第二类型编码器来确定所述马达的所述旋转部分的旋转速度。

应当理解,本文的实施方式可以适于具有以下特征中的一个或多个特征。在一个非限制性示例中,所述第一类型编码器提供光学编码器信息。可选地,所述第一类型编码器提供磁性编码器信息。可选地,所述第一类型编码器提供霍尔效应编码器信息。可选地,所述第一类型编码器和所述第二类型编码器提供不同类型的编码器信息。

在本文所描述的另一实施方式中,提供了一种用于与样品容器一起使用的紧凑型高速离心机。所述离心机可以包括:第一部分,其包括热绝缘材料;第二部分,其包括导热材料;其中容器被布置成使得所述容器位于具有热绝缘材料的区域中;其中所述导热材料被配置用于沿着远离所述容器的方向引导热量。

在本文所描述的另一实施方式中,提供了一种用于与样品容器一起使用的紧凑型高速离心机。所述离心机可以包括离心机本体;用于使所述离心机本体旋转的驱动机构;用于使去往所述样品的热传递最小的主动冷却单元;其中容器被布置成使得所述容器位于具有热暴露得以减小的区域中;所述主动冷却单元被配置用于冷却所述驱动机构;其中定子同轴地定位于所述驱动机构中的马达的转子内。

在本文所描述的另一实施方式中,提供了一种用于与样品容器一起使用的紧凑型高速离心机。所述离心机可以包括离心机本体;用于使所述离心机本体旋转的驱动机构;以及用于确定所述离心机本体的旋转位置的位置检测器。

在本文所描述的另一实施方式中,提供了一种用于与样品容器一起使用的紧凑型高速离心机。所述离心机可以包括离心机本体;用于使所述离心机本体旋转的驱动机构;以及耦合至所述离心机本体的自动平衡配重,其中这样的配重被配置用于在离心力下移动至使在所述离心机的样品固定器中具有不均匀的负荷量的情况下所述离心机本体的失衡旋转最小的位置。

在本文所描述的另一实施方式中,提供了一种用于与样品容器一起使用的紧凑型高速离心机。所述离心机可以包括离心机本体;用于使所述离心机本体旋转的驱动机构;以及被配置用于在工作中支撑所述离心机的至少一个空气轴承。

在本文所描述的另一实施方式中,提供了一种用于与样品容器一起使用的紧凑型高速离心机。所述离心机可以包括离心机壳体;离心机本体;用于使所述离心机本体旋转的驱动机构;以及被配置用于在工作中支撑所述离心机的至少一个空气轴承,其中所述空气轴承的至少一部分是所述离心机壳体的一部分。

在本文所描述的另一实施方式中,提供了一种用于与样品容器一起使用的紧凑型高速离心机。所述离心机可以包括离心机壳体;离心机本体;用于使所述离心机本体旋转的驱动机构;用于检测预定受力条件范围之外的力的速率变化的力检测器。

应当理解,本文的实施方式可以适于具有以下特征中的一个或多个特征。在一个非限制性示例中,所述离心机器皿固定器在离心力下朝着所述离心机转子的中心轴向内枢转。可选地,所述离心机器皿固定器形成与转子体平齐的表面以使气动阻力最小。可选地,所述离心机器皿固定器被配置用于在离心力下向下缩回。可选地,其中通向离心机本体冷却元件的电连接未中断,即使这样的元件在离心操作期间处于运转中亦如此。

在本文所描述的另一实施方式中,提供了一种用于与样品容器一起使用的紧凑型高速离心机。所述离心机可以包括离心机本体;用于使所述离心机本体旋转的驱动机构,其中所述离心机本体向下延伸以覆盖所述驱动机构的至少一部分;其中所述驱动机构包括定子和转子;其中所述转子关于所述定子是同心的。

在本文所描述的另一实施方式中,提供了一种用于与样品容器一起使用的紧凑型高速离心机。所述离心机可以包括离心机本体;用于使所述离心机本体旋转的驱动机构,其中所述离心机本体向下延伸以覆盖所述驱动机构的至少一部分;其中所述驱动机构包括定子和转子;其中所述定子关于所述转子是同心的。

在本文所描述的另一实施方式中,提供了一种用于与样品容器一起使用的紧凑型高速离心机。所述离心机可以包括离心机本体;用于使所述离心机本体旋转的驱动机构;位于所述离心机本体上、用于包含离心机器皿的一个或多个摆动式固定器;其中所述摆动式固定器或所述样品容器的最大尺寸不超过约10mm。

在本文所描述的另一实施方式中,提供了一种用于与样品容器一起使用的紧凑型高速离心机。所述离心机可以包括离心机本体;用于使所述离心机本体旋转的驱动机构;位于所述离心机本体上、用于包含离心机器皿的一个或多个摆动式固定器;其中所述摆动式固定器在离心操作期间从第一定向移动至比所述第一定向更水平的第二定向。

在本文所描述的另一实施方式中,提供了一种用于与样品容器一起使用的紧凑型高速离心机。所述离心机可以包括离心机本体;用于使所述离心机本体旋转的驱动机构;位于所述离心机本体上、用于包含离心机器皿的一个或多个摆动式固定器;其中所述样品容器的宽度大于该样品容器的长度。

在本文所描述的另一实施方式中,提供了一种用于与样品容器一起使用的紧凑型高速离心机。所述离心机可以包括离心机本体和用于使所述离心机本体旋转的驱动机构。

在又一实施方式中,提供了一种与低容量样品容器一起使用的紧凑型高速离心机,所述离心机包括离心机转子;用于使所述离心机转子旋转的马达;耦合至所述离心机转子的多个勺斗;以及位于所述勺斗上的至少一个磁性器件,所述磁性器件被定位用于在所述勺斗处于静止位置时将所述勺斗耦合至所述离心机的静止部分。

应当理解,本文的实施方式可以适于具有以下特征中的一个或多个特征。在一个非限制性示例中,所述转子至少包括光学编码器和霍尔效应传感器,以确定旋转位置。可选地,所述转子至少包括光学编码器和霍尔效应传感器,以至少确定旋转位置和旋转速度。可选地,包括第一编码器盘并且该第一编码器盘提供第一类型编码器信息,而第二编码器盘提供第二类型编码器信息。可选地,提供光学编码器信息的所述第一编码器盘和提供磁性编码器信息所述第二编码器盘耦合至所述马达。可选地,所述勺斗被配置用于容纳用于保持不超过70uL的样品体积的器皿。可选地,所述勺斗被配置用于容纳用于保持不超过80uL的样品体积的器皿。可选地,所述勺斗被配置用于容纳用于保持不超过90uL的样品体积的器皿。可选地,所述勺斗被配置用于容纳用于保持不超过100uL的样品体积的器皿。可选地,所述勺斗被配置用于容纳用于保持不超过150uL的样品体积的器皿。可选地,所述勺斗各自具有L形配置。可选地,提供了离心机壳体并且其大小被设定用于覆盖所述离心机转子的侧面的至少一部分。可选地,所述壳体包括多个切口,以允许空气在离心机本体旋转时进入。

在另一非限制性示例中,提供一种方法,该方法包括提供耦合至离心机本体的马达;使用所述离心机本体上的编码器来确定所述马达的所述旋转部分的旋转速度;以及当所述离心机处于停止状况时,使用勺斗中的至少一个磁体来将所述勺斗保持在所述离心机本体上。可选地,所述勺斗被配置用于保持具有不大于100uL的样品腔室的器皿。可选地,所述方法包括使用被配置用于沿着远离所述容器的方向引导热量的导热材料。可选地,所述方法使用用于使去往所述样品的热传递最小的主动冷却单元,其中所述容器被布置成使得该容器位于热暴露得以减小的区域中;所述主动冷却单元被配置用于冷却所述驱动机构。可选地,所述方法包括使用耦合至所述离心机本体的自动平衡配重,其中这样的配重被配置用于在离心力下移动至使在所述离心机的样品固定器中具有不均匀的负荷量的情况下所述离心机本体的失衡旋转最小的位置。可选地,所述方法包括使用被配置用于在工作中支撑所述离心机的至少一个空气轴承。可选地,所述方法包括使用被配置用于在工作中支撑所述离心机的至少一个空气轴承,其中所述空气轴承的至少一部分是所述离心机壳体的一部分。可选地,所述方法包括使用被配置用于检测预定受力条件范围之外的力的速率变化的力检测器。可选地,所述离心机器皿固定器在离心力下朝向所述离心机转子的中心轴向内枢转。可选地,所述离心机器皿固定器形成与转子体平齐的表面以使气动阻力最小化。可选地,所述离心机器皿固定器被配置用于在离心力下向下缩回。可选地,通向离心机本体冷却元件的电连接未中断,即使这样的元件在离心操作期间处于运转中亦如此。可选地,所述离心机器皿固定器在离心操作期间从第一定向移动至比所述第一定向更水平的第二定向。

应当理解,本公开内容中的实施方式提供了一种包括来自本文其他实施方式中任一个的至少一个技术特征的方法。可选地,一种方法可以包括来自本文其他实施方式中任一个的至少任何两个技术特征。

可选地,一种设备可以包括来自本文其他实施方式中任一个的至少任何一个技术特征。可选地,一种设备可以包括来自本文其他实施方式中任一个的至少任何两个技术特征。可选地,一种系统可以包括来自本文其他实施方式中任一个的至少任何一个技术特征。可选地,一种系统可以包括来自本文其他实施方式中任一个的至少任何两个技术特征。

提供了本概述以用于以简化形式介绍概念选集,这些概念在以下具体实施方式中进一步描述。本概述并不旨在标识出本要求保护的主题的关键特征或必要特征,也并不旨在用于限制本要求保护的主题的范围。

附图说明

图1至图3示出本文描述的离心机的实施方式的各个视图。

图4至图5示出本文描述的离心机的实施方式的各个视图。

图6至图8示出如本文描述的器皿固定器的实施方式的各个视图。

图9至图12示出本文描述的离心机的各个实施方式。

图13至图16示出如本文描述的、具有热控制特征的离心机的实施方式的各个视图。

图17A至图17G示出如本文描述的、用于位置和/或速度控制的设备和方法的各个实施方式。

图18A至图18C示出本文描述的自平衡特征的各个实施方式。

图19至图20示出如本文描述的设备和方法的各个实施方式。

图21示出具有样品处理组件、预处理组件和分析组件的集成系统的一个实施方式的示意图。

图22示出如本文描述的设备的又一实施方式。

具体实施方式

应当理解,前述一般描述和以下详细描述都仅仅是示例性的和解释性的,而不是限制所要求保护的本发明。可以指出,在本说明书和所附权利要求中所用的单数形式“一个”、“一种”和“该”包括复数指代,除非上下文另有明确所指。因此,例如,提及“一种材料”可以包括材料的混合物,提及“一种化合物”可以包括多种化合物,等等。本文所引用的参考文献特此通过引用而全文并入,除非在某种程度上它们与本说明书中明确阐述的教导相冲突。

在本说明书中和随后的权利要求中,将提及应被定义为具有以下含义的若干术语:

“可选的”或“可选地”意指随后描述的情况可能发生或者可能不发生,使得描述包括发生所述情况的实例和不发生所述情况的实例。例如,如果设备可选地包含用于样品采集孔的特征,则这意指样品采集孔可能存在或者可能不存在,并且因此该描述既包括其中设备拥有样品采集孔的结构又包括其中不存在样品采集孔的结构。

离心机

图1、图2和图3示出了可集成到系统中的离心机的尺度透视(图1-侧视图,图2-正面视图,图3-后视图)。离心机可以包含能够使转子以15000rpm转动的电马达。一种类型的离心机转子的形状有点像在垂直面上安装于马达主轴上的扇叶。将样品固定元件(尖端)保持住并且提供了凸棱或搁板的元件被附固至转子,该尖端的位于马达轴远侧的一端搁置于该凸棱或搁板上并且该凸棱或搁板在离心期间提供支撑以使得样品无法逃脱。尖端在其近端处还可以由转子中的机械挡块进一步支撑。可以提供这种尖端以使得离心期间所生成的力不会使该尖端切断软乙烯树脂盖。尖端可以由标准拾放机构,但优选地由移液管插入和移除。转子是单丙烯酸块(或其他材料块),其形状被设定成使得离心机操作期间的振动和噪声最小化。转子的形状被(可选地)设定成使得当其朝向与垂直面成特定角度时,仪器中的其他可移动组件可以移动经过离心机。样品固定元件由转子相对侧上的配块离心地平衡,使得转动惯量的中心相对于马达是轴向的。离心机马达可以向计算机提供位置数据,所述计算机可继而控制转子的静止位置(在离心之前和之后通常是垂直的)。

根据公开的标准(DIN 58933-1;对于美国,CLSI标准H07-A3“Procedure for Determining Packed Cell Volume by the Microhematocrit Method”;经批准的标准-第三版),为了使离心时间最小化(在离心期间不生成太多的机械应力的情况下),转子的便利尺寸在约5-10cm的范围内,以约10000-20000rpm旋转,从而提供约5min的时间来堆积红细胞。

在一些实施方式中,离心机可以是具有摆动式勺斗设计的水平朝向的离心机。在一些优选实施方式中,离心机的旋转轴是垂直的。在备选实施方式中,旋转轴可以是水平的或者成任何角度。离心机可以能够使两个或更多个器皿同时旋转,并且可被设计成完全集成到采用计算机控制的移液管的自动化系统中。在一些实施方式中,器皿的底部可以是封闭的。摆动式勺斗设计可以容许离心器皿在停止时被动地定向于垂直位置,而在旋转时向外旋转至固定角度。在一些实施方式中,摆动式勺斗可以容许离心器皿向外旋转至水平定向。或者它们可以向外旋转至垂直位置与水平位置之间的任何角度(例如,与垂直面成约15度、30度、45度、60度或75度)。具有摆动式勺斗设计的离心机可以满足采用了若干定位系统的机器人系统的位置准确度和可重复性要求。

基于计算机的控制系统可以使用来自光学编码器的位置信息以便使转子以受控的低速旋转。由于针对高速性能可以设计适当的马达,因此无需单独地使用位置反馈来保持准确的静态位置。在一些实施方式中,可以采用与螺线管致动的杠杆相结合的凸轮以在固定数目个位置处实现非常准确且稳定的停止。使用单独的控制系统以及来自内置到马达中的霍尔效应传感器的反馈,能够非常准确地控制高速的转子的速度。

由于在测定仪器系统内若干灵敏仪器必须同时发挥作用,因此离心机的设计优选地使振动最小化或者使其减少。转子可按空气动力学设计有光滑的外部——当勺斗处于其水平位置时将勺斗完全封闭。另外,在壳体的设计中可以在多个位置上采用振动阻尼。应当理解,图1-图3中的任何实施方式可被配置成具有本公开内容中所描述的任何其他特征。

转子

离心机转子可以是该系统的可保持一个或多个离心器皿并且使其旋转的组件。旋转轴可以是垂直的,并且因此转子本身可以水平定位。然而,在备选实施方式中,可以采用不同的旋转轴和转子位置。存在两个被称为勺斗的组件,这两个组件对称地定位在保持离心器皿的转子的任一侧。备选配置是可能的,在备选配置中勺斗被定向成径向对称,例如,三个勺斗以120度定向。可以提供任何数目个勺斗,包括但不限于1个、2个、3个、4个、5个、6个、7个、8个或更多个勺斗。勺斗可彼此均匀地间隔开。例如,如果提供n个勺斗,其中n是整数,则勺斗可以彼此间隔约360/n度。在其他实施方式中,勺斗无需围绕彼此均匀地间隔开或者成径向对称。

当转子静止时,这些勺斗受重力影响可能被动地下降,以使所述器皿垂直定位并且使移液管可接近它们。图4示出了静止的转子的示例,其中勺斗是垂直的。在一些实施方式中,所述勺斗可以被动地下降至预定的角度,该角度可能是或者可能不是垂直的。当转子旋转时,勺斗被离心力迫使成几乎水平的位置或预定的角度。图5示出了处于一定速度下的转子的示例,其中勺斗与水平面成小角度。可以存在针对垂直位置和水平位置两者的物理硬挡块,用于实施其准确性和位置可重复性。

转子可按空气动力学设计成具有盘形状和尽可能少的物理特征,以便使由空气湍流造成的振动最小化。为了实现这一点,勺斗的外部几何形状可以与转子的外部几何形状精确匹配,使得当转子正在旋转并且可迫使勺斗成水平时,所述勺斗和转子能够完美地对准。

为了促进血浆提取,转子可以向下朝着地面相对于水平线成角度。由于勺斗的角度能够与转子的角度相匹配,因此这样可以实施勺斗的固定旋转角度。从这样的配置得到的沉淀物可以在器皿竖直放置时相对于该器皿成角度。可以使用狭窄的提取尖端从离心器皿的顶部吸取血浆。通过将提取尖端放置在由角度沉淀物创造的斜坡底部附近,可以在不扰动敏感的血沉棕黄层的情况下更高效地提取最终体积的血浆。

可以在设备的勺斗中收纳多种管设计。在一些实施方式中,各种管设计可以是末端封闭的。一些管设计被塑形成如同具有锥形底部的常规离心管。其他管设计可以是圆柱形的。具有较低的高度与截面面积比率的管可有利于细胞处理。具有大比率(>10:1)的管可适合于红细胞比容的准确测量和其他成像要求。然而,可以采用任何高度与截面面积比率。勺斗可以由若干种塑料(聚苯乙烯、聚丙烯)中的任一种或者本文其他各处讨论的任何其他材料制成。勺斗可具有范围从几微升到约1毫升的容量。可以使用“拾放”机构将管插入到离心机中和从其移除。

控制系统

由于离心机设备的旋转和定位要求,可以使用双重控制系统的方法。为了使转子转位至具体的旋转定向,可以实行基于位置的控制系统。在一些实施方式中,控制系统可以采用PID(比例积分微分)控制系统。可以采用本领域已知的其他反馈控制系统。可以由高分辨率光学编码器提供针对位置控制器的位置反馈。为了使离心机以低到高的速度运行,可以实行速度控制器,同时采用被调整用于速度控制的PID控制系统。可以由放置在马达轴杆上的一组简单的霍尔效应传感器来提供用于速度控制器的旋转速率反馈。在每个马达轴杆旋转的一次循环时,每个传感器可以生成方波。

停止机构

为了使转子一致而牢固地定位在特定位置,可以在本文的一些实施方式中采用物理停止机构。在一个实施方式中,停止机构可以使用耦合至转子的凸轮连同螺线管致动杠杆。所述凸轮可被塑形成如同圆盘,所述圆盘具有围绕周长机加工而成的若干个“C”形槽口。为了定位离心机转子,可首先将其旋转速度最多降至30RPM。在其他实施方式中,可以将旋转速度降至任何其他量,包括但不限于约5rpm、10rpm、15rpm、20rpm、25rpm、35rpm、40rpm或50rpm。一旦速度足够慢,就可以致动所述杠杆。位于杠杆末端处的是凸轮从动件,该凸轮从动件可以在摩擦最小的情况下沿着凸轮的周长滑行。一旦凸轮从动件到达凸轮中特定槽口的中心,螺线管致动杠杆的力就可胜过马达的力并且可使转子停住。在那时,马达可被电子制动,并且与停止机构相结合,能够非常准确且牢固地将旋转位置无限期地保持。

(一个或多个)离心机勺斗

离心机摆式勺斗可被配置用于收容不同类型的离心管。在优选实施方式中,各种管类型可以在其上(开放)端处具有套环或法兰。这种套环或法兰特征可以搁置在勺斗的上端并且在离心期间支撑所述管。如图6、图7和图8中所示,可以收容各种长度和体积的锥形管和圆柱形管。图6、图7和图8提供了勺斗的示例,并且可以采用其他勺斗设计。例如,图6示出了勺斗配置的示例。勺斗可以具有与离心机配合的侧面部分并且允许该勺斗自由摆动。勺斗可以具有封闭的底部并且在其顶端具有开口。图7示出了与勺斗配合的离心器皿的示例。如先前所提及,勺斗可被塑形用于接纳各种配置的离心器皿。离心器皿可以具有可搁置于勺斗上的一个或多个凸出构件。离心器皿可被塑形有可与离心勺斗配合的一个或多个特征。所述特征可以是该器皿的塑形特征或者一个或多个凸出物。图8示出了可与勺斗配合的另一离心器皿的示例。如先前所述,勺斗可以具有可允许不同配置的离心器皿与该勺斗配合的一个或多个塑形特征。应当理解,图4-图8中的离心机的任何实施方式可被配置成具有本公开内容中所描述的任何其他特征。

离心管和样品提取技术

离心管和提取尖端可以单个地提供并且可以配合在一起,以便在离心之后提取材料。离心管和提取尖端可被设计用于处理自动化系统中的复杂过程。任何尺寸仅是以示例的方式提供的,并且可以使用具有相同或不同比例的其他尺寸。

系统可以实现以下各项中的一项或多项:

1.快速处理小血液样品(通常5–50uL)

2.准确且精确地测量红细胞比容

3.高效地去除血浆

4.高效地使有形成分(红血细胞和白血细胞)重新悬浮

5.浓缩白细胞(在利用荧光抗体进行标记并且对红细胞进行固定加裂解之后)

6.光学确认红细胞裂解和回收白细胞

离心器皿和提取尖端概述

可以使用定制器皿和尖端来操作离心机,以便满足置于系统上的多种约束。离心器皿可以是被设计成在离心机中旋转的底部封闭的管。在一些实施方式中,离心器皿可以是图7中所示的器皿,或者可以具有图7中所示的一个或多个特征。其可以具有支持宽范围的所需功能的若干个独特特征,所述功能包括红细胞比容测量、RBC裂解、沉淀物重新悬浮以及高效血浆提取。提取尖端可被设计用于插入到离心器皿中,以供精确的流体提取和沉淀物重新悬浮。在一些实施方式中,提取尖端可以是图6中所示的尖端,或者可以具有图6中所示的一个或多个特征。本文中讨论了提取尖端的示例性说明并且其可在美国申请序列号13/355,458和13/244,947中获知,所述申请的全文出于所有目的而通过引用并入于此。

离心器皿

在一个实施方式中,离心器皿可被设计用于处理两个单独的使用场景,每个使用场景与不同的抗凝剂和全血量相关联。

第一使用场景可能需要对带有肝素的40uL全血进行沉淀,回收最大体积的血浆,以及使用计算机视觉测量红细胞比容。在60%或更低的红细胞比容的情况下,所需的或优选的血浆体积可以约为40uL*40%=16uL。

在一些实施方式中,将不可能回收100%的血浆,这是因为血沉棕黄层一定不能受到扰动,因此必须在尖端的底部与沉淀物的顶部之间保持最小距离。这一最小距离可以通过实验确定,但作为所需安全距离(d)的函数而牺牲的体积(V)可以使用下式进行估计:V(d)=d*π1.25mm2。例如,针对60%的红细胞比容的情况,对于所需安全距离0.25mm,牺牲的体积可以是1.23uL。该体积可以通过减小离心器皿的红细胞比容部分的内径来减小。然而,由于在一些实施方式中,该狭窄部分必须完全收纳提取尖端的外径(其可能不小于1.5mm),因此离心器皿的现有尺寸可能接近于最小值。

在一些实施方式中,连同血浆提取,可能还需要使用计算机视觉来测量红细胞比容。为了促进这一过程,可以通过使器皿的狭窄部分的内径最小化来使给定体积的红细胞比容的总高度最大化。通过使所述高度最大化,可以优化红细胞比容体积的变化与柱高度的物理变化之间的关系,从而增加可用于测量的像素的数目。器皿的狭窄部分的高度还可以足够长以适应情况最坏的场景——80%红细胞比容,同时仍在柱顶端留下小部分的血浆以允许高效提取。因而,40uL*80%=32uL可以是用于准确测量红细胞比容所需的体积容量。所设计的尖端的狭窄部分的体积可以约为35.3uL,其可以允许剩余一些体积的血浆,即使在最坏的情况下亦如此。

第二使用场景涉及得更多,并且可能需要以下各项中的一项、多项或全部:

·使全血沉淀

·提取血浆

·使沉淀物重新悬浮在裂解缓冲液和染色剂中

·使剩余的白血细胞(WBC)沉淀

·去除上清液

·使WBC重新悬浮

·完全提取WBC悬浮液

为了使压积的沉淀物完全重新悬浮,实验已经表明,可以用能够完全到达包含沉淀物的器皿的底部的尖端来物理地扰动该沉淀物。用于重新悬浮的器皿底部的优选几何形状似乎是半球形形状,与标准商用PCR管类似。在其他实施方式中,可以使用其他器皿底部形状。离心器皿连同提取尖端可被设计用于通过遵守这些几何形状要求同时还允许提取尖端物理地接触所述底部来促进重新悬浮过程。

在手动重新悬浮实验期间,注意到器皿的底部与尖端的底部之间的物理接触可以创造阻止流体移动的密封。可以使用微小的间距以便完全扰动沉淀物,同时允许流体流动。为了促进机器人系统中的这一过程,可以向离心器皿的底部添加物理特征。在一些实施方式中,该特征可以包括放置在器皿底部部分的周长周围的四个小半球形小块。当提取尖端完全插入到器皿中并且被允许进行物理接触时,该尖端的末端可以搁置在所述小块上,并且流体被允许在所述小块之间自由流动。这可能导致在间隙中损失小量体积(~0.25uL)。

在裂解过程期间,在一些实现方式中,最大预期流体体积为60uL,该体积连同提取尖端所排开的25uL可能要求85uL的总体积容量。具有当前最大体积100uL的设计可能超过这一要求。第二使用场景的其他方面需要类似的或已经讨论的尖端特性。

离心器皿的上部几何形状可被设计用于与移液管嘴相配合。可以使用本文其他各处描述的或本领域已知的任何移液管嘴。器皿的上部部分的外部几何形状可以与反应尖端的外部几何形状精确匹配,当前嘴和筒匣两者可被设计成围绕所述反应尖端。在一些实施方式中,很小的脊可以外接上部部分的内表面。该脊可以是最大流体高度的视觉标记物,这意在促进使用计算机视觉系统的自动错误检测。

在一些实施方式中,从完全配合的嘴的底部到最大流体线的顶部的距离为2.5mm。这一距离比提取尖端所遵守的建议距离4mm小1.5mm。这一减小的距离可能由这样的需求所影响:在遵守最小体积要求的同时使提取尖端的长度最小化。这一减小的距离的理由源于器皿的特定用途。由于在一些实现方式中,流体可能仅从顶部与器皿交换,因此其在与嘴配合时将会具有的最大流体是在任何给定时间所预期的最大全血量(40uL)。该流体的高度可能远低于嘴的底部。另一个担忧是,在其他时候,器皿中的流体体积可能远大于此并且使高达嘴高度的壁浸湿。在一些实施方式中,流体将会高达使用器皿的那些高度以确保包含在器皿内的任何流体的弯月面不会超过最大流体高度,即使总体积小于所指定的最大量时亦如此。在其他实施方式中,可以提供其他特征以保持流体被包含在器皿内。

本文所提供的任何尺寸、大小、体积或距离仅以示例的方式提供。可以利用任何其他尺寸、大小、体积或距离,其可以与或者可以不与本文所提及的量成比例。

在交换流体并且快速地插入和移除尖端的过程期间,离心器皿可能受到一些力。如果器皿不受约束,则这些力可能将会足够强以将器皿从离心机勺斗提升或以其他方式移开。为了防止移动,应当以某种方式将器皿固定。为了实现这一点,添加了外接器皿的底部外部的小环。该环可以容易地与勺斗上的顺应式机械特征相配合。只要小块的保持力大于流体操纵期间所经受的力但小于在与嘴配合时的摩擦力,该问题就得以解决。

提取尖端

提取尖端可被设计用于与离心器皿相接,从而高效地提取血浆并且使沉淀的细胞重新悬浮。在需要时,其总长度(例如,34.5mm)可以与包括但不限于美国序列号12/244,723(通过引用而并入本文)中描述的那些血液尖端在内的另一血液尖端的总长度精确匹配,但可以足够长以物理地接触离心器皿的底部。在一些实施方式中,可能需要接触器皿底部的能力,既用于重新悬浮过程又用于白细胞悬浮液的完全回收。

所需的提取尖端的体积可以由预期在任何给定时间从离心器皿吸取的最大体积来确定。在一些实施方式中,该体积可以约为60uL,其可以小于尖端的最大容量85uL。在一些实施方式中,可以提供具有比所需体积更大的体积的尖端。与离心器皿一样,可以使用外接尖端上部部分的内部的内部特征来标记该最大体积的高度。最大体积线与配合的嘴的顶部之间的距离可以为4.5mm,该距离可被视为防止嘴污染的安全距离。可以使用足以防止嘴污染的任何足够的距离。

可以使用离心机来使沉淀的LDL-胆固醇沉降。可以使用成像来验证上清液是清澈的,从而表明彻底去除了沉淀物。

在一个示例中,可将血浆稀释到硫酸葡聚糖(25mg/dL)和硫酸镁(100mM)的混合物中,并且可继而进行温育达1分钟以使LDL-胆固醇沉淀。可以将反应产物吸取到离心机的管中,继而加盖并且以3000rpm旋转达三分钟。在离心之前(示出了白色沉淀物)、在离心之后(示出了清澈的上清液)拍摄的初始反应混合物的图像以及(在移除盖之后)拍摄的LDL-胆固醇沉淀物的图像分别如美国申请序列号13/355,458和13/244,947中所示并且为所有目的而通过引用全文并入于此。

美国专利号5,693,233、5,578,269、6,599,476以及美国专利公开号2004/0230400、2009/0305392和2010/0047790中描述了可在本发明中采用的离心机的其他示例,上述文献的全部内容为所有目的而通过引用并入。

示例方案

方案的许多变体可以用于离心和处理。例如,使用离心机来处理和浓缩白细胞以供细胞计数的典型方案可以包括以下步骤中的一个或多个。下文中的步骤可以按不同的顺序提供,或者可以用其他步骤代替下文中的任何步骤:

1.接收利用抗凝剂进行抗凝的10uL血液(移液管将血液注射到离心机勺斗的底部中)

2.通过离心(<5min x 10000g)使红细胞和白细胞沉积。

3.通过成像来测量红细胞比容

4.在不扰动细胞沉淀物的情况下通过将血浆吸取到移液管中(4uL,对应于情况最坏的场景[60%红细胞比容])来缓慢地去除血浆。

5.在添加溶解在缓冲盐水中的多达五种荧光标记抗体的20uL适当混合物之后使所述沉淀物重新悬浮。

6.在37C下温育达15分钟。

7.通过使红细胞裂解溶液(氯化铵/碳酸氢钾)与白细胞固定试剂(甲醛)混合来制备裂解/固定试剂。

8.添加30uL裂解/固定试剂(总反应体积约为60uL)。

9.在37C下温育15分钟。

10.通过离心使白细胞沉积(10000g)。

11.去除上清液溶血产物。

12.通过添加缓冲液(等渗缓冲盐水)来使白细胞重新悬浮。

13.准确地测量体积。

14.将样品递送至细胞计数器。

所述步骤可以包括接收样品。样品可以是体液,诸如血液,或者本文其他各处所述的任何其他样品。样品可以是小体积,诸如本文其他各处所述的任何体积测量值。在一些情况下,样品可具有抗凝剂。

在一个实施方式中,可能发生分离步骤。例如,可能发生基于密度的分离。这样的分离可以经由离心、磁性分离、裂解或本领域已知的任何其他分离技术而发生。在一些实施方式中,样品可以是血液,并且可以对红血细胞和白血细胞进行分离。

在一个实施方式中,可以进行测量。在一些情况下,可以经由成像或本文其他各处所述的任何其他检测机制进行测量。例如,可以通过成像来进行对分离的血液样品的红细胞比容测量。成像可以经由数码相机或本文所描述的任何其他图像捕捉设备而进行。

在一个实施方式中,可以去除样品的一个或多个成分。例如,如果将样品分离成固体成分和液体成分,则可以移动所述液体成分。可以去除血液样品中的血浆。在一些情况下,可以经由移液管而去除诸如血浆等液体成分。可以在不扰动固体成分的情况下去除液体成分。成像可以帮助去除液体成分或样品的任何其他选定成分。例如,成像可用于确定血浆位于何处并且可帮助移液管的放置以去除血浆。

在一些实施方式中,可向样品添加试剂或其他材料。例如,可以使样品中的固体部分重新悬浮。可以为材料添加标记。可以发生一个或多个温育步骤。在一些情况下,可以添加裂解试剂和/或固定试剂。可以发生附加的分离步骤和/或重新悬浮步骤。根据需要,可以发生稀释和/或浓缩步骤。

可以测量样品的体积。在一些情况下,能够以精确和/或准确的方式测量样品的体积。可以在具有低变异系数,诸如本文其他各处所述的变异系数值的系统中测量样品的体积。在一些情况下,可以使用成像来测量样品的体积。可以捕捉样品的图像并且可以根据该图像计算样品的体积。

可以将样品递送至期望的过程。例如,可以递送样品用于细胞计数。

在另一示例中,可以利用或者可以不利用离心机进行核酸纯化的典型方案可以包括以下步骤中的一个或多个。该系统可以支持DNA/RNA提取以将核酸模板递送至指数扩增反应以供检测。该过程可被设计用于从多种样品提取核酸,所述多种样品包括但不限于全血、血清、病毒运送培养基、人类和动物组织样品、食品样品和细菌培养物。该过程可以是完全自动化的,并且能够以一致且定量的方式提取DNA/RNA。下文中的步骤可以按不同的顺序提供,或者可以用其他步骤代替下文中的任何步骤:

1.样品裂解。可以使用离液盐缓冲液来使样品中的细胞裂解。离液盐缓冲液可以包括以下各项中的一项或多项:离液盐,诸如但不限于3-6M盐酸胍或硫氰酸胍;处于典型浓度0.1-5%v/v下的十二烷基磺酸钠(SDS);处于典型浓度1-5mM下的乙二胺四乙酸(EDTA);处于典型浓度1mg/mL下的溶菌酶;处于典型浓度1mg/mL下的蛋白酶-K;并且可以使用诸如HEPES等缓冲液将pH设定在7-7.5。在一些实施方式中,可以将样品在处于典型温度20-95℃下的缓冲液中温育达0-30分钟。可以在裂解之后向混合物添加异丙醇(50%-100%v/v)。

2.表面加载。可以将裂解的样品暴露于官能化表面(通常是微珠的填充床的形式),诸如但不限于色谱分析式柱中填充的树脂支撑物、以分批式方式与样品混合的磁珠、以流化床模式泵送通过悬浮树脂的样品,以及在所述表面上以切向流动方式泵送通过密闭通道的样品。所述表面可以是官能化的,以便在存在裂解缓冲液的情况下结合核酸(例如,DNA、RNA、DNA/RNA杂合体)。表面类型可以包括二氧化硅和离子交换官能团,诸如二乙基氨基乙醇(DEAE)。可以将裂解的混合物暴露于表面和核酸结合物。

3.洗涤。用盐溶液,诸如pH为7.0-7.5的0-2M氯化钠和乙醇(20-80%v/v)的盐溶液来洗涤固体表面。所述洗涤能够以与加载相同的方式实现。

4.洗脱。可以通过使表面暴露于水或pH为7-9的缓冲液来从该表面洗脱核酸。洗脱能够以与加载相同的方式进行。

系统可以采用这些方案或其他方案的许多变体。此类方案可以与本文所述的任何方案或方法相结合地使用或者代替其而使用。

在一些实施方式中,能够回收通过离心所堆积和浓缩的细胞以供细胞计数是很重要的。在一些实施方式中,这可以通过使用移液装置来实现。液体(通常是等渗缓冲盐水、裂解剂、裂解剂和固定剂的混合物或者缓冲液中的带标记的抗体的混合物)可被分发至离心机勺斗中并且被重复地吸取和重新悬浮。可以迫使移液管的尖端进入堆积的细胞中以促进该过程。图像分析通过客观地验证所有细胞都已重新悬浮来辅助该过程。

在分析之前使用移液管和离心机来处理样品

根据本发明的实施方式,系统可以具有移液能力、拾放能力以及离心能力。这样的能力可以使得能够利用非常小体积的样品来高效执行几乎任何类型的样品预处理和复杂的测定过程。

具体而言,系统可以支持有形成分(红细胞和白细胞)从血浆的分离。系统还可以支持有形成分的重新悬浮。在一些实施方式中,系统可以支持白细胞从固定且溶血的血液的浓缩。系统还可以支持细胞的裂解以释放核酸。在一些实施方式中,系统可以支持通过过滤穿过堆积有(通常为珠状的)固相试剂(例如,二氧化硅)的尖端而进行的核酸纯化和浓缩。系统还可以容许在固相提取之后洗脱纯化的核酸。系统还可以支持沉淀物(例如使用聚乙二醇进行沉淀的LDL-胆固醇)的去除和收集。

在一些实施方式中,系统可以支持亲和纯化。诸如维生素-D和血清素等小分子可被吸收到珠状(颗粒)疏水性衬底上,继而使用有机溶剂进行洗脱。可将抗原提供到涂覆有抗体的衬底上并用酸进行洗脱。可以使用相同的方法来浓缩以低浓度发现的分析物,诸如血栓烷-B2和6-酮-前列腺素F1α。可将抗原提供到涂覆有抗体或适体的衬底上并继而进行洗脱。

在一些实施方式中,系统可以支持在测定之前对分析物的化学改性。例如,为了测定血清素(5-羟色胺),可能需要使用试剂(诸如乙酸酐)将分析物转化为衍生物(诸如乙酰化形式)。这样做可能是为了产生可由抗体识别的一种形式的分析物。

可以使用移液管来移动液体(真空吸取和泵送)。移液管可能受限于相对较低的正压和负压(约0.1–2.0大气压)。当需要时,可以使用离心机来产生高得多的压力以迫使液体穿过珠状固相介质。例如,使用在10000rpm的速度下、半径为5cm的转子,可以生成约5000x g(约7个大气压)的力,其足以迫使液体穿过诸如填充床等阻性介质。可以使用本文其他各处讨论的或者本领域已知的任何离心机设计和配置。

可以发生使用非常小体积的血液来进行的红细胞比容测量。例如,便宜的数码相机能够拍摄出小物体的良好图像,即使在对比度差时亦如此。利用该能力,本发明的系统可以支持用非常小体积的血液对红细胞比容进行自动化测量。

例如,可将1uL血液汲取到微升玻璃毛细管中。毛细管可继而用可固化粘合剂密封并继而经受10000x g下的离心达5分钟。可以容易地测量堆积的细胞体积,并且血浆弯月面(由箭头指示)可能也是可见的,因此可以准确地测量红细胞比容。这可以使得系统能够不浪费相对大体积的血液来进行这一测量。在一些实施方式中,可以“按原样”使用相机,而不操作显微镜以获得较大图像。在其他实施方式中,可以使用显微镜或其他光学技术来放大图像。在一个实现方式中,在没有附加的光干涉的情况下使用数码相机来确定红细胞比容,并且测得的红细胞比容与由需要很多微升的样品的常规微量红细胞比容实验室方法所确定的红细胞比容相同。在一些实施方式中,能够非常精确地测量样品柱的长度以及堆积的红细胞的柱的长度(+/-<0.05mm)。假定血液样品柱可以约为10-20mm,红细胞比容的标准偏差可以远好于由标准实验室方法获得的1%匹配。

系统可以支持对红细胞沉降率(ESR)的测量。可以利用数码相机测量非常小的距离和距离变化率的能力来测量ESR。在一个示例中,将三个血液样品(15uL)吸取到“反应尖端”中。以两分钟的间隔在一小时内捕捉图像。使用图像分析来测量红细胞与血浆之间的交界面的移动。

测量精度可以通过将数据拟合到多项式函数并且计算数据与拟合曲线(针对所有样品)之间的差的标准偏差来估计。在该示例中,当这一测量精度与一小时内移动的距离相关时,其被确定为0.038mm或<2%CV。因此,可以通过该方法精确地测量ESR。用于确定ESR的另一方法是测量距离对时间关系的最大斜率。

离心机

现参考图9至图11,现在将描述离心机的更进一步实施方式。根据本发明的一些实施方式,系统可包括一个或多个离心机。在系统中的设备中可包括一个或多个离心机。例如,可以在设备壳体内提供一个或多个离心机。模块可具有一个或多个离心机。在设备的一个、两个或更多个模块中可具有离心机。离心机可由模块支撑结构所支撑,或者可包含在模块壳体内。离心机可具有紧凑、扁平且仅占用很小占位面积的形状因子。在一些实施方式中,离心机可针对供服务点应用而得到微型化,但仍然能够以等于或超过约10000rpm的高速率旋转,并且能够承受高达约1200m/s2或更大的重力加速度。

在一些实施方式中,离心机可配置用于接纳一个或多个样品。离心机可用于分离和/或纯化不同密度的材料。此类材料的示例可包括病毒、细菌、细胞、蛋白质、环境成分或其他成分。离心机可用来浓缩细胞和/或颗粒以供后续测量。

在一些实施方式中,离心机可以具有可配置用于接纳样品的一个或多个腔体。腔体可配置用于直接在该腔体内接纳样品,使得样品可接触腔体壁。备选地,腔体可配置用于接纳在其中可包含样品的样品器皿。本文对腔体的任何描述均可适用于可以接纳和/或包含样品或样品容器的任何配置。例如,腔体可包括材料内的缺口、勺斗形制、具有中空内部的凸出物、配置成与样品容器互连的构件。对腔体的任何描述亦可包括可以具有或者可以不具有凹面或内表面的配置。样品器皿的示例可包括本文其他各处描述的任何器皿或尖端设计。样品器皿可具有内表面和外表面。样品器皿可具有至少一个配置用于接纳样品的开口端。开口端可以是可封闭或可密封的。样品器皿可具有封闭端。样品器皿可以是流体处理装置的嘴,该装置可充当离心机,以使流体在嘴、尖端或附接至这样的嘴的另一器皿之中旋转。

在一些实施方式中,离心机可具有1个或多个、2个或更多个、3个或更多个、4个或更多个、5个或更多个、6个或更多个、8个或更多个、10个或更多个、12个或更多个、15个或更多个、20个或更多个、30个或更多个、或者50个或更多个配置用于接纳样品或样品器皿的腔体。

在一些实施方式中,离心机可配置用于接纳小体积的样品。在一些实施方式中,腔体和/或样品器皿可配置用于接纳1000μL或更小、500μL或更小、250μL或更小、200μL或更小、175μL或更小、150μL或更小、100μL或更小、80μL或更小、70μL或更小、60μL或更小、50μL或更小、30μL或更小、20μL或更小、15μL或更小、10μL或更小、8μL或更小、5μL或更小、1μL或更小、500nL或更小、300nL或更小、100nL或更小、50nL或更小、10nL或更小、1nL或更小、500pL或更小、100pL或更小、50pL或更小、10pL或更小、5pL或更小、或者1pL或更小的样品体积。

在一些实施方式中,离心机可具有封盖,所述封盖可将样品包含在离心机内。封盖可防止样品雾化和/或蒸发。离心机可选地可具有膜、油(例如,矿物油)、蜡或凝胶,它们可将样品包含在离心机内和/或防止其雾化和/或蒸发。可以提供膜、油、蜡或凝胶作为可包含在离心机的腔体和/或样品器皿内的样品之上的一个层。

离心机可配置成绕旋转轴旋转。离心机可能能够以任何转数/分钟来旋转。例如,离心机的旋转速率可高达100rpm、1000rpm、2000rpm、3000rpm、5000rpm、7000rpm、10000rpm、12000rpm、15000rpm、17000rpm、20000rpm、25000rpm、30000rpm、40000rpm、50000rpm、70000rpm或100000rpm。在一些时间点,离心机可保持静止,而在其他时间点,离心机可以旋转。静止的离心机不旋转。离心机可配置成以可变速率旋转。在一些实施方式中,可控制离心机以期望的速率旋转。在一些实施方式中,旋转速度的变化率可以是可变和/或可控的。

在一些实施方式中,旋转轴可以是垂直的。备选地,旋转轴可以是水平的,或者可具有介于垂直与水平之间的任何角度(例如,约15、30、45、60或75度)。在一些实施方式中,旋转轴可处于固定方向上。备选地,旋转轴可在设备的使用期间变化。当离心机正在旋转时,旋转轴角度可以变化或者可以不变化。

在一些实施方式中,离心机可以包括基座。在一些实施方式中,基座包括离心机转子。基座可具有顶部表面和底部表面。基座可配置成绕旋转轴旋转。旋转轴可与基座的顶部表面和/或底部表面正交。在一些实施方式中,基座的顶部表面和/或底部表面可以是平坦的或弯曲的。顶部表面和底部表面可以是或者可以不是基本上彼此平行的。

在一些实施方式中,基座可具有圆形形状。基座可具有任何其他形状,包括但不限于椭圆形、三角形、四边形、五边形、六边形或八边形形状。

基座可具有高度和一个或多个横向尺寸(例如,直径、宽度或长度)。基座的高度可平行于旋转轴。横向尺寸可垂直于旋转轴。基座的横向尺寸可以大于高度。基座的横向尺寸可以比高度大2倍或更多、3倍或更多、4倍或更多、5倍或更多、6倍或更多、8倍或更多、10倍或更多、15倍或更多、或者20倍或更多。

离心机可具有任何大小。例如,离心机可具有约200cm2或更小、150cm2或更小、100cm2或更小、90cm2或更小、80cm2或更小、70cm2或更小、60cm2或更小、50cm2或更小、40cm2或更小、30cm2或更小、20cm2或更小、10cm2或更小、5cm2或更小、或者1cm2或更小的占位面积。离心机可具有约5cm或更小、4cm或更小、3cm或更小、2.5cm或更小、2cm或更小、1.75cm或更小、1.5cm或更小、1cm或更小、0.75cm或更小、0.5cm或更小、或者0.1cm或更小的高度。在一些实施方式中,离心机的最大尺寸可以是约15cm或更小、10cm或更小、9cm或更小、8cm或更小、7cm或更小、6cm或更小、5cm或更小、4cm或更小、3cm或更小、2cm或更小、或者1cm或更小。

离心机基座可配置用于接纳驱动机构。驱动机构可以是马达,或者是可使离心机能够绕旋转轴旋转的任何其他机构。驱动机构可以是无刷马达,该无刷马达可包括无刷马达转子和无刷马达定子。无刷马达可以是感应马达。无刷马达转子可包围无刷马达定子。转子可配置成绕旋转轴关于定子旋转。

基座可连接到或者可并入无刷马达转子,这可导致基座关于定子旋转。基座可附固到转子,或者可与转子形成一体。基座可关于定子旋转,并且与马达的旋转轴正交的平面可以和与基座的旋转轴正交的平面共面。例如,基座可具有与基座旋转轴正交的平面,该平面基本上穿过基座的上表面与下表面之间。马达可具有与马达旋转轴正交的平面,该平面基本上穿过马达中心。基座平面和马达平面可以基本上共面。马达平面可以在基座的上表面与下表面之间经过。

无刷马达组装件可包括马达转子和定子。马达组装件可包括电子组件。无刷马达向马达转子组装件中的集成可缩小离心机组装件的总大小。在一些实施方式中,马达组装件不延伸超过基座高度。在其他实施方式中,马达组装件的高度不大于基座高度的1.5倍、基座高度的2倍、基座高度的2.5倍、基座高度的3倍、基座高度的4倍或基座高度的5倍。马达转子可被基座所包围,使得马达转子不暴露于基座外。

马达组装件可影响离心机的旋转而无需主轴/轴杆组装件。转子可包围定子,而定子可电连接到控制器和/或电源。

在一些实施方式中,腔体可配置成在基座静止时具有第一定向,而在基座旋转时具有第二定向。第一定向可以是垂直定向,而第二定向可以是水平定向。腔体可具有任何定向,其中腔体可以与垂直面和/或旋转轴成大于和/或等于约0度、5度、10度、15度、20度、25度、30度、35度、40度、45度、50度、55度、60度、65度、70度、75度、80度、85度或90度。在一些实施方式中,第一定向可以比第二定向更接近于垂直。第一定向可以比第二定向更接近于与旋转轴平行。备选地,无论基座是静止还是在旋转,腔体均可具有相同的定向。腔体的定向可取决于或者可不取决于基座旋转的速度。

离心机可配置用于接纳样品器皿,并且可配置成在基座静止时让样品器皿处于第一定向而在基座旋转时让样品器皿处于第二定向。第一定向可以是垂直定向,而第二定向可以是水平定向。样品器皿可具有任何定向,其中样品器皿可以与垂直面成大于和/或等于约0度、5度、10度、15度、20度、25度、30度、35度、40度、45度、50度、55度、60度、65度、70度、75度、80度、85度或90度。在一些实施方式中,第一定向可以比第二定向更接近于垂直。备选地,无论基座是静止还是在旋转,样品器皿均可具有相同的定向。器皿的定向可取决于或者可不取决于基座旋转的速度。

图9示出根据本发明的一个实施方式提供的离心机的一个非限制性示例。该离心机可包括具有底部表面3602和/或顶部表面3604的基座3600。该基座可包含一个、两个或更多个翼部3610a、3610b。

翼部可配置成在延伸穿过基座的轴上折迭。在一些实施方式中,该轴可形成穿过基座的割线。延伸穿过基座的轴可以是折迭轴,其可由一个或多个枢轴点3620形成。翼部可包含处于轴的一侧的基座的整个部分。基座的整个部分可以折迭,从而形成翼部。在一些实施方式中,基座的中心部分3606可与旋转轴相交,而翼部则不与旋转轴相交。基座的中心部分可以比翼部更靠近旋转轴。基座的中心部分可配置用于接纳驱动机构3630。驱动机构可以是马达,或者是可导致基座旋转的任何其他机构,并且可在本文其他各处进一步详细讨论。在一些实施方式中,翼部可具有达基座占位面积的约2%、5%、10%、15%、20%、25%、30%、35%或40%或者更大的占位面积。

在一些实施方式中,可提供穿过基座的多个折迭轴。折迭轴可彼此平行。备选地,一些折迭轴可以彼此正交,或者相对于彼此处于任何其他角度。折迭轴可延伸穿过基座的下表面、基座的上表面、或基座的下表面与上表面之间。在一些实施方式中,折迭轴可更靠近基座下表面地或者更靠近基座上表面地延伸穿过基座。在一些实施方式中,枢轴点可以处在或者更靠近于基座的下表面或基座的上表面。

在翼部中可提供1个、2个、3个、4个、5个、6个或更多个腔体。例如,翼部可配置用于接纳一个、两个或更多个样品或样品器皿。每个翼部可能能够接纳相同数目的器皿或不同数目的器皿。翼部可包含配置用于接收样品器皿的腔体,其中样品器皿在基座静止时朝向第一定向,并且被配置成当基座旋转时朝向第二定向。

在一些实施方式中,翼部可配置为相对于基座的中心部分成角度。例如,翼部可以在基座的中心部分的90与180度之间。例如,当基座静止时,翼部可以是垂直朝向的。翼部在垂直朝向时可以与基座的中心部分成90度。当基座旋转时,翼部可以是水平朝向的。翼部在水平朝向时可以与基座的中心部分成180度。当基座旋转时,翼部可以从基座延伸形成基本上不间断的表面。例如,当基座旋转时,翼部可以延伸形成基座的底部表面和/或顶部表面的基本上连续的表面。翼部可配置成相对于基座的中心部分向下折迭。

翼部的枢轴点可包括一个或多个枢销3622。枢销可延伸穿过翼部的一部分和基座中心部分的一部分。在一些实施方式中,翼部和基座的中心部分可具有互锁特征3624、3626,所述互锁特征3624、3626可防止翼部相对于基座的中心部分横向滑动。

翼部可具有重心3680,该重心定位成低于折迭轴和/或枢轴点3620。当基座静止时,翼部的重心可定位成比延伸穿过基座的轴更低。当基座旋转时,翼部的重心可定位成比延伸穿过基座的轴更低。

翼部可由两种或更多种具有不同密度的不同材料所形成。备选地,翼部可由单一材料形成。在一个示例中,翼部可具有轻质的翼盖3640和沉重的翼基座3645。在一些实施方式中,翼盖可由具有比翼基座更低密度的材料形成。例如,翼盖可由塑料形成,而翼基座由金属形成,例如,由钢、钨、铝、铜、黄铜、铁、金、银、钛或者其任何组合或合金形成。较重的翼基座可帮助将翼部质心提供在折迭轴和/或枢轴点的下方。

翼盖和翼基座可通过本领域已知的任何机构相连接。例如,可以提供紧固件3650,或者可以采用粘合剂、焊接、互锁特征、夹具、钩环紧固件或者任何其他机构。翼部可选地可包括嵌件3655。嵌件可由比翼盖更重的材料形成。嵌件可帮助将翼部质心提供在折迭轴和/或枢轴点的下方。

在翼盖或翼基座或者其任何组合内可提供一个或多个腔体3670。在一些实施方式中,腔体可配置用于接纳多个样品器皿配置。腔体可具有内表面。内表面的至少一部分可接触样品器皿。在一个示例中,腔体可具有一个或多个这样的搁板或内表面特征:其可允许具有第一配置的第一样品器皿配合在腔体内,并且具有第二配置的第二样品器皿配合在腔体内。具有不同配置的第一样品器皿和第二样品器皿可接触腔体的内表面的不同部分。

离心机可配置用于接合流体处理设备。例如,离心机可配置用于连接到移液管或其他流体处理设备。在一些实施方式中,离心机与流体处理设备之间可形成水密密封。离心机可以与流体处理设备相接合,并且配置用于接收从流体处理设备分发的样品。离心机可以与流体处理设备相接合,并且配置用于从流体处理设备接收样品器皿。离心机可以与流体处理设备相接合并容许流体处理设备从离心机拾取或吸取样品。离心机可以与流体处理设备相接合并容许流体处理设备拾取样品器皿。

样品器皿可配置用于与流体处理设备相接合。例如,样品器皿可配置用于连接到移液管或其他流体处理设备。在一些实施方式中,样品器皿与流体处理设备之间可形成水密密封。样品器皿可与流体处理设备相接合,并且配置用于接收从流体处理设备分发的样品。样品器皿可与流体处理设备相接合,并允许流体处理设备从样品器皿拾取或吸取样品。

样品器皿可配置成延伸出离心机翼部。在一些实施方式中,离心机基座可配置成容许样品器皿在翼部折迭时延伸出离心机翼部,并容许翼部在折迭状态与延伸状态之间枢转。

图10示出根据本发明的另一实施方式提供的离心机的一个非限制性示例。该离心机可包括具有底部表面3702和/或顶部表面3704的基座3700。基座可包含一个、两个或更多个勺斗3710a、3710b。

勺斗可配置成绕延伸穿过基座的勺斗枢轴枢转。在一些实施方式中,该轴可形成穿过基座的割线。勺斗可配置成关于旋转点3720枢转。基座可配置用于接纳驱动机构。在一个示例中,驱动机构可以是马达,诸如无刷马达。驱动机构可包括转子3730和定子3735。转子可选地可以是无刷马达转子,而定子可选地可以是无刷马达定子。驱动机构可以是可导致基座旋转的任何其他机构,并且可在本文其他各处进一步详细讨论。

在一些实施方式中,可提供穿过基座的勺斗的多个旋转轴。所述轴可以彼此平行。备选地,一些轴可以彼此正交或相对于彼此处于任何其他角度。勺斗旋转轴可以延伸穿过基座的下表面、基座的上表面,或者在基座的下表面与上表面之间。在一些实施方式中,勺斗旋转轴可更靠近基座的下表面地或更靠近基座的上表面地延伸穿过基座。在一些实施方式中,旋转点可以处在或更靠近基座的下表面或基座的上表面。

在勺斗中可提供1个、2个、3个、4个或更多个腔体。例如,勺斗可配置用于接纳一个、两个或更多个样品或样品器皿3740。每个勺斗可能能够接纳相同数目的器皿或不同数目的器皿。勺斗可包含配置用于接收样品器皿的腔体,其中样品器皿在基座静止时朝向第一定向,并且配置成在基座旋转时朝向第二定向。

在一些实施方式中,勺斗可配置成相对于基座成角度。例如,勺斗可以在基座的0与90度之间。例如,勺斗在基座静止时可以是垂直朝向的。勺斗在基座静止时可向上定位越过离心机基座的顶部表面。在基座静止时,样品器皿的至少一部分可延伸到基座的顶部表面以外。翼部在垂直朝向时可以与基座的中心部分成90度。当基座旋转时,勺斗可以是水平朝向的。勺斗在水平朝向时可以与基座成0度。当基座旋转时,勺斗可以缩回到基座中,从而形成基本上不间断的顶部表面和/或底部表面。例如,当基座旋转时,勺斗可以缩回,从而形成基座的底部表面和/或顶部表面的基本上连续的表面。勺斗可配置成相对于基座向上枢转。勺斗可以如此配置,使得勺斗的至少一部分可以向上枢转越过基座的顶部表面。

勺斗的旋转点可包括一个或多个枢销。枢销可延伸穿过勺斗和基座。在一些实施方式中,勺斗可定位在基座的这样的部分之间——所述部分可防止勺斗相对于基座横向滑动。

勺斗可具有质心3750,该质心定位成低于旋转点3720。当基座静止时,勺斗的质心可定位成低于旋转点。当基座旋转时,勺斗的质心可定位成低于旋转点。

勺斗可由两种或更多种具有不同密度的不同材料形成。备选地,勺斗可由单一材料形成。在一个示例中,勺斗可具有主体3715和内部嵌件3717。在一些实施方式中,主体可由具有比嵌件更低密度的材料形成。例如,主体可由塑料形成,而嵌件由金属形成,例如由钨、钢、铝、铜、黄铜、铁、金、银、钛或者其任何组合或合金形成。较重的嵌件可帮助将勺斗质心提供在旋转点下方。勺斗材料可包括密度较高的材料和密度较低的材料,其中密度较高的材料定位成低于旋转点。勺斗的质心可以如此定位:使得当离心机静止时勺斗自然摆动,开口端向上并且较重端向下。勺斗的质心可以如此定位:使得当离心机以某一速度旋转时勺斗自然缩回。当速度处于预定的速度时,勺斗可以缩回,该预定速度可包括任何速度或者其他各处提到的任何速度。

在勺斗内可提供一个或多个腔体。在一些实施方式中,腔体可配置用于接纳多个样品器皿配置。腔体可具有内表面。内表面的至少一部分可接触样品器皿。在一个示例中,腔体可具有一个或多个这样的搁板或内表面特征:其可容许具有第一配置的第一样品器皿配合在腔体内,并且具有第二配置的第二样品器皿配合在腔体内。具有不同配置的第一样品器皿和第二样品器皿可接触腔体的内表面的不同部分。尽管图9-图11中的实施方式示出在高度比宽度上具有高纵横比的离心机器皿,但应当理解,备选实施方式中还可以使用高度等于或小于宽度的实施方式。

如先前所述,离心机可配置用于与流体处理设备相接合。例如,离心机可配置用于连接到移液管或其他流体处理设备。离心机可配置用于接纳通过流体处理设备分发的样品,或者提供要由流体处理设备吸取的样品。离心机可配置用于接纳或提供样品器皿。

如先前所提及,样品器皿可配置用于与流体处理设备相接合。例如,样品器皿可配置用于连接到移液管或其他流体处理设备。

样品器皿可配置成延伸出勺斗。在一些实施方式中,离心机基座可配置成容许样品器皿在勺斗被提供于回缩状态时延伸出勺斗,并且容许勺斗在回缩状态与凸出状态之间枢转。延伸出离心机顶部表面的样品器皿可容许更容易地向和/或从离心机转移样品或样品器皿。在一些实施方式中,勺斗可配置成缩回到转子中,从而创造出紧凑的组装件以及在操作期间减少阻力,且具有诸如降低噪音和发热以及需要更低功率等额外的益处。

在一些实施方式中,离心机基座可包括一个或多个通道或者其他类似结构,诸如凹槽、导管或通路。对通道的任何描述亦可适用于任何类似的结构。通道可包含一个或多个滚珠轴承。滚珠轴承可穿过通道滑动。通道可以敞开、封闭或部分敞开。通道可配置成防止滚珠轴承从通道脱落。

在一些实施方式中,可将滚珠轴承在转子内放置在密封/封闭轨道中。这种配置对于动态平衡离心机转子是有用的,特别是当同时离心不同体积的样品时尤为如此。在一些实施方式中,滚珠轴承可以在马达外部,从而使总体系统更加强健和紧凑。

通道可环绕离心机基座。在一些实施方式中,通道可沿离心机基座的周长环绕基座。在一些实施方式中,通道可以处在或更靠近于离心机基座的上表面或离心机基座的下表面。在一些情况下,通道对于离心机基座的上表面和下表面可以是等距的。滚珠轴承可沿离心机基座的周长滑动。在一些实施方式中,通道可以在离旋转轴一定距离之处环绕基座。通道可形成圆,其中旋转轴在圆的基本中心处。

图11示出根据本发明的另一实施方式提供的离心机的附加非限制性示例。该离心机可包括具有底部表面3802和/或顶部表面3804的基座3800。基座可包含一个、两个或更多个勺斗3810a、3810b。勺斗可连接到模块框架3820,模块框架3820可连接到基座。备选地,勺斗可直接地连接到基座。勺斗还可附接到配重3830。

模块框架可连接到基座。模块框架可在边界连接到基座,该边界可与基座形成连续的或基本上连续的表面。基座的顶部、底部和/或侧部表面的一部分可与模块框架形成连续的或基本上连续的表面。

勺斗可配置成绕延伸穿过基座和/或模块框架的勺斗枢轴枢转。在一些实施方式中,该轴可形成穿过基座的割线。勺斗可配置成绕勺斗枢轴3840枢转。基座可配置用于接纳驱动机构。在一个示例中,驱动机构可以是马达,诸如无刷马达。驱动机构可包括转子3850和定子3855。在一些实施方式中,转子可以是无刷马达转子,而定子可以是无刷马达定子。驱动机构可以是可导致基座旋转的任何其他机构,并且可在本文其他各处进一步详细讨论。

在一些实施方式中,可提供穿过基座的勺斗的多个旋转轴。所述轴可以彼此平行。备选地,一些轴可以彼此正交或相对于彼此处于任何其他角度。勺斗旋转轴可以延伸穿过基座的下表面、基座的上表面,或者在基座的下表面与上表面之间。在一些实施方式中,勺斗旋转轴可更靠近基座的下表面地或更靠近基座的上表面地延伸穿过基座。在一些实施方式中,勺斗枢轴可以处在或更靠近基座的下表面或基座的上表面。勺斗枢轴可以处在或更靠近模块框架的下表面或模块框架的上表面。

在勺斗中可提供1个、2个、3个、4个或更多个腔体。例如,勺斗可配置用于接纳一个、两个或更多个样品或样品器皿。每个勺斗可能能够接纳相同数目的器皿或不同数目的器皿。勺斗可包含配置用于接收样品器皿的腔体,其中样品器皿在基座静止时朝向第一定向,并且配置成在基座旋转时朝向第二定向。

在一些实施方式中,勺斗可配置为相对于基座成角度。例如,勺斗可以在基座的0与90度之间。例如,勺斗在基座静止时可以是垂直朝向的。勺斗在基座静止时可向上定位越过离心机基座的顶部表面。在基座静止时,样品器皿的至少一部分可延伸到基座的顶部表面以外。翼部在垂直朝向时可以与基座的中心部分成90度。当基座旋转时,勺斗可以是水平朝向的。勺斗在水平朝向时可以与基座成0度。当基座旋转时,勺斗可以缩回到基座和/或框架模块中,从而形成基本上不间断的顶部表面和/或底部表面。例如,当基座旋转时,勺斗可以缩回,从而与基座和/或框架模块的底部表面和/或顶部表面形成基本上连续的表面。勺斗可配置成相对于基座和/或框架模块向上枢转。勺斗可以如此配置:使得勺斗的至少一部分可以向上枢转越过基座和/或框架模块的顶部表面。

勺斗可锁定在多个位置,以便支持离心管的卸放和拾取,以及当离心机器皿处在离心机勺斗中时将液体吸取和分发进和出离心机器皿。实现这一点的一种技术是一个或多个马达,所述一个或多个马达驱动与离心机转子相接触的转轮以精细地定位和/或锁定转子。另一方法可以是使用形成于转子上的凸轮(CAM)形状,而无需额外的马达或转轮。来自移液管的附件,诸如附接到移液管嘴的离心机尖端,可以下压到转子上的凸轮形状上。凸轮表面上的这个力可促使转子旋转到期望的锁定位置。这个力的持续施加可以使转子能够被牢固保持在期望位置。可以向转子添加多个此类凸轮形状,以支持多个锁定位置。当转子被一个移液管嘴/尖端保持时,另一移液管嘴/尖端可与离心机勺斗相接,以便卸放或拾取离心机器皿或执行其他功能,比如从离心机勺斗中的离心机器皿吸取或分发。应当理解,这个凸轮特征可适于与本公开内容中提及的任何实施方式一起使用。

勺斗枢轴可包括一个或多个枢销。枢销可延伸穿过勺斗以及基座和/或框架模块。在一些实施方式中,勺斗可定位在基座和/或框架模块的这样的部分之间:所述部分可防止勺斗相对于基座横向滑动。

勺斗可附接到配重。该配重可被配置用于在基座开始旋转时移动,从而使勺斗枢转,通常从完全垂直的位置枢转至非垂直位置,以供在离心期间使用。当基座开始旋转时,可由施加在配重上的离心力引起配重移动。配重可配置成当基座开始以阈值速度旋转时从旋转轴移开。在一些实施方式中,配重可以在直线方向或路径上移动。备选地,配重可以沿弯曲路径或任何其他路径移动。勺斗可在配重枢轴点3860处附接到配重。可以使用一个或多个枢销或凸出物,其可允许勺斗相对于配重旋转。在一些实施方式中,配重可以沿水平直线路径移动,从而导致勺斗向上或向下枢转。配重可以在与离心机的旋转轴正交的直线方向上移动。这表明勺斗不会向外延伸到离心机转子的底部表面以下。在一些实施方式中,这使得当设备处于工作中时,离心机设计的整体高度能够减小。

还应当理解,选择将勺斗从静止配置移动至操作配置所需的力,以便存在足够的离心力以使得离心器皿内的任何样品不会在勺斗改变定向时从器皿向外溢出或排出。通常,离心器皿可以是顶部敞开的器皿,该器皿不是密封的并因而无法包含来自定向在错误方向上的器皿的溢出。

配重可位于模块框架和/或基座的各部分之间。模块框架和/或基座可配置用于防止配重滑出基座。模块和/或基座可限制配重的路径。配重的路径可被限制在直线方向。可以提供一个或多个可限制配重路径的导销3870。在一些实施方式中,导销可穿过框架模块和/或基座以及配重。

可以向配重提供偏置力。偏置力可通过弹簧3880、弹性机构、气动机构、液压机构或任何其他机构来提供。偏置力可在基座静止时将配重保持在第一位置,而来自离心机旋转的离心力可在离心机以阈值速度旋转时导致配重移动到第二位置。当离心机回到静止或速度降到预定的旋转速度以下时,配重可返回到第一位置。当配重处在第一位置时,勺斗可具有第一定向;而当配重处在第二位置时,勺斗可具有第二定向。例如,当配重处在第一位置时,勺斗可具有垂直定向;而当配重处在第二位置时,勺斗可具有水平定向。配重的第一位置可以比配重的第二位置更靠近旋转轴。

在勺斗内可提供一个或多个腔体。在一些实施方式中,腔体可配置用于接纳多个样品器皿配置。腔体可具有内表面。内表面的至少一部分可接触样品器皿。在一个示例中,腔体可具有一个或多个这样的搁板或内表面特征:其可允许具有第一配置的第一样品器皿配合在腔体内,并且具有第二配置的第二样品器皿配合在腔体内。具有不同配置的第一样品器皿和第二样品器皿可接触腔体的内表面的不同部分。

如先前所述,离心机可配置用于与流体处理设备相接合。例如,离心机可配置用于连接到移液管或其他流体处理设备。离心机可配置用于接纳通过流体处理设备分发的样品,或者提供要由流体处理设备吸取的样品。离心机可配置用于接纳或提供样品器皿。

如先前所提及,样品器皿可配置用于与流体处理设备相接合。例如,样品器皿可配置用于连接到移液管或其他流体处理设备。

样品器皿可配置成延伸出勺斗。在一些实施方式中,离心机基座和/或模块框架可配置成容许样品器皿在勺斗被提供于回缩状态中时延伸出勺斗,并且容许勺斗在回缩状态与凸出状态之间枢转。延伸出离心机顶部表面的样品器皿可容许更容易地向和/或从离心机转移样品或样品器皿。

在一些实施方式中,离心机基座可包括一个或多个通道或者其他类似结构,诸如凹槽、导管或通路。对通道的任何描述亦可适用于任何类似的结构。通道可包含一个或多个滚珠轴承。滚珠轴承可穿过通道滑动。通道可以敞开、封闭或部分敞开。通道可配置成防止滚珠轴承从通道脱落。

通道可环绕离心机基座。在一些实施方式中,通道可沿离心机基座的周长环绕基座。在一些实施方式中,通道可以处在或更靠近于离心机基座的上表面或离心机基座的下表面。在一些情况下,通道对于离心机基座的上表面和下表面可以是等距的。滚珠轴承可沿离心机基座的周长滑动。在一些实施方式中,通道可以在离旋转轴一定距离之处环绕基座。通道可形成圆,其中旋转轴在圆的基本中心处。

可以使用本领域已知的离心机配置的其他示例,包括各种摆动式勺斗配置。例如,参见美国专利号7,422,554,该文献为所有目的特此通过引用而全文并入。例如,勺斗可以向下摆动而不是向上摆动。勺斗可以摆动以向侧面而不是向上或向下凸出。

离心机可以封闭在壳体或外壳内。在一些实施方式中,离心机可以完全封闭在壳体内。备选地,离心机可具有一个或多个敞开区段。壳体可以包括可移动部分,所述可移动部分可允许流体处理设备或其他自动化设备接近离心机。流体处理设备和/或其他自动化设备可在离心机中提供样品、取用样品、提供样品器皿或取用样品器皿。可以在离心机的顶部、侧部和/或底部准许此类取用。

样品可从腔体分发和/或拾取。样品可使用流体处理系统来分发和/或拾取。流体处理系统可以是本文其他各处描述的移液管,或者是本领域已知的任何其他流体处理系统。样品可使用尖端来分发和/或拾取,所述尖端具有本文其他各处描述的任何配置。样品的分发和/或吸取可以是自动化的。

在一些实施方式中,可将样品器皿提供到离心机或将其从离心机移除。样品器皿可以在自动化过程中使用设备插入离心机或从离心机移除。样品器皿可从离心机的表面延伸,这可以简化自动化的拾取和/或取回。样品可能已提供在样品器皿内。备选地,样品可从样品器皿分发和/或拾取。样品可使用流体处理系统从样品器皿分发和/或拾取。

在一些实施方式中,来自流体处理系统的尖端可至少部分地插入到样品器皿和/或腔体中。尖端可以是可从样品器皿和/或腔体插入和移除的。在一些实施方式中,样品器皿和尖端可以是如先前所述的离心器皿和离心尖端,或者具有任何其他器皿或尖端配置。在一些实施方式中,容槽可放置在离心机转子中。这种配置可提供某些与传统尖端和/或器皿相比的优点。在一些实施方式中,容槽可用一个或多个具有专门的几何形状的通道来形成图案,从而使得离心过程的产物自动分离到单独的隔室中。一个这样的实施方式可以是具有锥形通道的容槽,该通道终止于一个由狭窄的开口分隔开的隔室中。上清液(例如,来自血液的血浆)可被离心力迫使进入隔室,同时红血细胞留在主通道中。容槽可以更加复杂,具有若干个通道和/或隔室。通道可以是隔离的或相连的。

在一些实施方式中,可将一个或多个相机放置在离心机转子中,从而使得其可以在转子旋转时对离心机器皿的内容物成像。相机图像可以例如通过使用无线通信方法而得到实时分析和/或传送。这种方法可用来追踪沉降率/细胞堆积——比如用于ESR(红细胞沉降率)测定,其中对RBC(红血细胞)沉淀速度加以测量。在一些实施方式中,可将一个或多个相机定位在转子外,所述相机可以在转子旋转时对离心机器皿的内容物成像。这可以通过使用与相机和旋转中的转子同步定时的频闪照明源来实现。在转子旋转时对离心机器皿内容物的实时成像可允许在离心过程完成后停止旋转转子,从而节省时间,并且有可能防止内容物的过度堆积和/或过度分离。

如图12中所见,一些实施方式可以在离心器皿固定器上包括窗口或开口3825以允许观察包含于其中的样品。这可能涉及相机或其他检测器,所述相机或其他检测器可以通过窗口或开口3825使器皿中的样品可视化。可选地,一些实施方式可以提供窗口或开口3825以允许照明源辐射至正在处理的样品上。一些实施方式可在离心机中包括诸如相机等检测器,诸如但不限于集成到离心机转子中的检测器,以对其中的样品成像。这可以是有益的,这是因为如果相机处于与样品相同的参考系中,那么样品中的任何血液成分的移动可以更容易地可视化。当然,不排除其中诸如但不限于相机等检测器处于与正在移动的样品不同的参考系中的实施方式。也不排除非视觉检测器,只要它们检测器皿中的血液成分的移动即可。

一些实施方式还可以包括对应的窗口或开口3827,所述窗口或开口3827具有与窗口或开口3825相同的大小或不同的大小。当离心机器皿保持在离心机中时,这一窗口或开口3827允许对该器皿内的样品流体进行照明。可选地,一些实施方式可以使用同一个开口用于照明和观察两者。一些实施方式具有通过一个窗口或开口的可视化以及通过可以与或可以不与第一组窗口或开口相对的另一组窗口或开口的照明。对于本文的任何实施方式,应当理解,所述窗口或开口可以包括覆盖这样的窗口或开口的光学透明材料。

热控制

离心有时可能至少部分地由于离心操作所生成的热量而导致样品温度的不期望改变。离心操作期间的一个热源是来自离心机的驱动马达和/或驱动机构的余热。如果在同一离心机中按顺序处理若干样品,则这种余热可能是尤其有问题的,并且在那个时间段内聚集了来自每一操作的热量,该热量可能不期望地使样品温度升高至可接受范围之外。

为了防止此类余热或其他热能源不期望地改变样品温度,可以尽力对所述系统进行绝缘、主动冷却和/或配置以引导不期望的热能远离所述样品。

在一个实施方式中,因为马达可以集成到离心机中,因此这样的集成可以受益于用以解决与马达、离心机转子、勺斗、器皿和/或样品相关的散热问题的努力。用于解决此类散热问题的方法可以包括同时地或顺序地执行以下各项中的一项或多项:冷却、热隔离和/或维持冷却。一些实施方式可能涉及处理散热问题的主动技术。一些实施方式可能涉及被动技术,诸如但不限于将连接至与离心机相关联的热源的离心机部件热隔离。

一些实施方式可以使用诸如但不限于热带等导热材料,以改变离心机的热传递曲线。在一个非限制性示例中,所述带可被配置用于导引热量远离离心机上将对样品具有热影响的热敏区域。热带被设计用于提供发热组件与散热器或其他冷却装置(例如,风扇、热散布器等)之间的优先热传递路径。热带可以是装载有导热陶瓷过滤器的粘性压敏粘合剂,所述过滤器无需热固化循环以形成对许多衬底的结合。这可以单独地使用或者与本文所描述的任何其他热解决方案相结合地使用。

一些实施方式可以使用诸如但不限于珀尔贴(Peltier)加热器/冷却器等主动冷却器来冷却所述样品和/或前文提及的离心机组件中的一个或多个。主动冷却器可以与正在冷却的目标表面直接接触。一些实施方式可以将主动散热器或珀尔贴加热器/冷却器附接至容纳离心器皿的勺斗或固定器。可选地,主动冷却器可以接近于目标表面但不与其直接接触。例如,主动散热器或珀尔贴加热器/冷却器可以附接至离心机壳体,该离心机壳体与离心机保持样品的部分接近。

一些实施方式可以安装位于离心机壳体之外的结构以辅助对流冷却。一些实施方式可能涉及向离心机转子和/或离心机的其他移动部分添加翼片或空气移动结构。一些实施方式可能将翼片或空气移动结构附接至壳体的、靠近转子的静止部分。这样的翼片可以用于辐射出任何余热和/或用于辅助对流。

如图12中所见,一些实施方式可以使用非导热材料来改变热传递曲线。在尽力使样品与(一个或多个)热源绝缘方面,一些实施方式可以将一些金属材料更改为具有低导热率的塑料材料或其他坚实材料。一些实施方式可以使样品与泡沫或其他类型的绝缘材料隔离,以防止不期望的热传递。一些实施方式可以具有整个由低导热率材料制成的离心机转子。一些实施方式可以仅离心机转子的部分由低导热率材料制成。如图12中所见,一些实施方式可以仅用热绝缘材料替换选定部分,诸如但不限于替换框架部分3820。

现参考图13A,一些实施方式可以使用诸如风扇或空气调节源等一个或多个外部冷却装置400,以使用冷却的或未冷却的空气或气体的对流来使离心期间的样品加热最小化。如图13A中所见,一些实施方式可以在关于离心机壳体402的不同位置处和/或不同定向上使用不止一个冷却装置400,以导引离心机上的对流流动。

另外在图13A中可见,一些实施方式可以具有附接至离心机系统的一个或多个组件(诸如但不限于离心机壳体402)的主动热器件410,诸如但不限于珀尔帖效应散热器。图13A示出了,静止的壳体402可以具有定位在该壳体402上的一个或多个位置处的主动热器件410,诸如珀尔帖效应散热器410。一些实施方式可以代替珀尔帖效应散热器410或与其相结合地使用常规的被动散热器。通过示例而非限制的方式,图13A中指示出具有主动热器件410的一些位置可以具有由被动散热器取代或增强的那些单元。

在一个实施方式中,珀尔帖效应散热器可以使用电力来实现极低的温度。一个实施方式可以用丝线将珀尔帖效应散热器连接至马达电路中。当然,不排除用以为散热器供电的其他配置。因为在操作期间对散热器的相对侧进行了加热,因此期望将散热器定位在输送管、通气孔、热散布器、热辐射翼片、热辐射销或用于将余热吸离散热器的冷却侧的其他元件附近。一些实施方式可以使用导热马达安装件来将热量吸离内部组件。一个这样的实施方式可以包括具有铜焊至铝制马达安装件的铝制定子叶片的风扇。马达可以与壳体紧密地配合并且涂有“热传递化合物”以提供用于导引热量远离该马达的优选热通路。这将改进从马达到冷却翼片的热传递。

尽管图13A示出了可以将热调节元件放置在离心机系统的壳体或其他非移动部分上,但应当理解,也可以将类似的(一个或多个)主动热器件或被动热器件安装在离心机系统的内部组件和/或移动组件上。举非限制性示例而言,图13B示出了与样品接触的马达、离心机转子404、勺斗、器皿和/或表面也可被配置成处于(一个或多个)器件410的热控制下。图13B示出了主动热器件410可以位于离心机转子404的周长侧部表面上。可选地,主动热器件410可以位于离心机转子404的顶部表面上。可选地,主动热器件410可以位于离心机转子404的下侧表面上。可选地,主动热器件410可以位于转子412的护罩、壳体或端罩上。通过示例而非限制的方式,图13B中指示出具有主动热器件410的一些位置可以具有由被动散热器取代或增强的那些单元。

现参考图14A-图14B,一些实施方式可能涉及使离心机转子周围的壳体通气,以改进对流气流。这可能涉及将孔洞、切口或塑形的开口放在壳体和/或离心机转子中以允许空气流动。可以在围绕离心机马达的一部分的壳体452中形成通气孔450。计通气孔450的大小和/位置可以设定成允许对离心机的马达元件进行更大的对流冷却。在本非限制性示例中,将较大开口454的大小设定成收纳编码器环读取器。应当理解,除了(一个或多个通气孔),图14A-图14B中的实施方式还可以包括图13A-图13B中所描述的主动热元件或被动热元件中的任一个。基于由本公开内容中描述的各种配置所述提供的位置信息,离心机的一些实施方式可被配置用于驱动和/或制动该离心机,使得离心机在由用户和/或设备(诸如但不限于可编程处理器)指定的具体位置处停住。

图15示出了又一实施方式,其中通气孔460可以形成在离心机转子附近的壳体462中或者甚至形成在离心机转子本身之内。本实施方式中的通气孔460可被定位成位于离心机转子的旋转部分以下(为了易于图示而未示出)。其他实施方式可以具有更大或更小数目的通气孔460。其他实施方式可以具有其他形状的通气孔460,所述其他形状诸如但不限于正方形、矩形、椭圆形、三角形、梯形、平行四边形、五边形、六边形、八边形、任何其他形状或者前述形状的单个组合或多个组合。一些实施方式可以具有多个通气孔460,这些通气孔都具有相同的形状。一些实施方式具有的通气孔460中可以具有至少一个形状不同于至少另一个通气孔460的形状的通气孔。

现参考图16A-图16D,另外其他实施方式可以将热控制元件500定位在离心机的旋转部件和/或非旋转部件上,以支持更大的对流热传递。图16A示出了位于离心机壳体501的外部径向表面上的、呈翼片形状的热控制元件500。翼片可具有平面配置。可选地,热控制元件500的一些实施方式可以是呈鞘502的形状的凸出物。一些实施方式可以结合这些结构特征中的一个或多个。这些结构特征可以用作被动热控制器件或主动热控制器件。

在一些实施方式中,翼片的截面形状可以是圆形的、新月形的、泪滴形的、方形的、矩形的、三角形的、多边形的或任何其他形状。沿着翼片的纵向长度,翼片的截面形状可以相同或者可以不相同。例如,在一些实施方式中,翼片可以具有大致圆柱形的形状;在其他实施方式中,翼片可以具有金字塔(包括截头金字塔)或锥体(包括截头锥体)的形状。在另外其他实施方式中,沿着翼片的纵向长度,翼片(例如,鞘-翼片)的表面可以是弯曲的。弯曲的翼片(例如,鞘-翼片)的表面轮廓的非限制性示例包括双曲线、二次曲线、具有高于二的阶数的多项式曲线、圆弧或其组合。在一些实施方式中,翼片是实心结构,但在其他实施方式中,翼片可以是中空的。在一些实施方式中,翼片可以是部分中空部分实心的。中空的翼片可以允许高效的热传递,同时进一步减少要用于制作散热器的材料量,从而进一步降低了生产成本。备选地或附加地,由翼片形成的图案可以由沿着散热器的周长的通道打断以向散热器的内部提供附加开口并且增加通向内部翼片的气流。由此得到的通道可具有任何图案,诸如通常交叉锉纹、鱼脊形或波浪形图案。在一些实施方式中,翼片可以在其基座(或其他连接区域)处耦合在一起以形成翼片的连接网络,诸如但不限于多个列或行。一些翼片可以连接以形成相连翼片的渗透网络。

图16B示出了具有位于离心机的内部径向部分上的翼片510的一个实施方式。图16C示出了位于离心机转子的下侧上的翼片520。图16D示出了更进一步实施方式,其中转子的圆周部分上的翼片530可以可选地塑形和/或朝向用于与塑形壳体540一起使用,以便将空气吸引到壳体中,从而在离心机转子旋转时帮助冷却其中的组件。当然,一些实施方式可以将上述组件中的一个、两个、三个或全部与其他冷却元件相结合以使系统的冷却潜能最大化。图16B-图16D中的实施方式可以具有耦合至离心机的移动部分或静止部分的各种热控制器件。

在又一实施方式中,内部风扇冷却式电马达(用通俗的话来说,风扇冷却式马达)可以用作自冷却电马达。在一个实施方式中,风扇冷却式马达以附接至马达转子的轴向风扇(通常在作为输出轴杆的相对端上)为特征,该轴向风扇与马达一起旋转,从而提供增加的通向马达的内部部件和外部部件的、辅助冷却的气流。

在另一实施方式中,可以使用水冷却来冷却马达的壳体。在一个非限制性示例中,小离心泵可以构建在轴杆外,具有绕马达外壳环流的预冷却的水的储器。还可以使用其他主动液体冷却技术或被动液体冷却技术。这些技术可以用于冷却马达壳体的一部分。一些实施方式可以用于仅冷却马达壳体的侧壁。一些实施方式可以冷却整个壳体。一些实施方式可以仅冷却壳体的(一个或多个)末端部分,诸如但不限于具有至样品的最近通路的部分。

在更进一步实施方式中,显著地降低绕组电阻可以用于减小正由马达生成的热量。这可能涉及使用具有较少绕组的马达以改进马达性能并转而减少来自马达本身的热量输出。还可以选择改变磁极和磁体的数目以改进马达性能。以这种方式,可以选择马达组件以减少散热问题,诸如对于离心机的正常操作条件,通过使用具有较低热量输出的马达来减少散热问题。

离心机位置控制

现参考图17A-图17D,现将描述对离心机转子的位置控制系统的改进。在一个实施方式中,可以使用诸如但不限于编码器环600等各种编码器盘或结构以更准确地控制和/或检测离心机转子604的位置,可编程处理器可以根据该位置计算离心机转子6604上的固定器定位在何处。在这样的实施方式中,与离心机转子604的位置有关的准确信息将允许移液管或样品处理系统在不使用“停车”系统的情况下将离心机器皿从离心机移除时准确地接合这样的器皿,以在离心机转子604停止时始终使其定位在特定位置处。

图17A示出了与用于读取编码器位置的检测器602一起使用的编码器环600的一个实施方式。编码器环600将于离心机转子604一起旋转,使得编码器环600将提供离心机转子604及其上任何特征的位置信息。在一个实施方式中,编码器环600可在其上具有图案并且被配置用于随光学检测器602一起使用。在一个实施方式中,环600可以由玻璃或塑料制成,具有透明区域和不透明区域。一些实施方式可在环600上使用反射性图案。编码器环600可被配置用于检测编码器环的每一不同角度。环600可以是绝对编码器或增量编码器。

图17B示出了另一实施方式,其中编码器环610作为离心机转子604的一部分而被集成,诸如沿着转子的圆周周长部分而被集成。检测器612被定向用于随集成的编码器环610一起使用。该检测器可以单独地使用或者与其他位置检测系统相结合地使用。可选地,一些实施方式可以使用一个系统用于高准确度位置感测,而使用另一系统用于高速速率感测。编码器环610从离心机转子604的下方的移动还可以减小整体离心机高度,这是因为检测器612和编码器环不再占用离心机转子604下面的垂直空间。

在本文的任何实施方式中,离心机转子604是中空的,以允许组件在离心机操作期间定位在转子604内。在一个实施方式中,当离心机处于工作中时,整个离心机器皿被包含于离心机转子的轮廓内。

图17C示出了更进一步实施方式,其中在制造马达的过程中,马达622可以将编码器环或装置620并入到马达622中。编码器620可以由马达622内的检测器读取或者由位于马达622外部的检测器读取,以确定马达的轴角位置。这样的集成编码器和马达配置可以用在离心机中以及用在诸如因马达形状因子小而期望准确的位置控制的样品处理系统中的移液管等其他系统组件中。通过示例而非限制的方式,增量编码器可以用在感应马达型伺服马达上,而绝对编码器可以用在永磁体无刷马达中。在一个实施方式中,壳体628(以虚线示出)可以用于封闭马达的编码器部分。

图17D示出了又一实施方式,其中使用诸如但不限于导电编码和/或磁编码等其他编码器技术以代替诸如但不限于光学编码器等其他编码器技术或连同其一起来检测转子位置。(一个或多个)磁编码器读取器650和/或652可以定位在各个位置处以检测离心机转子位置。可以使用其他位置检测技术以代替本文所描述的编码器技术或者与其结合使用。在如本文描述的一些实施方式中,可以将这些能力集成到设备中。

可选地,一些实施方式对于速度和位置可以使用分开的传感器。一些实施方式对于这两者可以使用同一传感器。通过示例而非限制的方式,具有不止一个传感器的实施方式可被配置成具有一个用于精细位置控制的传感器和一个用于速度控制的传感器。以这种方式,可以在无需借助于更复杂的传感器的情况下实现更高的离心机速度,诸如但不限于40000rpm,这是因为能够对每一类型针对其特定的目的而进行优化,诸如低速时的高准确度位置控制和较高速时的速度控制。可编程处理器可以用于确定何时转变基于一个传感器或另一传感器对离心机旋转的控制。可选地,可以在所有时域期间使用来自两种类型传感器的数据以提供准确的位置和速度控制。

应当理解,在不可能进行准确控制的系统中,使用挡块的系统可以用于确保离心机转子的最终静止位置(其是已知的)。其他实施方式可以使用对准导轨、鞘、凸轮和/或其他机构来将离心机转子移动至已知位置,使得样品处理系统可以准确地接合转子上的离心机器皿。根据对离心机已经停止在何处的了解,移液管可以转到器皿。离心机的一些实施方式也可具有导轨,以将移液管导引至期望位置或者使用移液管在离心机转子接合安装在离心机上的任何样品包含器皿之前将其移动至正确的位置。

如图17A-图17D中所见,离心机的中心部件可以具有单一轴承,可选地具有压紧660在一起的两个轴承,以改进旋转时的稳定性并尤其用于提高轴承寿命。如图17A-图17D中所见,可以将多个轴承定位成与仅使用单一轴承的情况相比将负荷更均匀地分布。当然,不排除其他数目和/或类型的轴承。

在本文所描述的一些实施方式中,应当理解,马达可以被增强有直接集成到该马达中的位置和/或速度感测能力。在一个非限制性示例中,一些实施方式可以通过添加硬件来实现位置和/或速度感测。在一个实施方式中,可以为马达的一个或多个旋转部分或者附接至该马达的旋转元件配置旋转位置和/或速度感测。

硬件与马达集成的可能性包括但不限于1)(一个或多个)光学编码器(用于位置(相对的和/或绝对的)和/或速度感测)和/或2)(一个或多个)霍尔效应传感器(用于位置(相对的)和/或速度感测)。霍尔效应传感器是在其中电子流动受垂直于电流方向的磁场影响的半导体器件。在一个非限制性示例中,(一个或多个)霍尔效应传感器可以用于检测无刷DC电马达中的永久磁体的位置。

一些实施方式可以结合多种类型的检测器硬件,诸如但不限于同一马达中的(一个或多)个霍尔效应传感器以及(一个或多个)光学编码器两者。可选地,一些实施方式可在马达中具有相同类型的多个传感器。当然,其他类型的位置和/或速度检测硬件并不排除在本文的实施方式之外或者不排除与光学编码器或磁性编码器相结合地使用。

举非限制性示例而言,本文中的传感器和/或编码器的至少一些实施方式能够以高达12000RPM(每转至少1800次计数)的速度执行,以便位置感测。可选地,本文中的传感器和/或编码器的至少一些实施方式能够以高达10000RPM(每转至少1600次计数)的速度执行,以便位置感测。在一个实施方式中,编码器具有与每个离心机中的马达组装件恒对准的索引,以便绝对定位。一些实施方式可以使用绝对编码器,诸如但不限于多比特格雷(Gray)码编码器和/或单轨格雷编码器,以获得绝对位置。一些实施方式可以使用正弦波编码器。编码器技术可以包括但不限于导电轨道、光学轨道(包括反光版本)以及由霍尔效应传感器或磁阻传感器感测的磁编码轨道。

在任一种配置(传感器或编码器)的情况下,本文中的至少一些实施方式可被配置成使得整体高度(不包括输出轴杆)处于或低于13mm,而直径将保持低于35mm。可选地,一些实施方式可以具有约10mm或更小的整体高度以及30mm或更小的直径。在一些实施方式中,硬件被设计成使得相对于没有感测硬件的相同马达,位置感测硬件和/或速度感测硬件的集成不会改变外部马达壳体尺寸。可选地,可以将(一个或多个)霍尔效应传感器安装在马达的(一个或多个)定子槽中以使大小改变最小化。

可选地,一些备选实施方式可以在无附加硬件的情况下使用检测转子的位置和/或速度的固件和/或软件。示例可以包括监测反电动势、追踪阻抗或者使用用于无传感器的马达控制的其他技术。本文所描述的一种或多种技术可以相结合地用于位置和/或速度感测。

现参考图17E,图中示出了具有磁性传感器的离心机的另一实施方式,所述磁性传感器诸如但不限于可直接集成到马达组装件中或者位于马达外部但作为离心机组装件的一部分的霍尔效应传感器组装件630。图17E示出了分解图,其中示出了霍尔效应检测器632和编码器部分634。箭头636示出组装件630可以在如所示的方向上插入到离心机壳体中。举非限制性示例而言,该组装件630被示出有三个检测器632,但应当理解,可以使用其他数目的检测器。组装件630还被示出成所有的检测器都在同一平面上。应当理解,一些实施方式可以具有位于不同平面上的检测器,包括但不限于位于霍尔效应编码器部分634之上和之下的检测器。举非限制性示例而言,编码器部分包括多个磁体和/或可由霍尔效应检测器632检测的多个其他磁场生成或干扰组件。

现参考图17F,示出了具有集成的位置和/或速度感测的马达的一个实施方式的透视图。为了易于图示,对于该实施方式,未示出一些马达组件以便提供对与马达一起使用的编码器组件的清晰视图。该编码器实施方式可以用于检测轴杆位置和/或者转子位置。在该非限制性示例中,检测器670与编码器盘672以及霍尔效应编码器盘674相结合地使用。检测器670可以具有针对检测光学编码器信息的第一表面和用于检测磁性编码器信息的第二表面。在一个非限制性示例中,检测器670可以具有用于检测诸如但不限于光学编码器信息等第一类型编码器信息的第一表面680和用于检测诸如但不限于磁类型编码器信息等第二类型编码器信息的第二表面682。可选地,一些实施方式可以使第一类型编码器信息和第二类型编码器信息都是同一类型的,诸如但不限于都是光学的或者都是磁性的。在这样的配置中,在这至少两种编码器类型之间分辨率可以可选地是不同的,其中一种编码器类型提供更好的用于位置控制的低速分辨率而一种编码器类型具有更好的用于速度控制的高速分辨率。当使用不同类型的编码器信息(诸如一种是光学的和一种是磁性的)时,也可以是如此。当然,不排除使用甚至更多个传感器670或不止两种类型编码器信息的实施方式。

仍参考图17F,磁性组件676可以安装在盘674中。这些元件可全都被配置成随马达轴杆678一起旋转。马达壳体H可以延伸以覆盖全部这些编码器组件或其一部分或者都不覆盖。可选地,一些实施方式可以将至少两种编码器类型结合到诸如但不限于编码器盘等一个旋转元件上。在一个这样的配置中,轴杆上的单一盘可以包括磁性编码器组件和光学编码器组件两者。举非限制性示例而言,环的外部部分可以具有用于光学编码器的区域而内部部分具有磁性组件,或者反之亦然。可选地,两者都位于所述环的相同部分上。可选地,一种类型的编码器类型可以位于平面表面上,而另一组件位于所述盘的侧面上。)。当然,不排除在单一旋转组件上使用不止两种类型的编码器信息的实施方式。通过示例而非限制的方式,使用单一检测器670的实施方式还可以通过使单一线束附接至检测器670来简化制造,因而简化了线管理。

图17G示出了可被配置成包括本文所公开的一个或多个编码器组装件的又一类型马达。一些实施方式可以在马达设计中使用一个转子640和一个定子642。可选地,一些实施方式可以使用定子644、转子640和针对增大的扭矩的定子642。这些实施方式中的任一实施方式可被配置成具有本文中所示出的编码器组装件。一些实施方式可以将诸如但不限于光学编码器盘或磁性编码器盘等编码器元件直接附接或集成至所述定子或转子。应当理解,马达可适于随其他编码器硬件或其他编码器技术一起使用。如图17G中所见,该马达的实施方式可被配置用于配合在图17A-图17E中所示的马达壳体内部以使离心机本体旋转。

自动平衡

现参考图18A,本文中的一些实施方式可被配置用于使用转子上的自动平衡机构来使转子振动最小化,并非所有固定器都包含样品。一个实施方式可以使用诸如但不限于微珠、球体或配重等自动平衡元件700来使离心机转子自动平衡,并且这对于补偿不同勺斗中的不同样品体积可能是有用的。一些实施方式可以在没有勺斗的情况下装载于一些离心机固定器中。自动平衡元件700可以处于通道710(被覆盖或者未被覆盖)中以允许自动平衡元件达到稳态位置,所述稳态位置最大限度地使操作期间转子的旋转不稳定性最小化。在一些实施方式中,一些实施方式可以具有形成于某些离散区段中的通道,而不是具有沿圆周周长连续的通道,所述离散区段具有将仅呆在其特定的离散通道区段中的自动平衡元件。

可选地如图18B中所见,一些实施方式可以包括固定特征720,一旦达到最小旋转速度并且离心力或其他力将自动平衡元件释放以便移动,所述固定特征720就仅将自动平衡元件700释放成自由移动。当达到足够的速度时,特征720可以如箭头722所指示地移动。这一移动将自动平衡元件700释放以移动至使离心机上的负荷平衡的位置。以这种方式,自动平衡元件700在较慢速度下不能够自由移动。这可帮助使噪声和旋转不稳定性最小,所述噪声和旋转不稳定性可能是由自动平衡元件700在较慢速度下能够容易地滚动至非最佳平衡位置所造成的。

在一个实施方式中,自动平衡元件700的重量可被选择成至少约为可与离心机一起使用的所有样品容器和样品的总体最大重量的一半。在另一实施方式中,自动平衡元件700的重量可被选择成至少约为可与离心机一起使用的所有样品容器和样品的总体最大重量的40%。在又一实施方式中,自动平衡元件700的重量可被选择成至少约为可与离心机一起使用的所有样品容器和样品的总体最大重量的30%。当然,不排除其他重量。

现参考图18C,更进一步实施方式可以使自动平衡元件700位于离心机的旋转部分上的多个分开的区域730中。在一个实施方式中,区域730可以连接至彼此,以使得自动平衡元件700可以在区域之间移动。可选地,一些实施方式可以使所述区域730中的每一区域彼此隔离,以使得自动平衡元件730不会从一个区域730移动至另一区域。

(一个或多个)非机械轴承

在更进一步实施方式中,一些系统可被配置成不具有机械轴承而是使用非机械轴承,诸如但不限于空气轴承720。空气轴承可能生成的热量较少——这可以减少离心机所需要的时间。或者其可以支持更长的离心时间而没有可能由与机械轴承相关联的热量引起的热损失。空气轴承可以从诸如但不限于美国宾西法尼亚州的阿斯顿纽威空气轴承(New Way Air Bearings of Aston)等供应商处购得。当然,一些实施方式可以在同一设备中结合使用空气轴承和机械轴承两者。

图19B示出了又一实施方式,其中一个空气轴承呈环形722,而另一空气轴承724被配置成与离心机转子的侧壁相对。举非限制性示例而言,空气轴承724能够以连续的或不连续的方式进行塑形以支撑离心机转子。

故障检测传感器

现参考图20,现在将描述离心机设备的又一实施方式。图20是示出诸如但不限于离心机盘等离心机转子800的剖面透视图,所述离心机转子800在非旋转壳体804内如箭头802所指示地旋转。离心机可以包括检测器810,诸如但不限于安装在离心机上的加速度计等,以检测离心机操作期间不期望的力变化。在一个实施方式中,检测器810安装至离心机壳体的外部以检测是否出现错误。检测器810可以用于检测离心机操作中的异常不稳定性的早期指示。如果在离心机所经受的力的异常变化率方面检测到了这些不稳定性迹象,则离心机可在灾难性的设备故障之前诸如通过可编程处理器的方式选择减缓或停止操作。一些实施方式可以基于对阈值范围之外的变化率或力的检测来触发其他动作,诸如警报或警告。

图20还示出了本文讨论的、并入到本实施方式中的其他特征。举例而非限制,空气轴承722和/或724可以并入随设备的这一实施方式一起使用。还可以使用(一个或多个)振动阻尼器816来隔离来自离心机的振动,以免传递至离心机壳体外部的其他元件。图20还示出了可以使用热绝缘区820、822和/或824以使从马达830到离心机转子的其他部分的热传递最小。

应当理解,图20中的实施方式可被配置用于所描述的任何转子和/或器皿固定器配置,所述配置包括但不限于图1至图12中所示的那些配置。一些实施方式具有的器皿固定器在离心机转子静止时可以大部分延伸至该转子的上部平面或表面以上。可选地,一些实施方式可以具有在离心机转子静止时延伸至该转子的平面或表面以下的器皿固定器。对于其中器皿固定器延伸至离心机转子的平面或表面以下的那些实施方式,壳体804可被配置成具有塑形切口以在器皿固定器和/或器皿在向下延伸位置中旋转时允许余隙。可选地,一些实施方式可以将转子800安装得更高以及/或者将整个马达安装得更高,以在器皿固定器和/或器皿在向下延伸位置中旋转时为其提供足够的余隙。

举非限制性示例而言,离心机可以具有约小于或等于0.1mm2、0.5mm2、1mm2、3mm2、5mm2、7mm2、10mm2、15mm2、20mm2、25mm2、30mm2、40mm2、50mm2、60mm2、70mm2、80mm2、90mm2、100mm2、125mm2、150mm2、200mm2、250mm2、300mm2、500mm2或多达750mm2的占位面积。细胞计数器可以具有小于或等于0.05mm、0.1mm、0.5mm、0.7mm、1mm、2mm、3mm、4mm、5mm、6mm、7mm、8mm、9mm、10mm、11mm、12mm、13mm、15mm、17mm、20mm、25mm、30mm、40mm、50mm、60mm、70mm、80mm、100mm、150mm、200mm、300mm、500mm或750mm的一个或多个尺寸(例如,宽度、长度、高度)。

图20中的实施方式还示出了转子/定子配置,对于本文中的至少一些实施方式,其中定子同轴地安装在转子内,其中转子包括与马达的该转子相连或一体形成的离心机盘。

图20还示出了,对于本文中的至少一些实施方式,被塑形成封闭转子800的离心机盘的至少圆周周长的壳体804可以提供离心机盘可在其内旋转的受控区域。该实施方式中的旋转零件可以包括编码器轮600、转子800的离心机盘以及马达的转子部分。在一些实施方式中,壳体804可以充当端罩以将马达的振动运动保持在壳体内,这是因为可以将阻尼器816安装至壳体804以提供其中的隔离。可以存在能够将旋转部分安装至其上的轴承830和832。可选地,一些实施方式可被配置成仅使用单一轴承。可选地,一些实施方式可被配置成使用多个轴承。一些实施方式可以使用图17F至图17G中的马达来为图20中的离心机供电。可选地,具有本文描述的一个或多个特征的离心机可以安装在图21中的系统上,该系统具有如图所示的或者与图21中所示的系统类似的架空样品处理系统。可选地,这样的离心机可以与其他组件912、914或916以及可供架空样品处理系统使用的所有组件安装在公共安装板、公共平台或公共框架上。

还应当理解,图20中的实施方式还可被配置成包括来自本文其他附图的特征,诸如但不限于图18A-图18C中的自平衡特征。

服务点系统

现参考图21,应当理解,本文描述的过程可以使用自动化技术来执行。可以在集成的自动化系统中使用自动化处理。在一些实施方式中,这种自动化处理可以在单一仪器中,该仪器在其中具有多个功能组件并且由公共壳体所包围。用于沉降测量的处理技术和方法可以是预设的。可选地,所述处理技术和方法可以基于可根据需要以美国专利申请序列号13/355,458和13/244,947中描述的方式动态地改变的方案或规程,这两件申请为所有目的而通过引用并入于此。

在如图21中所示的一个非限制性示例中,集成仪器900可以配备有可用于控制该仪器的多个组件的可编程处理器902。例如,在一个实施方式中,处理器902可以控制单个或多个移液管系统904,所述移液管系统904可在如箭头906和908所指示的X-Y方向以及Z方向上移动。相同的或不同的处理器还可以控制仪器中的其他组件912、914或916。在一个实施方式中,组件912、914或916之一包括离心机。

如图21中所见,通过处理器902的控制可以允许移液管系统904从筒匣910获取血液样品并且将该样品移动至组件912、914或916中的一个。这样的移动会涉及将样品分发至筒匣910中的可移除器皿中并继而将该可移除器皿运送至组件912、914或916中的一个。可选地,将血液样品直接分发至已安装在组件912、914或916中的一个上的容器中。在一个非限制性示例中,这些组件912、914或916中的一个可以是具有成像配置的离心机以允许对容器中的样品的照明和可视化。其他组件912、914或916执行其他分析、测定或检测功能。

在一个非限制性示例中,离心机中的样品器皿,诸如这些组件912、914或916中的一个,可以由一个或多个操纵器从组件912、914或916中的一个移动至组件912、914或916中的另一个(或者可选地,另一位置或设备),以供进一步处理样品和/或样品器皿。一些实施方式可以使用移液管系统904来接合样品器皿以将其从组件912、914或916移动至系统中的另一位置。在一个非限制性示例中,这对于将样品器皿移动至分析站(诸如但不限于成像)并继而将器皿移回至离心机以供进一步处理可能是有用的。在实施方式中,这可以使用移液管系统904或设备中的其他样品处理系统来完成。在一个非限制性示例中,将器皿、尖端等从筒匣910移动至组件912、914或916中的一个再移动至系统中的另一位置(或者反之亦然)也可以使用移液管系统904或设备中的其他样品处理系统来完成。还应当理解,在一些实施方式中,移液管系统904可以用于使离心机转子旋转至适当的位置,以使得可以从已知位置装载和/或卸载(一个或多个)器皿。在这样的实施方式中,移液管系统904可以使用尖端、喷嘴或其他移液管特征来接合离心机转子或其他特征,所述其他特征可以使转子旋转直到使其旋转移动至期望的定向。

现参考图22,现在将描述离心机1000的更进一步实施方式。图22示出了具有在工作中耦合至可旋转框架1020的盖板1010的离心机1000的分解透视图。在该非限制性示例中,可旋转框架1020可以具有自动平衡元件700,在该实施方式中,该自动平衡元件700可以是在其中具有多个配重球体1032的通道1030。可选地,一些实施方式可在盖板1010、轴杆1060或离心机的其他旋转部分中具有自动平衡元件700。可选地,当前已知的或将来可开发的其他自动平衡特征可以并入到可旋转框架1020、盖板1010、轴杆1060或离心机100的其他旋转部分中。

如该非限制性示例中所见,可以存在诸如勺斗1040等一个或多个样品器皿固定器,所述勺斗1040附接在当马达轴杆1060使离心机盘旋转时允许勺斗1040如箭头1050所指示地摆动的铰链或其他附接件中。如该实施方式中所见,勺斗1040可以具有允许观察包含于其中的样品器皿的(一个或多个)窗口或(一个或多个)观察部分1042。可选地,一些实施方式可以没有窗口。一些实施方式还可以具有被设计有配重部分1044的勺斗1040,所述配重部分1044将会使勺斗偏置成趋向于返回到垂直的或基本上垂直的定向。一些实施方式可以使勺斗1040偏置成稍微偏离垂直面。可以存在诸如但不限于磁体1062(与静止位置处的勺斗直接接触或间隔开)等耦合装置以辅助具有一致的静止位置,使得可以容易地装载或卸载勺斗1040中的任何器皿。在一些实施方式中,勺斗1040可在其上具有含铁部分和/或磁体以辅助与诸如磁体1062等耦合装置相接合。可选地,一些实施方式可在勺斗1040中或者勺斗1040和轴杆1060两者中具有磁体。一些实施方式可在勺斗1040和轴杆1060中具有未直接对准的磁体,诸如一个磁体沿着勺斗的较长部分,而另一磁体位于勺斗1040的“脚”部。

尽管图22中仅示出了两个勺斗,但应当理解,不排除具有多个勺斗的实施方式。可选地,当勺斗1040处于旋转位置中时,所述勺斗的至少一部分可以将腔体1070填充在盖板1010中以创造与该盖板的平面齐平的部分,从而减小阻力。可选地,腔体中仅约90%或更少的区域由处于旋转位置中的勺斗1040填充。可选地,腔体中仅约80%或更少的区域由处于旋转位置中的勺斗1040填充。可选地,腔体中仅约70%或更少的区域由处于旋转位置中的勺斗1040填充。

如图22的这一实施方式中所见,当离心机组件如箭头1102所示地装配并降至壳体1100中时,盖板1010可以基本上与壳体1100的顶部齐平。在一些实施方式中,可以使用诸如但不限于霍尔传感器等位置传感器1110来感测离心机的旋转部分上的指示器1112。这对于确定旋转部分的静止位置可能是有用的,以使得样品处理装置可以准确地接合勺斗1040。可以使用光学检测技术、电磁检测技术和/或其他检测技术来进行位置检测。可选地,一些实施方式可以将位置感测并入到马达和/或马达轴中。应当理解,为了易于组装或其他原因,一些实施方式可以将本文所描述的零件集成到更少的单个零件中。应当理解,本文中的离心机可以使用如本文描述的任何马达(包括具有编码器的那些马达)。

图22和图23还示出了,一些实施方式可以具有通气特征,诸如但不限于壳体1100侧部和/或底部中的通气端口1120。如图23中的侧截面图所见,离心机盘的旋转将会把空气吸取到壳体1110中以帮助使离心机冷却。由于离心机盘如箭头1130所指示地旋转,因此可以吸入空气。一些实施方式可以仅在壳体1110的侧壁上具有端口1120。可选地,一些实施方式可以仅在壳体1110的底部中具有端口。可选地,一些实施方式可以在两者中都具有开口。图23示出了壳体的内部可以具有塑形底部部分以辅助引导进入壳体1110的气流。可选地,一些实施方式可以将壳体1110安装在弹性安装件、减震构件等之上,以使从离心机到设备的任何其他部分的任何振动传递最小。如图23中所见,离心机盘1150限定了间隙1160,该间隙1160为盘1150的直径的10%或更小。可选地,离心机盘1150限定了间隙1160,该间隙1160为盘1150的直径的5%或更小。这允许一种可使离心机盘周围的期望空气流动最小的配合。可选地,其他实施方式可在壳体1100的较大部分上具有切口,其中在较少的位置处具有切口(或者在更多的位置处具有较小的切口),以提供期望的冷却水平。

所有前述实施方式可以集成在单一壳体920内并且被配置用于台式或小占位面积的地板安装。在一个示例中,小占位面积的地板安装系统可以占用约4m2或更小的地板面积。在一个示例中,小占位面积的地板安装系统可以占用约3m2或更小的地板面积。在一个示例中,小占位面积的地板安装系统可以占用约2m2或更小的地板面积。在一个示例中,小占位面积的地板安装系统可以占用约1m2或更小的地板面积。在一些实施方式中,仪器占位面积可以小于或等于约4m2、3m2、2.5m2、2m2、1.5m2、1m2、0.75m2、0.5m2、0.3m2、0.2m2、0.1m2、0.08m2、0.05m2、0.03m2、100cm2、80cm2、70cm2、60cm2、50cm2、40cm2、30cm2、20cm2、15cm2或10cm2。美国专利申请序列号13/355,458和13/244,947中描述了服务点设置中的一些合适的系统,上述文献的全部内容为所有目的而通过引用并入本文。本实施方式可被配置用于那些专利申请中所描述的任何模块或系统。

举非限制性示例而言,离心机可以具有约小于或等于0.1mm2、0.5mm2、1mm2、3mm2、5mm2、7mm2、10mm2、15mm2、20mm2、25mm2、30mm2、40mm2、50mm2、60mm2、70mm2、80mm2、90mm2、100mm2、125mm2、150mm2、200mm2、250mm2、300mm2、500mm2或多达750mm2的占位面积。细胞计数器可以具有小于或等于0.05mm、0.1mm、0.5mm、0.7mm、1mm、2mm、3mm、4mm、5mm、6mm、7mm、8mm、9mm、10mm、11mm、12mm、13mm、15mm、17mm、20mm、25mm、30mm、40mm、50mm、60mm、70mm、80mm、100mm、150mm、200mm、300mm、500mm或750mm的一个或多个尺寸(例如,宽度、长度、高度)。

虽然已经参考本发明的某些特定实施方式描述并图示了本发明,但本领域技术人员将会理解,可以在不偏离本发明的精神和范围的情况下对规程和方案作出各种改适、改变、修改、替换、删除或添加。例如,关于上述实施方式中的任一实施方式,应当理解,用于血浆分离的其他技术可以与离心分离一起使用或者可以代替离心分离。例如,一个实施方式可以在初始期对样品进行离心分离,继而可将该样品定位到过滤器中,该过滤器继而去除所形成的血液成分以完成分离。尽管本发明是在离心分离的背景下描述的,但其他加速分离技术也可适于在本文的系统中使用。还应当理解,尽管本发明是在血液样品的背景下描述的,但本文的技术还可被配置成适用于其他样品(生物样品或另外的样品)。本文的任何实施方式可被配置成具有本公开内容中所描述的编码器和/或传感器。本文的任何实施方式可被配置成具有本公开内容中所描述的位置检测设备。本文的任何实施方式可被配置成具有本公开内容中所描述的自动停止特征。本文的任何实施方式可被配置成具有本公开内容中所描述的(一个或多个)热控制特征。

可选地,至少一个实施方式可以使用可变速离心机。利用反馈,诸如但不限于样品中的(一个或多个)接口的位置的成像,可以改变离心机的速度以使压实曲线与时间成线性(直到完全压实),并且从离心机的速度曲线而非沉降率曲线提取出ESR数据。在这样的系统中,可以使用一个或多个处理器来对离心机进行反馈控制以具有线性压实曲线,同时还记录离心机的速度曲线。根据追踪了哪个接口,基于离心机速度来计算沉降率数据。在一个非限制性示例中,使用更高的离心机速度以在压实接近完成时保持线性曲线。

此外,本领域技术人员将会认识到,本发明的任何实施方式可以适用于从人类、动物或其他受试者收集样品流体。可选地,用于沉降测试的血液的体积可以是1mL或更小、500μL或更小、300μL或更小、250μL或更小、200μL或更小、170μL或更小、150μL或更小、125μL或更小、100μL或更小、75μL或更小、50μL或更小、25μL或更小、20μL或更小、15μL或更小、10μL或更小、5μL或更小、3μL或更小、1μL或更小、500nL或更小、250nL或更小、100nL或更小、50nL或更小、20nL或更小、10nL或更小、5nL或更小、或者1nL或更小的体积。

另外,可以在本文中以范围格式呈现了浓度、数量和其他数值数据。应当理解,这样的范围格式仅仅是为了方便和简洁起见而使用,并且应当灵活地解释为不仅包括明确列为范围的限度的数值,而且还包括该范围内所包含的所有单个数值或子范围,犹如每一数值和子范围都被明确列出。例如,应当将约1nm至约200nm的大小范围解释为不仅包括明确列出的约1nm和约200nm的限度,而且还包括诸如2nm、3nm、4nm的单个大小以及诸如10nm至50nm、20nm至100nm等子范围。

本文所讨论或引用的出版物仅因其在本申请的申请日之前的公开内容而提供。本文中任何内容都不解释为承认本发明无权凭借先发明而先于这些出版物。此外,所提供的出版物的日期可能不同于实际出版日期,所述实际出版日期可能需要独立地确认。本文提及的所有出版物均通过引用而并入本文,以公开和描述与所引用的出版物相关的结构和/或方法。以下申请也为所有目的而通过引用并入于此:美国专利申请序列号13/355,458、13/244,947、13/769,820、61/852,489、61/930432、提交于2012年7月18日的题为“Rapid Measurement of Formed Blood Component Sedimentation Rate from Small Sample Volumes”的美国临时申请序列号61/673,037;提交于2014年1月22日的美国临时申请序列号61/930,462;美国专利8,380,541、8,088,593;美国专利公开号2012/0309636;提交于2012年7月26日的美国专利申请序列号61/676,178;提交于2012年9月25日的PCT/US2012/57155;提交于2011年9月26日的美国申请序列号13/244,946;提交于2011年9月26日的美国专利申请13/244,949;以及提交于2011年9月26日的美国申请序列号61/673,245;提交于2012年7月18日的题为“High Speed,Compact Centrifuge for Use with Small Sample Volumes”的美国临时申请序列号61/673,245、提交于2012年7月25日的题为“High Speed,Compact Centrifuge for Use with Small Sample Volumes”的美国临时申请序列号61/675,758以及提交于2012年9月27日的题为“High Speed,Compact Centrifuge for Use with Small Sample Volumes”的美国临时申请序列号61/706,753;美国专利8,380,541、8,088,593;美国专利公开号2012/0309636;提交于2012年7月26日的美国专利申请序列号61/676,178;提交于2012年9月25日的PCT/US2012/57155;提交于2011年9月26日的美国申请序列号13/244,946;提交于2011年9月26日的美国专利申请13/244,949;以及提交于2011年9月26日的美国申请序列号61/673,245。

虽然上文是对本发明的优选实施方式的完整描述,但亦有可能使用各种备选方案、修改和等同项。因此,本发明的范围不应当参考以上描述来确定,相反,应当参考所附权利要求连同它们的等同项的全部范围来确定。任何特征(不论优选与否)均可与任何其他特征(不论优选与否)相结合。所附权利要求不应当被解释为包含装置加功能的限制,除非此类限制在给定的权利要求中使用词组“用于…的装置”所明确记载。应当理解,在本文的描述中和贯穿随后的权利要求中所用的“一个”、“一种”和“所述”的含义包括复数参考,除非上下文另有明确所指。另外,在本文的描述中和贯穿随后的权利要求中所用的“在…中”的含义包括“在…中”和“在…上”,除非上下文另有明确所指。最后,在本文的描述中和贯穿随后的权利要求中所用的“和”和“或”的含义既包括连接性又包括反意连接性并且可互换使用,除非上下文另有明确所指。因此,在使用术语“和”或者“或”的上下文中,此类连接词的使用并不排除“和/或”的含义,除非上下文另有明确所指。

本文档包含受版权保护的材料。例如,本文所示出的所有附图是受版权保护的材料。版权所有者(本文的申请人)对于专利文档和公开内容如它们在美国专利和商标局的专利文件或记录中所呈现的那样传真复制并无异议,但除此之外保留一切版权权利。以下公告应当适用:版权2012-2014赛拉诺斯股份有限公司。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1