基于时间差原理的地址纠错包裹分拣方法与流程

文档序号:15383088发布日期:2018-09-08 00:15阅读:530来源:国知局

本发明涉及快递分拣技术领域,特别是一种基于时间差原理的地址纠错包裹分拣方法。



背景技术:

在当今信息时代,特别是在当前的互联网+、o2o经济模式下,物流是非常重要的一个环节。现在的消费者,特别是年轻一代,更多地倾向于在网上购物,因此国内外快递的日流通量是非常巨大的。在快递运输的过程中,对快递进行分拣是必不可少的,这个过程决定了快递是否能够运往正确的方向。

现有的快递公司中,快递的分拣很多仍然采用人工分拣的方式进行。人工分拣出错率高、效率低、工作量大,还存在暴力分拣等缺点。

目前现有的快递分拣设备已经能实现快递自动扫码、分拣、归类存放,在一定程度上减轻了快递分拣人员的工作量,但仍然存在以下不足之处:

1、包裹在分拣流水线上运行时可能出现意外掉落的情况,如果这种情况发生在包裹地址扫码环节之后,则会导致后续大规模的分拣错误,在没有预警及应对措施的情况下,其可靠性较差。

2、现有的快递分拣设备多为平面铺开的传送带流水线式的多级分拣设备,其占地面积较大,空间利用率低。

3、现有的快递分拣设备存在某些慢速环节,例如包裹地址扫码,这些慢速环节形成的“瓶颈效应”会导致整个分拣流水线效率低下。



技术实现要素:

本发明的目的是克服现有技术的不足,而提供一种基于时间差原理的地址纠错包裹分拣方法,应用该方法能实现包裹自动扫码、分拣、装袋及整袋输出,其自动化程度、空间利用率及分拣效率较高,并且有效避免了分拣流水线上包裹掉落对分拣准确性的干扰。

本发明的技术方案是:基于时间差原理的地址纠错包裹分拣方法,应用于具有查错-纠错-校错功能的物流分拣系统;

具有查错-纠错-校错功能的物流分拣系统,包括逐取分离装置、扫码装置、包裹并齐装置、汇流输送器、纠错装置、分流器、分流传送带、塔式分拣装置及控制器;

逐取分离装置包括从前至后依次紧邻设置的输送器a、光滑分离板、滚筒输送器及输送器b;

包裹并齐装置包括辊筒输送器、支架b、隔板及并齐组件;辊筒输送器包括多根并列布置的辊筒及用于驱动全部的辊筒同步转动的辊筒驱动机构;并齐组件包括气缸、挡板及光电对射传感器a;全部的辊筒在上端形成一条滚动传递面b,隔板将滚动传递面b划分为多条包裹传递通道;

纠错装置包括沿距离汇流输送器的后端由远至近依次布置的扫码器和计时计数器;

分流器包括旋转架、驱动电机p、托举板及小段传送带组件;小段传送带组件包括小段传送带、驱动电机q及光电对射传感器b;

塔式分拣装置包括分拣器、取包裹器、推送器及输送器c;

分拣器数量有多个,并在垂直方向上进行叠加,每个分拣器的中心区域设有一个圆柱形的中心通道,各分拣器的中心通道依次连通,而形成一条竖直连贯的包裹运输通道;分拣器包括底板、漏板、收集箱、收集袋、支承座、回转驱动机构a、拨叉及回转驱动机构b;收集箱包括箱底板、立柱、升降架、升降控制机构、收口组件、电磁铁a、电磁铁b及超高超重检测组件;箱底板在四个边角处分别设有左内凸台、左外凸台、右内凸台及右外凸台;升降控制机构包括钢丝绳、伺服电机a及收放轮;收口组件包括伺服电机b和齿轮;收集袋包括袋体、抽绳及铁片;袋体上端缘口的四个边角处分别设有外翻的耳片,耳片上固接有铁环;

取包裹器包括升降驱动器、载物台和取货机械手;取货机械手包括机械手臂、转轴、转轴座、夹板体及摆动驱动机构;夹板体包括左铁板、右电磁板、转销及扭簧;摆动驱动机构包括包括支承液压缸、活动链节及滑块;

推送器包括电动液压缸和推板;

包裹分拣之前,具有查错-纠错-校错功能的物流分拣系统处在初始状态,在该状态下:

a、逐取分离装置的滚筒输送器处在运行状态;

b、包裹并齐装置的辊筒输送器处在运行状态;

c、包裹并齐装置的挡板处在其运行行程的最上端,此时包裹传递通道被挡板隔断;

d、分流器的一条小段传送带正对汇流输送器的后端,其余三条小段传送带正对分流传送带的前端;

e、收集箱的箱底板上堆叠安装有多个收集袋;

f、收集箱的升降架位于其运动行程的最上端,并通过其下端的电磁铁a、b吸附并撑开一个收集袋;

g、收集箱的两个电磁铁a与收集箱箱底板的左内凸台和左外凸台位置正对;

h、取包裹器的载物台处在其运动行程的最低位置;

i、取包裹器的取货机械手处在其转动行程的最下端;

j、取包裹器的右电磁板呈通电状态;

k、推送器的电动液压缸的活塞杆处于收缩状态;

包裹分拣流程如下:

s01,通过逐取分离装置将输送器a上间隔无序排列输入的包裹等间距排列输出在输送器b上:

a、将包裹放在运行中的输送器a上,当包裹从输送器a的后端排出后,进入并静止在光滑分离板上;

b、后进入光滑分离板的包裹接触并顶推先进入光滑分离板的包裹,从而将先进入光滑分离板的包裹推上滚筒输送器;

c、位于前端的包裹被滚筒输送器带动移动,从而与位于后端的包裹分离,包裹从滚筒输送器排出后,进入运行的输送器b,输送器b上的包裹间距相等;

s02,输送器b上的包裹被扫码装置扫描条形码信息:

包裹在输送器b上被扫码装置扫描条形码,扫描得到的地址信息传递给控制器,控制器再根据后续的包裹并齐装置既定的合流规则和分流器既定的分流规则,生成每条分流传送带上的包裹排序清单和每个包裹在塔式分拣装置内的分拣路线;

s03,通过包裹并齐装置将多条输送器b排出的包裹有序汇流到汇流输送器上:

a、从输送器b排出的包裹进入与该条输送器b对应的包裹并齐装置的包裹传递通道中,包裹被运行的辊筒输送器带动,向着包裹传递通道的出口的方向移动;

b、当任一包裹传递通道的包裹碰撞到第一组并齐组件的挡板时,包裹停止移动并触发第一组并齐组件的光电对射传感器a,光电对射传感器a随即传递信号给控制器,控制器收到信号后随即控制气缸启动,使气缸的活塞杆向下缩回,进而带动挡板下落,当挡板下落至整体低于包裹并齐装置的滚动传递面b的高度时,被阻挡的包裹即被放行;此时,该包裹与其余包裹传递通道的包裹前后距离得到缩短;

c、当任一包裹传递通道的包裹依次碰撞到第一组后方的其它组并齐组件的挡板时,均重复b分步骤中的控制过程;最终将所有的包裹传递通道的包裹排列整齐呈一行,从所有的包裹传递通道的出口同时排出的一行包裹落在运行中的汇流输送器上,并呈一列,这一列包裹向着汇流输送器的后端的方向移动;

s04,汇流输送器排出的包裹通过分流器有序分流到多条分流传送带上:

将三条分流传送带分别编号为b、c、d,将四条小段传送带分别编号为a、b、c、d,将汇流输送器上连贯的12个包裹设为一组,一组包裹按照排出的先后次序依次编号为①、②、③、④、⑤、⑥、⑦、⑧、⑨、⑩、⑪、⑫;

a、分流包裹之前,旋转架处在初始状态,初始状态下,a正对汇流输送器,b正对b,c正对c,d正对d;当汇流输送器排出的包裹①落在a上,与a对应的光电对射传感器b感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p启动,将旋转架转动一个工位,使a正对d,b正对汇流输送器,c正对b,d正对c;2、控制与a对应的驱动电机q启动,a连同其上的包裹①同步运行;本分步骤完成后,b接到包裹②,a上的包裹①排放到d上;

b、当汇流输送器排出的包裹②落在b上,与b对应的光电对射传感器b346感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p启动,将旋转架转动一个工位,使a正对c,b正对d,c正对汇流输送器,d正对b;2、控制与d对应的驱动电机q启动,d开始运行;本分步骤完成后,c接到包裹③;

c、当汇流输送器排出的包裹③落在c上,与c对应的光电对射传感器b感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p启动,将旋转架转动一个工位,使a正对d,b正对c,c正对d,d正对汇流输送器;2、控制与b对应的驱动电机q启动,b连同其上的包裹②同步运行;本分步骤完成后,d接到包裹④,b上的包裹②排放到c上;

d、当汇流输送器排出的包裹④落在d上,与d对应的光电对射传感器b感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p启动,将旋转架转动一个工位,使a正对汇流输送器,b正对b,c正对c,d正对d;2、控制与d对应的驱动电机q启动,d连同其上的包裹④同步运行;本分步骤完成后,a接到包裹⑤,d上的包裹④排放到d上;

e,当汇流输送器排出的包裹⑤落在a上,与a对应的光电对射传感器b感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p启动,将旋转架转动一个工位,使a正对d,d正对c,c正对b,b正对汇流输送器;2、控制与c对应的驱动电机q启动,c连同其上的包裹③同步运行;本分步骤完成后,b接到包裹⑥,c上的包裹③排放到b上;

f,当汇流输送器排出的包裹⑥落在b上,与b对应的光电对射传感器b感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p启动,将旋转架转动一个工位,使a正对c,b正对d,c正对汇流输送器,d正对b;2、控制与a对应的驱动电机q启动,a连同其上的包裹⑤同步运行;本分步骤完成后,c接到包裹⑦,a上的包裹⑤排放到c上;

g,当汇流输送器排出的包裹⑦落在c上,与c对应的光电对射传感器b感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p启动,将旋转架转动一个工位,使a正对b,b正对c,c正对d,d正对汇流输送器;2、控制与c对应的驱动电机q启动,c连同其上的包裹⑦同步运行;本分步骤完成后,d接到包裹⑧,c上的包裹⑦排放到d上;

h,当汇流输送器排出的包裹⑧落在d上,与d对应的光电对射传感器b感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p启动,将旋转架转动一个工位,使a正对汇流输送器,b正对b,c正对c,d正对d;2、控制与b对应的驱动电机q启动,b连同其上的包裹⑥同步运行;本分步骤完成后,a接到包裹⑨,b上的包裹⑥排放到b上;

i,当汇流输送器排出的包裹⑨落在a上,与a对应的光电对射传感器b感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p启动,将旋转架转动一个工位,使a正对d,b正对汇流输送器,c正对b,d正对c;2、控制与d对应的驱动电机q启动,d连同其上的包裹⑧同步运行;本分步骤完成后,b接到包裹⑩,d上的包裹⑥排放到c上;

j、当汇流输送器排出的包裹⑩落在b上,与b对应的光电对射传感器b感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p启动,将旋转架转动一个工位,使a正对c,b正对d,c正对汇流输送器,d正对b;2、控制与b对应的驱动电机q启动,b连同其上的包裹⑩同步运行;本分步骤完成后,c接到包裹⑪,b上的包裹⑩排放到d上;

k,当汇流输送器排出的包裹⑪落在c上,与c对应的光电对射传感器b346感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p启动,将旋转架转动一个工位,使a正对b,b正对c,c正对d,d正对汇流输送器;2、控制与a对应的驱动电机q启动,a连同其上的包裹⑨同步运行;本分步骤完成后,d接到包裹⑫,a上的包裹⑨排放到b上;

l,当汇流输送器排出的包裹⑫落在d上,与d对应的光电对射传感器b感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p启动,将旋转架转动一个工位,使a正对汇流输送器,b正对b,c正对c,d正对d;2、控制与c对应的驱动电机q启动,c连同其上的包裹⑪同步运行;本分步骤完成后,a接到下一组包裹的包裹①,c上的包裹⑪排放到c上;

m,当汇流输送器排出的下一组包裹的包裹①落在a上,重复a~l分步骤进行控制,如此循环往复,实现将汇流输送器排出的包裹有序分流到三条分流传送带上;

s05,通过纠错装置检查分流传送带上的包裹是否存在缺失情况:

a、分流传送带上第一个包裹的前端通过计时计数器的红外线道时开始计数,第二个包裹的前端通过计时计数器的红外线道时计数+1;分流传送带上第一个包裹的后端通过计时计数器的红外线道时开始计时,第二个包裹的前端通过计时计数器的红外线道时停止计时;至此,完成了一个计时计数循环,并同时开始下一个计时计数循环,每次计时计数循环中,计时均从0秒开始,计数采用累加的方式;

b、计时计数器通过不断对比前后相邻两个包裹的计时数据差异进行查错,若检查存在包裹缺失,计时计数器立即向控制器发送报警信号,控制器收到报警信号后启动扫码器,扫码器扫描出现空缺后第一个包裹的地址并发送至控制器;控制器先在包裹排序清单中搜寻出与空缺前第一个计数编号相对应的包裹地址,再从该包裹地址往后进行搜索,重新定位空缺后第一个包裹的地址,并根据重新定位的地址计算出包裹缺失数量,最后在包裹排序清单中,将缺失包裹的地址替换为空白地址,防止后续分拣错误;

c、控制器启动扫码器,扫码器扫描空缺后第二个包裹的地址并发送至控制器,控制器对比鉴别该包裹地址信息与包裹排序清单中的对应包裹信息是否一致,若一致,控制器不产生动作,若不一致,控制器控制整个物流分拣系统停止运行,防止出现分拣错误;

本步骤中,当包裹缺失数量大于等于三个,控制器控制整个物流分拣系统停止运行,同时触发外部报警器报警,以提醒操作人员来处理;

s06,从汇流输送器排出并进入塔式分拣装置的包裹经过分拣进入对应的收集箱:

a、包裹从分流传送带排出后,落在塔式分拣装置最上层分拣器上转运平面的临停区域,控制器根据预先计算出的该包裹的分拣路线控制回转驱动机构a产生动作,使漏板的包裹下落孔a有选择性的正对收集箱上端开口或正对底板包裹下落孔b,再控制回转驱动机构b产生动作,通过拨叉将包裹拨动至漏板的包裹下落孔a处,包裹则通过漏板的包裹下落孔a落入本层分拣器的收集箱或下一层分拣器的上转运平面的临停区域;

b、包裹到达新一层分拣器的上转运平面的临停区域后,重复a分步骤控制过程,使包裹最终落入对应层分拣器的对应的收集箱;

s07,收集箱自动将达到收口标准的收集袋收口:当收集箱内的包裹达到预定重量或高度后,包裹超重检测器或包裹超高检测器随即向控制器报警,控制器收到报警信号后控制两个伺服电机b同时启动,两个伺服电机b分别带动齿轮沿齿轮容纳腔侧壁上的齿条移动,两个伺服电机b则分别在内、外弧形边杆的电机滑槽内移动,电磁铁a则逐渐靠近电磁铁b,当电磁铁a移动至与电磁铁b最接近的位置时,伺服电机b停止移动,此时收集袋上端开口被关闭;

s08,通过取货机械手将收口的收集袋转移到载物台上:

a、收集袋上端开口被关闭后,控制器控制升降驱动器产生动作,将载物台52升至与报警的收集箱相对应的高度;

b、控制器再同时进行两项控制:1、控制支承液压缸的活塞杆伸出,将取货机械手向上推,使夹板体趋近收集袋的铁片;2、控制右电磁板断电,使闭合的夹板体在扭簧的作用下张开,张开的夹板体正对收集袋的铁片;

c、夹板体张开若干秒后,控制器再控制右电磁板通电,使夹板体合拢,夹板体合拢的同时,将收集袋的铁片吸附到右电磁板上,夹板体合拢之后,收集袋的铁片便被夹紧在夹板体的左铁板与右电磁板之间;

d、收集袋的铁片被夹紧之后,控制器先控制电磁铁a和电磁铁b断电,使收集袋与收集箱脱离连接,再控制支承液压缸的活塞杆进一步伸出,使取货机械手进一步向上推,从而将收集袋上端开口收紧,并从收集箱的包裹拽出口拽出,落在载物台上;

s09,收集箱内的收集袋转移出去后收集箱内自动撑开一个收集袋:

a、收集箱的包裹超重检测器检测到收集袋抽离后,传递信号给控制器,控制器收到信号后控制两个伺服电机b启动,伺服电机b机轴转动带动齿轮沿齿轮容纳腔侧壁上的齿条啮合运动,两个伺服电机b则分别在内、外弧形边杆的电机滑槽内移动,电磁铁a则逐渐远离电磁铁b,当电磁铁a移动到初始位置时停止移动;

b、控制器再控制伺服电机a启动,放下钢丝绳,升降架通过滑块沿着立柱的滑槽下滑,待钢丝绳放空之后,升降架滑落到接近箱底板的高度;

c、控制器然后控制两个电磁铁a和两个电磁铁b通电,电磁铁a和电磁铁b分别吸附套在箱底板的左内凸台、左外凸台、右内凸台及右外凸台上的最上一层收集袋的4个耳片,从而完成收集袋的衔取;

d、控制器最后控制伺服电机a启动,收回钢丝绳,钢丝绳带动升降架上升,升降架带动新衔取的收集袋上升,最终上升到初始位置;

s10,载物台上的收集袋通过推送器转移到输送器c上:

a、包裹落在载物台上后,控制器同时进行三项控制:1、控制右电磁板断电,松开收集袋的铁片;2、控制支承液压缸的活塞杆缩回,使取货机械手下落至最低位置;3、控制升降驱动器产生动作,使载物台下降至最低位置;

b、当载物台下降到最低位置后,控制器控制电动液压缸的活塞杆伸出,通过推板将将载物台上的收集袋推上输送器c,动作完成后,电动液压缸的活塞杆缩回,等待下一次指令。

本发明进一步的技术方案是:s01步骤中,包裹在输送器a上放置呈一列;输送器a的运行速度<滚筒输送器的滚动线速度≤输送器b的运行速度;各条输送器b的运行速度一致;s03步骤中,辊筒输送器的运行速度>输送器b的运行速度。

本发明与现有技术相比具有如下优点:

1、针对物流分拣过程中地址扫码环节与包裹归类装袋环节之间的输送距离较长,易出现包裹掉落,导致包裹实际顺序与扫码地址顺序错位的问题,本发明在包裹归类装袋环节之前添加了具有地址查错-纠错-核错功能的纠错环节,防止扫码地址与包裹地址的错位,提高分拣的准确度。

2、本发明提供的快递分拣方法,基于具有查错-纠错-校错功能的物流分拣系统,其自动化程度较高,可实现包裹自动扫码、按地址归类装袋、整袋打包及整袋输送到传送带上,相比人工分拣,快递员的工作量降低,分拣错误率降低,分拣效率提高。

3、针对现有物流分拣流水线中存在的慢速环节(例如地址扫码),会导致整个分拣流水线快不起来的问题,本发明将扫码环节分成了多条同时运行的并联线路,再将多条并联线上的包裹按线逐一取出组合成有序的包裹快速线,提高整个物流分拣线的分拣效率。

4、针对现有的物流分拣流水线通过传送带进行平面铺开分拣,占地面积大的问题,本发明通过塔式分拣装置实现了包裹在垂直方向上分拣,及分拣后自动打包和输出的功能,相比现有的分拣方法占地面积小且功能集成。

以下结合图和实施例对本发明作进一步描述。

附图说明

图1为具有查错-纠错-校错功能的物流分拣系统的结构示意图;

图2为逐取分离装置的滚筒输送器的结构示意图;

图3为包裹并齐装置的结构示意图;

图4为图3的俯视图;

图5为分流器的结构示意图;

图6为塔式分拣装置的结构示意图;

图7为塔式分拣装置的分拣器的结构示意图;

图8为分拣器的底板的结构示意图;

图9为分拣器的漏板的结构示意图;

图10为分拣器的收集箱在某一视角下的结构示意图;

图11为分拣器的收集箱在另一视角下的结构示意图;

图12为图11的a部分放大图;

图13为分拣器的收集袋的结构示意图;

图14为塔式分拣装置的取包裹器的结构示意图;

图15为图14的b部分放大图;

图16为取包裹器的夹板体的结构示意图;

图17为塔式分拣装置的外罩的结构示意图;

图18为s04步骤开始之前分流器的初始状态示意图;

图19为s04步骤中a分步骤的状态示意图;

图20为s04步骤中l分步骤的状态示意图。

图例说明:逐取分离装置1、输送器a11、光滑分离板12、滚筒输送器13、滚筒131、支架a132、滚筒驱动机构133、驱动电机x1331、链条x1332、链轮x1333、输送器b14、扫码装置100、包裹并齐装置2、汇流输送器200、辊筒输送器21、辊筒211、辊筒驱动机构212、驱动电机y2121、链条y2122、链轮y2123、支架b22、隔板23、并齐组件24、气缸241、挡板242、光电对射传感器a243、滚动传递面b、包裹传递通道20、纠错装置300、扫码器301、计时计数器302、分流器3、旋转架31、竖直转杆311、悬臂312、驱动电机p32、托举板33、小段传送带组件34、小段传送带341、主动辊342、从动辊343、辊座344、驱动电机q345、光电对射传感器b346、分流传送带400、分拣器4、中心通道41、底板42、中心孔b421、包裹下落孔b422、环形槽b423、漏板43、中心孔a431、包裹下落孔a432、环形槽a433、收集箱44、箱底板441、左内凸台4411、左外凸台4412、右内凸台4413、右外凸台4414、立柱442、滑槽4421、升降架443、内弧形边杆4431、左边杆4432、外弧形边杆4433、右边杆4434、滚轮4435、移动通道4436、电机滑槽44361、齿轮容纳腔44362、升降控制机构444、钢丝绳4441、伺服电机a4442、收放轮4443、收口组件445、伺服电机b4451、齿轮4452、电磁铁a446、电磁铁b447、包裹拽出口448、收集袋45、袋体451、抽绳安装腔4511、入口45111、出口45112、耳片4512、铁环4513、抽绳452、铁片453、支承座46、下回转环461、支承杆462、回转驱动机构a47、主动链轮a471、步进电机a472、从动链轮a473、链条a474、拨叉48、上回转环481、扫臂482、回转驱动机构b49、主动链轮b491、步进电机b492、从动链轮b493、链条b494、取包裹器5、升降驱动器51、载物台52、取货机械手53、机械手臂531、滑槽5311、转轴532、转轴座533、夹板体534、左铁板5341、右电磁板5342、转销5343、扭簧5344、摆动驱动机构535、支承液压缸5351、活动链节5352、滑块5353、推送器6、电动液压缸61、推板62、输送器c500、外罩600、包裹入口601、包裹出口602、底座700、包裹运输通道800。

具体实施方式

实施例1:

基于时间差原理的地址纠错包裹分拣方法,应用于具有查错-纠错-校错功能的物流分拣系统。

具有查错-纠错-校错功能的物流分拣系统,包括逐取分离装置1、扫码装置100、包裹并齐装置2、汇流输送器200、纠错装置300、分流器3、分流传送带400及塔式分拣装置。

逐取分离装置1包括从前至后依次紧邻设置的输送器a11、光滑分离板12、滚筒输送器13及输送器b14。

包裹并齐装置2包括辊筒输送器21、支架b22、隔板23及并齐组件24。辊筒输送器21包括多根并列布置的辊筒211及用于驱动全部的辊筒211同步转动的辊筒驱动机构212。并齐组件24包括气缸241、挡板242及光电对射传感器a243。全部的辊筒211在上端形成一条滚动传递面b,隔板23将滚动传递面b划分为多条包裹传递通道20。

纠错装置300包括沿汇流输送器200的前进方向由后至前依次布置的扫码器301和计时计数器302。

分流器3包括旋转架31、驱动电机p32、托举板33及小段传送带组件34。小段传送带组件34包括小段传送带341、驱动电机q345及光电对射传感器b346。

塔式分拣装置包括分拣器4、取包裹器5、推送器6及输送器c500。

分拣器4数量有多个,并在垂直方向上进行叠加,每个分拣器4的中心区域设有一个圆柱形的中心通道41,各分拣器4的中心通道41依次连通,而形成一条竖直连贯的包裹运输通道800。分拣器4包括底板42、漏板43、收集箱44、收集袋45、支承座46、回转驱动机构a47、拨叉48及回转驱动机构b49。收集箱44包括箱底板441、立柱442、升降架443、升降控制机444、收口组件445、电磁铁a446、电磁铁b447及超高超重检测组件。箱底板441在四个边角处分别设有左内凸台4411、左外凸台4412、右内凸台4413及右外凸台4414。升降控制机构包括钢丝绳4441、伺服电机a4442及收放轮4443。收口组件包括伺服电机b4451和齿轮4452。收集袋45包括袋体451、抽绳452及铁片453。袋体451上端缘口的四个边角处分别设有外翻的耳片4512,耳片4512上固接有铁环4513。

取包裹器5包括升降驱动器51、载物台52和取货机械手53。取货机械手53包括机械手臂531、转轴532、转轴座533、夹板体534及摆动驱动机构535。夹板体534包括左铁板5341、右电磁板5342、转销5343及扭簧5344。摆动驱动机构535包括支承液压缸5351、活动链节5352及滑块5353。

推送器6包括电动液压缸61和推板62。

包裹分拣之前,具有查错-纠错-校错功能的物流分拣系统处在初始状态,在该状态下:

a、逐取分离装置1的滚筒输送器13处在运行状态;

b、包裹并齐装置2的辊筒输送器21处在运行状态;

c、包裹并齐装置2的挡板242处在其运行行程的最上端,此时包裹传递通道20被挡板242隔断;

d、分流器3的一条小段传送带341正对汇流输送器200的后端,其余三条小段传送带341正对分流传送带400的前端;

e、收集箱44的箱底板441上堆叠安装有多个收集袋45;

f、收集箱44的升降架443位于其运动行程的最上端,并通过其下端的电磁铁a、b吸附并撑开一个收集袋45;

g、收集箱44的两个电磁铁a446与收集箱44箱底板441的左内凸台4411和左外凸台4412位置正对;

h、取包裹器5的载物台52处在其运动行程的最低位置;

i、取包裹器5的取货机械手53处在其转动行程的最下端;

j、取包裹器5的右电磁板5342呈通电状态;

k、推送器6的电动液压缸61的活塞杆处于收缩状态。

包裹分拣流程如下:

s01,通过逐取分离装置将输送器a上间隔无序排列输入的包裹等间距排列输出在输送器b上:

a、将包裹放在运行中的输送器a11上,当包裹从输送器a11的后端排出后,进入并静止在光滑分离板上;

b、后进入光滑分离板12的包裹接触并顶推先进入光滑分离板12的包裹,从而将先进入光滑分离板12的包裹推上滚筒输送器13;

c、位于前端的包裹被滚筒输送器13带动移动,从而与位于后端的包裹分离,包裹从滚筒输送器13排出后,进入运行的输送器b,输送器b上的包裹间距相等。

本步骤中,包裹在输送器a上放置呈一列。

本步骤中,输送器a的运行速度<滚筒输送器13的滚动线速度≤输送器b的运行速度。

本步骤中,各条输送器b的运行速度一致。

s02,输送器b上的包裹被扫码装置100扫描条形码信息:

包裹在输送器b14上被扫码装置100扫描条形码,扫描得到的地址信息传递给控制器,控制器再根据后续的包裹并齐装置既定的合流规则和分流器3既定的分流规则,生成每条分流传送带上的包裹排序清单和每个包裹在塔式分拣装置内的分拣路线。

s03,通过包裹并齐装置2将多条输送器b排出的包裹有序汇流到汇流输送器上:

a、从输送器b14排出的包裹进入与该条输送器b14对应的包裹并齐装置2的包裹传递通道20中,包裹被运行的辊筒输送器21带动,向着包裹传递通道20的出口的方向移动,(因各条输送器b排出包裹的先后时机不同,故初始进入各包裹传递通道20内的包裹存在前后位置差异)。

b、当任一包裹传递通道20的包裹碰撞到第一组并齐组件24的挡板242时,包裹停止移动并触发第一组并齐组件24的光电对射传感器a243,光电对射传感器a243随即传递信号给控制器,控制器收到信号后随即控制气缸241启动,使气缸241的活塞杆向下缩回,进而带动挡板242下落,当挡板242下落至整体低于包裹并齐装置2的滚动传递面b的高度时,被阻挡的包裹即被放行;此时,该包裹与其余包裹传递通道20的包裹前后距离得到缩短。

c、当任一包裹传递通道的包裹依次碰撞到第一组后方的其它组并齐组件24的挡板242时,均重复b分步骤中的控制过程;最终将所有的包裹传递通道20的包裹排列整齐呈一行,从所有的包裹传递通道20的出口同时排出的一行包裹落在运行中的汇流输送器200上,并呈一列,这一列包裹向着汇流输送器200的后端的方向移动。

本步骤中,辊筒输送器21的运行速度>输送器b的运行速度。

s04,汇流输送器排出的包裹通过分流器有序分流到多条分流传送带上:

将三条分流传送带分别编号为b、c、d,将四条小段传送带341分别编号为a、b、c、d,将汇流输送器上连贯的12个包裹设为一组,一组包裹按照排出的先后次序依次编号为①、②、③、④、⑤、⑥、⑦、⑧、⑨、⑩、⑪、⑫;

a、分流包裹之前,旋转架处在初始状态,初始状态下,a正对汇流输送器,b正对b,c正对c,d正对d;当汇流输送器排出的包裹①落在a上,与a对应的光电对射传感器b346感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p32启动,将旋转架转动一个工位,使a正对d,b正对汇流输送器,c正对b,d正对c;2、控制与a对应的驱动电机q345启动,a连同其上的包裹①同步运行;本分步骤完成后,b接到包裹②,a上的包裹①排放到d上;

b、当汇流输送器排出的包裹②落在b上,与b对应的光电对射传感器b346感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p32启动,将旋转架转动一个工位,使a正对c,b正对d,c正对汇流输送器,d正对b;2、控制与d对应的驱动电机q345启动,d开始运行;本分步骤完成后,c接到包裹③;

c、当汇流输送器排出的包裹③落在c上,与c对应的光电对射传感器b346感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p32启动,将旋转架转动一个工位,使a正对d,b正对c,c正对d,d正对汇流输送器;2、控制与b对应的驱动电机q345启动,b连同其上的包裹②同步运行;本分步骤完成后,d接到包裹④,b上的包裹②排放到c上;

d、当汇流输送器排出的包裹④落在d上,与d对应的光电对射传感器b346感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p32启动,将旋转架转动一个工位,使a正对汇流输送器,b正对b,c正对c,d正对d;2、控制与d对应的驱动电机q345启动,d连同其上的包裹④同步运行;本分步骤完成后,a接到包裹⑤,d上的包裹④排放到d上;

e,当汇流输送器排出的包裹⑤落在a上,与a对应的光电对射传感器b346感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p32启动,将旋转架转动一个工位,使a正对d,d正对c,c正对b,b正对汇流输送器;2、控制与c对应的驱动电机q345启动,c连同其上的包裹③同步运行;本分步骤完成后,b接到包裹⑥,c上的包裹③排放到b上;

f,当汇流输送器排出的包裹⑥落在b上,与b对应的光电对射传感器b346感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p32启动,将旋转架转动一个工位,使a正对c,b正对d,c正对汇流输送器,d正对b;2、控制与a对应的驱动电机q345启动,a连同其上的包裹⑤同步运行;本分步骤完成后,c接到包裹⑦,a上的包裹⑤排放到c上;

g,当汇流输送器排出的包裹⑦落在c上,与c对应的光电对射传感器b346感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p32启动,将旋转架转动一个工位,使a正对b,b正对c,c正对d,d正对汇流输送器;2、控制与c对应的驱动电机q345启动,c连同其上的包裹⑦同步运行;本分步骤完成后,d接到包裹⑧,c上的包裹⑦排放到d上;

h,当汇流输送器排出的包裹⑧落在d上,与d对应的光电对射传感器b346感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p32启动,将旋转架转动一个工位,使a正对汇流输送器,b正对b,c正对c,d正对d;2、控制与b对应的驱动电机q345启动,b连同其上的包裹⑥同步运行;本分步骤完成后,a接到包裹⑨,b上的包裹⑥排放到b上;

i,当汇流输送器排出的包裹⑨落在a上,与a对应的光电对射传感器b346感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p32启动,将旋转架转动一个工位,使a正对d,b正对汇流输送器,c正对b,d正对c;2、控制与d对应的驱动电机q345启动,d连同其上的包裹⑧同步运行;本分步骤完成后,b接到包裹⑩,d上的包裹⑥排放到c上;

j、当汇流输送器排出的包裹⑩落在b上,与b对应的光电对射传感器b346感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p32启动,将旋转架转动一个工位,使a正对c,b正对d,c正对汇流输送器,d正对b;2、控制与b对应的驱动电机q345启动,b连同其上的包裹⑩同步运行;本分步骤完成后,c接到包裹⑪,b上的包裹⑩排放到d上;

k,当汇流输送器排出的包裹⑪落在c上,与c对应的光电对射传感器b346感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p32启动,将旋转架转动一个工位,使a正对b,b正对c,c正对d,d正对汇流输送器;2、控制与a对应的驱动电机q345启动,a连同其上的包裹⑨同步运行;本分步骤完成后,d接到包裹⑫,a上的包裹⑨排放到b上;

l,当汇流输送器排出的包裹⑫落在d上,与d对应的光电对射传感器b346感应到包裹后传递电信号给控制器,控制器收到信号后立即同时进行两项控制:1、控制驱动电机p32启动,将旋转架转动一个工位,使a正对汇流输送器,b正对b,c正对c,d正对d;2、控制与c对应的驱动电机q345启动,c连同其上的包裹⑪同步运行;本分步骤完成后,a接到下一组包裹的包裹①,c上的包裹⑪排放到c上;

m,当汇流输送器排出的下一组包裹的包裹①落在a上,重复a~l分步骤进行控制,如此循环往复,实现将汇流输送器排出的包裹有序分流到三条分流传送带上;

s05,通过纠错装置300检查分流传送带400上的包裹是否存在缺失情况:

a、分流传送带400上第一个包裹的前端通过计时计数器302的红外线道时开始计数,第二个包裹的前端通过计时计数器302的红外线道时计数+1;分流传送带400上第一个包裹的后端通过计时计数器302的红外线道时开始计时,第二个包裹的前端通过计时计数器302的红外线道时停止计时;至此,完成了一个计时计数循环,并同时开始下一个计时计数循环,每次计时计数循环中,计时均从0秒开始,计数采用累加的方式。

b、计时计数器302通过不断对比前后相邻两个包裹的计时数据差异进行查错,若检查存在包裹缺失,计时计数器302立即向控制器发送报警信号,(正常情况下因为相邻包裹间距是基本一致,所以计时数据基本一致;如果存在包裹丢失,那么相邻包裹之间的间距会变大并远超正常间距范围,相应的,计时数据也会变大并远超正常值,据此判断是否存在包裹缺失)控制器收到报警信号后启动扫码器301,扫码器301扫描出现空缺后第一个包裹的地址并发送至控制器;控制器先在包裹排序清单中搜寻出与空缺前第一个计数编号相对应的包裹地址,再从该包裹地址往后进行搜索,重新定位空缺后第一个包裹的地址,并根据重新定位的地址计算出包裹缺失数量,最后在包裹排序清单中,将缺失包裹的地址替换为空白地址,防止后续分拣错误(如果重新定位的地址与空缺前第一个包裹的地址相隔n个,说明空缺处包裹缺失n个);

c、控制器启动扫码器301,扫码器301扫描空缺后第二个包裹的地址并发送至控制器,控制器对比鉴别该包裹地址信息与包裹排序清单中的对应包裹信息是否一致,若一致,控制器不产生动作,若不一致,控制器控制整个物流分拣系统停止运行,防止出现分拣错误。

本步骤中,当包裹缺失数量大于等于三个,控制器控制整个物流分拣系统停止运行,同时触发外部报警器报警,以提醒操作人员来处理。

s06,从汇流输送器排出并进入塔式分拣装置的包裹经过分拣进入对应的收集箱:

a、包裹从分流传送带排出后,落在塔式分拣装置最上层分拣器上转运平面的临停区域,控制器根据预先计算出的该包裹的分拣路线控制回转驱动机构a47产生动作,使漏板43的包裹下落孔a432有选择性的正对收集箱44上端开口或正对底板包裹下落孔b422,再控制回转驱动机构b49产生动作,通过拨叉48将包裹拨动至漏板43的包裹下落孔a处,包裹则通过漏板43的包裹下落孔a432落入本层分拣器4的收集箱44或下一层分拣器4的上转运平面的临停区域。

b、包裹到达新一层分拣器4的上转运平面的临停区域后,重复a分步骤控制过程,使包裹最终落入对应层分拣器4的对应的收集箱44。

s07,收集箱44自动将达到收口标准的收集袋45收口:当收集箱44内的包裹达到预定重量或高度后,包裹超重检测器或包裹超高检测器随即向控制器报警,控制器收到报警信号后控制两个伺服电机b4451同时启动,两个伺服电机b4451分别带动齿轮4452沿齿轮容纳腔44362侧壁上的齿条移动,两个伺服电机b4451则分别在内、外弧形边杆的电机滑槽44361内移动,电磁铁a446则逐渐靠近电磁铁b447,当电磁铁a446移动至与电磁铁b447最接近的位置时,伺服电机b4451停止移动,此时收集袋45上端开口被关闭;

s08,通过取货机械手53将收口的收集袋45转移到载物台52上:

a、收集袋45上端开口被关闭后,控制器控制升降驱动器51产生动作,将载物台52升至与报警的收集箱44相对应的高度。

b、控制器再同时进行两项控制:1、控制支承液压缸5351的活塞杆伸出,将取货机械手53向上推,使夹板体534趋近收集袋45的铁片453;2、控制右电磁板5342断电,使闭合的夹板体534在扭簧5344的作用下张开,张开的夹板体534正对收集袋45的铁片453。

c、夹板体534张开若干秒后,控制器再控制右电磁板5342通电,使夹板体534合拢,夹板体534合拢的同时,将收集袋45的铁片453吸附到右电磁板5342上,夹板体534合拢之后,收集袋45的铁片453便被夹紧在夹板体534的左铁板5341与右电磁板5342之间。

d、收集袋45的铁片453被夹紧之后,控制器先控制电磁铁a446和电磁铁b447断电,使收集袋45与收集箱44脱离连接,再控制支承液压缸5351的活塞杆进一步伸出,使取货机械手53进一步向上推,从而将收集袋45上端开口收紧,并从收集箱44的包裹拽出口448拽出,落在载物台52上。

s09,收集箱44内的收集袋52转移出去后收集箱44内自动撑开一个收集袋45:

a、收集箱52的包裹超重检测器检测到收集袋52抽离后,传递信号给控制器,控制器收到信号后控制两个伺服电机b4451启动,伺服电机b4451机轴转动带动齿轮4452沿齿轮容纳腔44362侧壁上的齿条啮合运动,两个伺服电机b4451则分别在内、外弧形边杆的电机滑槽44361内移动,电磁铁a446则逐渐远离电磁铁b447,当电磁铁a446移动到初始位置时停止移动。

b、控制器再控制伺服电机a4442启动,放下钢丝绳4441,升降架443通过滚轮4435沿着立柱442的滑槽4421下滑,待钢丝绳4441放空之后,升降架443滑落到接近箱底板441的高度。

c、控制器然后控制两个电磁铁a446和两个电磁铁b447通电,电磁铁a446和电磁铁b447分别吸附套在箱底板441的左内凸台4411、左外凸台4412、右内凸台4413及右外凸台4414上的最上一层收集袋45的4个耳片4512,从而完成收集袋45的衔取。

d、控制器最后控制伺服电机a4442启动,收回钢丝绳4441,钢丝绳4441带动升降架443上升,升降架443带动新衔取的收集袋45上升,最终上升到初始位置。

s10,载物台52上的收集袋45通过推送器6转移到输送器c上:

a、包裹落在载物台52上后,控制器同时进行三项控制:1、控制右电磁板5342断电,松开收集袋45的铁片453;2、控制支承液压缸5351的活塞杆缩回,使取货机械手53下落至最低位置;3、控制升降驱动器51产生动作,使载物台52下降至最低位置。

b、当载物台52下降到最低位置后,控制器控制电动液压缸61的活塞杆伸出,通过推板62将将载物台52上的收集袋45推上输送器c500,动作完成后,电动液压缸61的活塞杆缩回,等待下一次指令。

如图1-17所示,具有查错-纠错-校错功能的物流分拣系统,包括逐取分离装置1、扫码装置100、包裹并齐装置2、汇流输送器200、纠错装置300、分流器3、分流传送带400、塔式分拣装置及控制器(图中未示出)。

逐取分离装置1包括从前至后依次紧邻设置的输送器a11、光滑分离板12、滚筒输送器13及输送器b14。

光滑分离板12上表面为光滑平面且高度不高于输送器a11上表面高度。

滚筒输送器13包括多个并列且水平布置的滚筒131、支架a132及用于驱动全部的滚筒131同步转动的滚筒驱动机构133。滚筒131两端通过轴承活动安装在支架a132上,全部的滚筒131在上端形成一条滚动传递面a,滚动传递面a的高度不高于光滑分离板12上表面高度。滚筒驱动机构133包括驱动电机x1331、链条x1332和链轮x1333,链轮x1333有多个,分别固定安装在每个滚筒131的同一端,驱动电机x1331的机轴通过联轴器与位于外端的滚筒131连接,链条x1332绕设在全部的链轮x1333之间。

输送器b14上表面高度不高于滚筒输送器13的滚动传递面a的高度。

逐取分离装置1的数量不少于两个(本实施例为三个)且并列布置,所有的输送器b14的后端均并列整齐且朝向一致。

扫码装置100设在每个逐取分离装置1的输送器b14上,其用于扫描包裹的条形码。

包裹并齐装置2设在输送器b14的后端,包裹并齐装置2包括辊筒输送器21、支架b22、隔板23及并齐组件24。

辊筒输送器21包括多根并列布置的辊筒211及用于驱动全部的辊筒211同步转动的辊筒驱动机构212,辊筒211两端通过轴承活动安装在支架b22上,全部的辊筒212在上端形成一条滚动传递面b,滚动传递面b的高度不高于输送器b14上表面高度。所述辊筒驱动机构212包括驱动电机y2121、链条y2122和链轮y2123。多个链轮y2123分别固定安装在每根辊筒211的同一端,驱动电机y2121的机轴通过联轴器与位于外端的辊筒211连接,链条y2122绕设在全部的链轮y2123之间。

隔板23顺着滚动传递面b上包裹传输方向竖直布置,并固定安装在支架b22上,其上设有供辊筒211穿过的孔231,其将滚动传递面b划分为多条并列布置的包裹传递通道20,每条包裹传递通道20的入口正对一条输送器b14的后端,所有的包裹传递通道20的出口均并列整齐且朝向一致。

并齐组件24包括气缸241、挡板242及光电对射传感器a243。气缸241固定安装在支架b22上,其活塞杆向上伸出。挡板242垂直于滚动传递面b上的包裹传输方向竖直布置,其下端穿过相邻辊筒211间的缝隙而固接在气缸241的活塞杆上,其随着气缸241的活塞杆同步升降进而同时打开或同时隔断所有的包裹传递通道20。光电对射传感器a243固定安装在支架b22上,其紧邻挡板242布置,并位于挡板242朝向包裹传递通道20入口的一侧,并位于滚动传递面b的上端。并齐组件24设有多组,从而将滚动传递面b沿包裹传输方向分隔为多段。

汇流输送器200设在包裹并齐装置2的包裹传递通道20的出口处,其垂直于包裹传递通道20的出口方向布置。

分流器3设在汇流输送器200后端,其用于将汇流输送器200排出的包裹有序分流到所有的分流传送带400上。分流器3包括旋转架31、驱动电机p32、托举板33及小段传送带组件34。

旋转架31包括竖直转杆311及呈环形均布固接在竖直转杆311上端的四根悬臂312,竖直转杆311下端固接在驱动电机p32的机轴上。托举板33有四块,分别固接在四根悬臂312的旋出端,四块托举板33的转动路径均重合。

小段传送带组件34固定安装在托举板33的上端,小段传送带组件34包括小段传送带341、主动辊342、从动辊343、辊座344、驱动电机q345及光电对射传感器b346。主动辊342一端与驱动电机q345的机轴关联,另一端活动安装在辊座344上,驱动电机q345及辊座344均固定安装在托举板33上,从动辊343两端通过轴承活动安装在辊座344上,小段传送带341绕设在主动辊342和从动辊343之间,光电对射传感器b346安装在托举板33上,并位于小段传送带341的上端,其用于检测是否有包裹落在小段传送带341上及包裹是否从小段传送带341排出。

分流传送带400设在分流器3后端,其数量有三条。

纠错装置300设在分流传送带400上,其包括距离分流传送带400的后端(即排出包裹的一端)由远及近依次布置的扫码器301和计时计数器302。

塔式分拣装置设在分流传送带400的后端,其数量有三个,每个塔式分拣装置均与一条分流传送带400对应。塔式分拣装置包括分拣器4、取包裹器5、推送器6、输送器c500、外罩600及底座700。

分拣器4数量有多个,并在垂直方向上进行叠加,各分拣器4均直接或间接固定安装在底座700上,每个分拣器的中心区域设有一个圆柱形的中心通道41,各分拣器4的中心通道41依次连通,而形成一条竖直连贯的包裹运输通道800。

分拣器4从上至下依次设有上转运平面和下转运平面,上转运平面上设有临停区域和下落区域a,下转运平面上设有存储区域和下落区域b,上转运平面可相对于下转运平面转动,进而使下落区域a有选择性的正对下转运平面的存储区域或下落区域b。分拣器4下转运平面上的下落区域b正对相邻下一级分拣器4的上转运平面临停区域。

所述中心通道41由从上至下依次连通的拨叉48上回转环481的内孔、漏板43的中心孔a431、支承座46下回转环461的内孔、底板42的中心孔b421而形成。所述上转运平面为漏板43上表面所在的平面,所述下落区域a为漏板43的包裹下落孔a432,所述临停区域为漏板43正对外罩600包裹入口601的区域。所述下转运平面为底板42上表面所在的平面,所述存储区域为底板42上安装收集箱44的区域,所述下落区域b为底板42的包裹下落孔b422。

分拣器4包括底板42、漏板43、收集箱44、收集袋45、支承座46、回转驱动机构a47、拨叉48及回转驱动机构b49。

底板42呈环形板,其上设有中心孔b421和位于中心孔b421外侧的包裹下落孔b422,其上端面在中心孔b421外侧及包裹下落孔b422内侧之间的区域设有环形槽b423,底板42直接或间接固接在外罩600上。

漏板43为环形板,其上设有中心孔a431和位于中心孔a431外侧的包裹下落孔a432,其上端面在中心孔a431外侧及包裹下落孔a432内侧之间的区域设有环形槽a433。

收集箱44有多个,分别环绕底板42的中心孔b421安装在底板42上,并位于底板42的环形槽b423外侧,其上端设有敞口。收集箱44包括箱底板441、立柱442、升降架443、升降控制机构444、收口组件445、电磁铁a446、电磁铁b447及超高超重检测组件。

箱底板441为扇形板,其在四个边角处分别设有左内凸台4411、左外凸台4412、右内凸台4413及右外凸台4414。

立柱442有四根,四根立柱分别固接在箱底板441的四个边角处并垂直于箱底板441向上伸出,其上设有滑槽4421。

升降架443为扇形框架,其包括依次连接的内弧形边杆4431、左边杆4432、外弧形边杆4433及右边杆4434,升降架443在四个边角处通过滚轮4435水平活动安装在四根立柱442之间,其通过滚轮4435与滑槽4421的配合实现沿立柱442上下移动。内弧形边杆4431和外弧形边杆4433的下端面上分别设有圆弧形的移动通道4436,移动通道4436沿内、外弧形边杆的长度方向延伸,并贯通内、外弧形边杆的两侧端面,移动通道4436包括上下相互连通的电机滑槽44361和齿轮容纳腔44362。齿轮容纳腔44362与电机滑槽44361直接连通,齿轮容纳腔44362的侧壁上设有齿条,电机滑槽44361与内、外弧形边杆的下端面连通。

升降控制机构444包括钢丝绳4441、伺服电机a4442及收放轮4443,钢丝绳4441一端绕装在收放轮4443上,另一端固接在升降架443上,伺服电机a4442固定安装在立柱442顶端,收放轮4443固接在伺服电机a4442的机轴上。

收口组件445包括伺服电机b4451和齿轮4452,伺服电机b4451有两个,分别可滑动的安装在内、外弧形边杆的电机滑槽44361内,其机轴伸入齿轮容纳腔44362中,齿轮4452固接在伺服电机b4451的机轴上,并位于齿轮容纳腔44362内,并与齿轮容纳腔44362的齿条啮合。

电磁铁a446有两个,分别安装在伺服电机b4451的下端,并与箱底板441上的左内凸台4411和左外凸台4412相对应。

电磁铁b447有两个,分别固接在内、外弧形边杆的下端面上,并与箱底板441上的右内凸台4413和右外凸台4414相对应。

超高超重检测组件包括安装在立柱442上的包裹超高检测器(图中未示出)和安装在箱底板441上的包裹超重检测器(图中未示出)。

收集箱44在朝向包裹运输通道的一侧设有包裹拽出口448。包裹拽出口448由朝向包裹运输通道800一侧的两根立柱442、内弧形边杆4431及箱底板441位于包裹运输通道800一侧的边沿合围而形成。

收集袋45包括袋体451、抽绳452及铁片453。袋体451在撑开状态下呈与收集箱44形状相适应的扇柱形,袋体451上端缘口处设有一圈抽绳安装腔4511,抽绳安装腔4511设有入口45111和出口45112,袋体451上端缘口的四个边角处分别设有外翻的耳片4512,耳片4512上固接有铁环4513。抽绳452通过入口45111穿入抽绳安装腔4511,再通过出口45112穿出抽绳安装腔4511,抽绳452一端头暴露在袋体451外,并与铁片453固接,另一端头固接在袋体451上端缘口处。

收集袋45多层堆叠放置在收集箱44的箱底板441上,其四个铁环4513分别套在箱底板441的左内凸台4411、左外凸台4412、右内凸台4413及右外凸台4414上。抽绳安装腔4511的入口、抽绳安装腔4511的出口45112、抽绳452的两端头、铁片453均位于收集箱44的包裹拽出口448一侧。

支承座46包括下回转环461和固接在下回转环461上端的至少三根支承杆462,下回转环461下端活动安装在底板42环形槽b421内,支承杆462上端固接在漏板43下端面上。

回转驱动机构a47与支承座46关联,以驱动支承座46在底板42环形槽b423内回转,进而带动漏板43回转,使漏板43的包裹下落孔a432有选择的正对底板42包裹下落孔b422或正对收集箱44上端敞口。回转驱动机构a47包括主动链轮a471、步进电机a472、从动链轮a473及链条a474。主动链轮a471固定安装在步进电机a472的机轴上,步进电机a472直接或间接固接在底板42上,从动链轮a473套装并固接在支承座46的下回转环461上,链条a474绕设在主动链轮a471与从动链轮a473之间。

拨叉48活动安装在漏板43上,其包括上回转环481和扫臂482,上回转环481下端活动安装在漏板43的环形槽a433内,扫臂482固接在上回转环481的外壁上,并向上回转环481的径向外侧伸出。

回转驱动机构b49与拨叉48关联,以驱动拨叉48在漏板43的环形槽a433内转动。回转驱动机构b49包括主动链轮b491、步进电机b492、从动链轮b493及链条b494。主动链轮b491固定安装在步进电机b492的机轴上,步进电机b492直接或间接固接在外罩600上,从动链轮b493套装并固接在拨叉48的上回转环481上,链条b494绕设在主动链轮b491和从动链轮b493之间。

取包裹器5设在包裹运输通道800内,其包括升降驱动器51、载物台52和取货机械手53。

升降驱动器51为剪叉式液压升降机,其下端安装在底座700上,其用于驱动载物台52做水平升降运动。

载物台52固接在升降驱动器51上端。

取货机械手53安装在载物台52上,其用于将分拣器4存储区域的包裹(即收集箱内的包裹)转移到载物台52上。取货机械手53包括机械手臂531、转轴532、转轴座533、夹板体534及摆动驱动机构535。机械手臂531下端通过转轴532安装在转轴座533上,上端与夹板体534连接,其上设有沿其长度方向延伸的滑槽5311。转轴座533固定安装在载物台52上。夹板体534包括左铁板5341、右电磁板5342、转销5343及扭簧5344。左铁板5341和右电磁板5342均在一侧边固接有供转销5343插入的转销套,转销5343依次穿过左铁板5341和右电磁板5342的转销套,而将左铁板5341和右电磁板5342活动连接,转销5343在端部与机械手臂531的上端焊接固定,左铁板5341和右电磁板绕转销转动进而实现相对合拢或张开。扭簧5344套装在转销上,其一端抵住左铁板5341的内端面,另一端抵住右电磁板5342的内端面,进而使左铁板5341和右电磁板5342相对张开呈一个固定的角度。摆动驱动机构535与机械手臂531关联,以驱动机械手臂531绕转轴532摆动。摆动驱动机构535包括支承液压缸5351、活动链节5352及滑块5353;支承液压缸5351固定安装在载物台52上;活动链节5352一端与支承液压缸5351的活塞杆活动连接,另一端与滑块5353活动连接;滑块5353活动安装在机械手臂531的滑槽5311内。

外罩600固定安装在底座700上,并将分拣器4和取包裹器5笼罩在内,其上端设有供包裹落入最上端分拣器4的包裹入口601,其下端设有供包裹输出的包裹出口602。外罩600的包裹入口601正对分流传送带400的后端。

推送器6和输送器c500均安装在底座700上,两者分别位于取包裹器5的载物台52的两侧。推送器6包括电动液压缸61和推板62,电动液压缸61固接在底座700上,其活塞杆沿水平方向伸出,推板62固接在电动液压缸61的活塞杆上,并呈竖直状态。

控制器与分拣器的伺服电机a4442、伺服电机b4451、电磁铁a446、电磁铁b447、包裹超高检测器、包裹超重检测器、步进电机a472、步进电机b492电性连接;控制器与取包裹器5的升降驱动器51、右电磁板5342、支承液压缸5351电性连接;控制器与推送器6的电动液压缸61电性连接;控制器与包裹并齐装置2的气缸241及光电对射传感器a243电性连接;控制器与分流器3的驱动电机p32、驱动电机q345及光电对射传感器b346电性连接;控制器与纠错装置300的计时计数器302及扫码器301电性连接;控制器与扫码装置100电性连接。

优选,输送器a11、输送器b14、输送器c500、汇流输送器200及分流输送器400为皮带输送机或滚筒输送机。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1