含杂类金刚石的场致发射器件的制作方法

文档序号:5100747阅读:396来源:国知局
专利名称:含杂类金刚石的场致发射器件的制作方法
背景技术
发明领域本发明的实施方案总体上涉及杂类金刚石(heterodiamondoid)和含杂类金刚石的材料在场致发射器件中新用途。具体来说,本发明实施方案的杂类金刚石的杂原子是电子给体类,并且所述场致发射器件(FED)含有发射电子的冷阴极。
现有技术含碳材料在微电子学中有很多可能的用途。作为元素,碳具有多种不同的结构,某些呈晶态,某些呈非晶态,某些具有这两种形态的区域,但各种形态均具有独特和有潜在用途的一系列性能。
S.Prawer在Physics of Novel Materials(world Scientific,Singapore,1999),pp.205-234中题目为“碳的奇妙世界(TheWonderful World of Carbon)”一章中提供了碳的结构-性能关系的综述。Prawer提出,可用来预测含碳材料的性能的两种最重要的参数是第一,在一种材料中sp2与sp3键的比值,和第二,微观结构,包括所述材料的晶体尺寸,即其单个晶粒的尺寸。
碳元素具有1s22s22p2的电子结构,其中外层2s和2p电子具有按照两种不同历程杂化的能力。所谓sp3杂化包括呈四面体方式排布的四个相同σ键。所谓sp2杂化包括三个三角形的(也呈平面的)σ键,未杂化的p电子占据呈与所述σ键平面垂直取向的键的π轨道。结晶形态的“极端”是金刚石和石墨。在金刚石中,碳原子采取sp3杂化,呈四面体形式键合。石墨包含sp2杂化原子的平面形“片”,其中所述片通过垂直取向的π键很弱地相互作用。碳还以其它形态存在,包括称为“金刚石样碳”的非晶形态,和分别称为“富勒烯(fullerenes)”和“纳米管”的高度对称的球形和棒形结构。
金刚石是一种特殊的材料,因为它在许多不同类性能中评分最高(或最低,取决于一个人的观点)。它不仅是最硬的已知材料,它在室温下还具有任何材料的最高的导热性。它从红外至紫外具有极好的光学透明度,具有任何透明材料的最高的折射率,并且因为其很宽的带隙是一种极佳的电绝缘体。它还具有高的电击穿强度,和很高的电子和空穴迁移率。如果说金刚石作为微电子学材料具有缺陷的话,那就是,尽管金刚石可以被有效地掺杂硼来制备p型半导体,向金刚石中注入给电子元素如磷来制备n型半导体的努力(据本发明人所知)还远未成功。
使用化学气相沉积(CVD)技术来合成金刚石膜的尝试可回溯至大约1980年代早期。这些尝试的结果是出现了碳的新形式,本质上主要是非晶态的,但是含有高度的sp3杂化键,因而显示出许多金刚石的特性。为了描述这种膜,创造出了术语“金刚石样碳(diamond-likecarbon)”(DLC),虽然这一术语在文献中没有精确的定义。在“碳的奇妙世界(The Wonderful World of Carbon)”中,Prawer指出,由于多数金刚石样材料显示键类型的混合物,呈四重配位(或sp3杂化)的碳原子的比例是所述材料的“金刚石样”含量的量度。与sp2杂化相联系的未杂化的p电子在这些材料中形成π键,其中所述π键合的电子主要是离域的。这导致具有sp2键的材料如石墨的提高的导电性。相反,sp3杂化导致极硬、电绝缘和透明的金刚石特性。金刚石样材料的氢含量与其具有的键的类型直接相关。在金刚石样材料中,随着氢含量增加,带隙变得更大,并且硬度经常下降。并不意外地,氢从金刚石样碳薄膜中损失导致导电性增加以及其它金刚石样性能的损失。
尽管如此,被普遍接受的是,可使用术语“金刚石样碳”来描述两种不同类的非晶态碳薄膜,一种被表示为“aC-H”,因为氢起终止在所述薄膜表面上的悬空键的作用,第二种不含氢的变体被称为“ta-C”,因为多数碳原子为呈sp3杂化的四面体配位。ta-C的其余碳原子是基本上sp2杂化的表面原子。在aC-H中,悬空键可松驰成sp2(石墨)构型。氢在aC-H中所起的作用是防止未封端(untermianted)的碳原子松驰成石墨结构。sp3含量越大,所述材料的性能如热传导性和电阻越“金刚石样”。
在其综述文章中,Prawer指出四面体非晶态碳(ta-C)是随机网络,显示出局限于一或两个最接近近邻的短距离内的有序状态,而非长距离的有序状态。可能存在可包含3、4、5和6员碳环的随机碳网络。通常,ta-C薄膜的最大sp3含量为约80至90%。sp2键合的那些碳原子往往聚集成小的簇,这种小的簇防止了形成悬空键。ta-C的性能主要取决于具有sp3或金刚石样构型的原子的分数。与CVD金刚石不同,在ta-C中没有氢来钝化表面和防止形成石墨样结构。观察不到形成石墨区的事实应归功于存在分离的sp2成键对以及在所述材料的本体内形成的压缩应力。
金刚石和/或金刚石样材料的微观结构进一步在一定程度上决定了其性能,因为所述微观结构影响成键类型的含量。如在“Microstructure and grain boundaries of ultrananocrystallinediamond films(超纳米晶态金刚石薄膜的微观结构和晶粒边界)”by D.M.Gruen,in Properties,Growth and Applications of Diamond(金刚石的性能、生长和应用),edited by M.H.Nazare and A.J.Neves(Inspec,London,2001),pp.307-312中所讨论的,近来人们致力于合成具有“纳(nano)”范围而不是“微(micro)”范围的结晶尺寸的金刚石,结果晶粒边界化学性质可能明显不同于在本体观察到的化学性质。纳晶态(nanocrystalline)金刚石薄膜具有在3至5纳米范围的晶粒尺寸,并且已有报导,在纳晶态金刚石薄膜中接近10%的碳原子位于晶粒边界上。
在Gruen的章节中,纳晶态金刚石晶粒边界据报导是高能量、高角度扭曲的晶粒边界,其中所述碳原子主要成π键。也可能有sp2成键的二聚体,和具有sp3杂化悬空键的链段。纳晶态金刚石显然是导电的,并且似乎是晶粒边界导致所述导电性。作者称,纳晶态材料基本上是新类型的金刚石薄膜,其性能主要由晶粒边界内的碳的成键来决定。
M.S.Dresslehaus等人在Nanotechnology(纳米技术)(Springer-Verlag,New York,1999).pp.285-329中的标题为“Nanotechnology and Carbon materials(纳米技术和碳材料)”的章节中讨论了被称为富勒烯(以及它们的对应物碳纳米管)的碳的另一同素异形体。虽然最近才被发现,这些材料在微电子应用中已经扮演了潜在的角色。富勒烯具有呈封闭空心笼形态排布的偶数数目的碳原子,其中在所述笼的表面上的碳-碳键限定了一种多面体结构。最丰富的富勒烯是C60分子,虽然C70和C80富勒烯也是可能的。在C60富勒烯中的各个碳原子采用sp2杂化与其它三个碳原子呈三角形键合。
Dresslehaus将C60富勒烯描述为形成封闭壳的“卷起”的石墨质(graphine)片(其中术语“石墨质”是指单层晶态石墨)。在规则截头的二十面体上的32个面中的20个是六边形,其余12个是五边形。在C60富勒烯中的每个碳原子位于相等的晶格位置上,虽然由每个原子伸出的三个键是不相等的。各个碳原子的四个价电子被包含在共价键中,所以在五边形周长上的三个键中的二个是贫电子的单键,而在两个六边形之间的一个键是富电子的双键。诸如C60之类的富勒烯还由沿六边形表面的交替的单和双键的凯库勒结构所稳定化。
Dresslehaus等人进一步教导,从电子角度来说,C60富勒烯分子具有60个π电子,每个碳原子一个π电子态。由于最高占据分子轨道被完全占据,而最低未占据分子轨道完全是空的,C60富勒烯被认为是具有很高电阻率的半导体。当聚集成固体时,富勒烯分子彼此之间显示弱的范德华内聚相互作用力。
下表总结了金刚石、DLC(ta-C和aC-H两者)、石墨和富勒烯的一些性能
在该表中的数据由以上引用的Dresslehaus等人文献的290页、以上引用的Prawer文献的221页、A.Erdemir等人在“Tribology ofDiamond,Diamond-Like Carbon,and Related Films,”in ModernTribology Handbook,Vol.Two,B.Bhushan,Ed.(CRC Press,BocaRaton,2001)891页章节,和W.Kulisch,“Deposition ofDiamond-Like Superhard Materials”(Springer Verlag,New York,1999)的28页来编制。
在文献中未广泛讨论的一种碳形态是“类金刚石(diamondoids)”。类金刚石是桥环环烷烃,包括金刚烷、二金刚烷(diamantane)、三金刚烷(triamantane)和金刚烷(三环[3.3.1.13,7]癸烷)的四聚物、五聚物、六聚物、七聚物、八聚物、九聚物、十聚物等(金刚烷具有化学计量式C10H16),其中各金刚烷单元被面稠合来形成更大的结构。这些金刚烷单元基本上是类金刚石的亚单元。所述化合物具有“类金刚石”的拓扑结构,因为它们的碳原子排布可叠加在FCC(面心立方)金刚石晶格的片段上。
类金刚石是极不寻常的形式的碳,因为虽然它们是分子尺寸一般在约0.2至20nm(各方向平均)范围内的烃,它们同时表现出超纳米晶态金刚石的电子性能。作为烃,它们可自组装成范德华固体,可能呈各个类金刚石以特定取向组装的重复阵列。所述固体得自相邻C-Hx基团之间的内聚色散力(cohesive dispersive forces),所述力更通常见于正烷烃中。
在金刚石纳米微晶中,碳原子完全是sp3杂化的,但是由于类金刚石的小尺寸,仅有小部分的碳原子专与其它碳原子成键。大多数具有至少一个氢最接近相邻碳。因而,类金刚石的大多数碳原子占据表面位置(或接近表面位置),导致能量上明显不同于本体能态的电子态。因此,可预期类金刚石具有不寻常的电子性能。
据本发明人所知,金刚烷、取代的金刚烷和可能地二金刚烷是仅有的易得的类金刚石。人们已经对某些二金刚烷、取代的二金刚烷、三金刚烷和取代的三金刚烷进行了研究,并且仅有一种四金刚烷被合成。其余的类金刚石均由本发明人首次提供,并公开在他们的共同待审查的U.S.临时专利申请60/262842,申请日2001年1月19日;60/300148,申请日2001年6月21日;60/307063,申请日2001年7月20日;60/312563,申请日2001年8月15日;60/317546,申请日2001年9月5日;60/323883,申请日2001年9月20日;60/334929,申请日2001年12月4日;和60/334938,申请日2001年12月4日中,所述文献通过引用全文结合在这里。申请人还通过引用将2001年12月12日申请的共用这些标题的非临时申请全文结合在这里。作为这些共同待审查申请的主题的所述类金刚石在过去无法获得以进行研究,并且据本发明人所知,此前它们从未在场致发射器件中用作发射电子的阴极。
发明简述本发明的实施方案总体上涉及杂类金刚石和含杂类金刚石的材料在场致发射器件中的新用途。具体而言,本发明实施方案的杂类金刚石的杂原子是给电子物质,并且所述场致发射器件(FED)含有发射电子的阴极。本文使用的术语“杂类金刚石”是指含有杂原子的类金刚石,所述杂原子通常取代地取位于金刚石晶体结构的晶格位置上。杂原子是除碳以外的原子,并且按照本发明的实施方案,可以是氮、磷、硼、铝、锂和砷。“取代地取位于”意思是杂原子取代了金刚石晶格中的碳主体原于。
由杂类金刚石化合物制备n-型材料的例举性方法包括CVD技术、聚合技术、杂类金刚石本身的结晶或杂类金刚石与其它材料一起结晶,及在分子水平使用类金刚石和/或杂类金刚石。
按照本发明的实施方案,杂类金刚石或含杂类金刚石的材料在场致发射器件中用作阴极灯丝,所述场致发射器件除其它场合以外适合用于平板显示器。含杂原子的类金刚石的独特性能使得这成为可能。这些性能包括贡献电子给灯丝材料的导带的给电子物种,氢化的金刚石表面的负电子亲合力,以及典型的杂类金刚石化合物的小尺寸和可预测的结构。杂类金刚石可以被衍生化或未被衍生化,并可以衍生自低级类金刚石(金刚烷、二金刚烷和三金刚烷)、高级类金刚石(四金刚烷及更高级金刚石)和/或它们的组合。灯丝材料(其中术语“灯丝”可与术语“阴极”互换使用)可呈薄膜或纤维形式。所述含杂类金刚石的材料选自下组含杂类金刚石的聚合物、含杂类金刚石的CVD薄膜和含杂类金刚石的分子晶体。在本发明实施方案中,阴极的电子亲合力小于约3eV,并且电子亲合力可以是负的。
附图简要说明

图1是本发明实施方案的综述,图示了从石油分离类金刚石、合成杂类金刚石、由其制备n-型材料以及然后制备基于所述含杂类金刚石的材料的场致发射器件(FED)的步骤;图2显示了从石油分离类金刚石的示例性工艺流程;图3图解了类金刚石与金刚石晶格的关系,并且通过化学计量式列举了许多可得到的类金刚石;图4A-B图解了在两种示例性类金刚石的碳原子晶格位置上的给电子杂原子的示例性位置;图5A-B图解了用于合成制备含氮杂类金刚石的示例性路线;图6图示了一种示例性的加工反应器,在其中可以使用化学气相沉积(CVD)技术制备n型杂类金刚石材料;图7A-C图示了一种示例性方法,由该方法可以使用杂类金刚石来将掺杂杂质原子引入到生长的金刚石薄膜中;图8是从杂类金刚石合成聚合物的示例性反应历程;图9A-N显示了可以是导电性的并且可以用来连接杂类金刚石以制备n-型材料的示例性的连接基团;图10显示了一种示例性的n-型材料,其由通过聚苯胺低聚物连接的杂类金刚石制备;图11显示了[1(2,3)4]五金刚烷如何堆积来形成分子晶体;图12显示了各个杂类金刚石如何在分子水平上被偶联来形成n-型杂类金刚石簇,其中这样的簇可以还含有p-型杂类金刚石;和图13为一种示例性的场致发射器件的截面示意图,其中单一的杂类金刚石或含杂类金刚石的材料可以被用作所述器件的阴极灯丝组分。
发明的详细说明本公开内容将如下组织首先,将给出类金刚石和杂类金刚石的定义,接着将给出如何从石油原料分离类金刚石的描述。然后,给出合成给电子杂类金刚石的示例性方法,随后给出如何从给电子杂类金刚石制备n-型杂类金刚石材料。在这之后,将简要讨论n-型金刚石的性能,以及这些性能如何被构想与含杂类金刚石的场致发射器件相关。本公开内容将以实际合成某些含氮杂类金刚石的实施例来结束。
杂类金刚石的定义术语“类金刚石”是指金刚烷系列的取代和未取代的笼状化合物。“低级类金刚石”被定义为是金刚烷、二金刚烷和三金刚烷,包括它们的取代和未取代的化合物。“高级类金刚石”被定义为包括四金刚烷、五金刚烷、六金刚烷、七金刚烷、八金刚烷、九金刚烷、十金刚烷、十一金刚烷等,包括它们的所有异构体和立体异构体。所述化合物具有“类金刚石”拓扑结构,这意味着它们的碳原子排布可叠加在FCC金刚石晶格的片段上。取代的类金刚石包含1至10个、优选1至4个独立选择的烷基取代基。
金刚烷化学已由Fort,Jr.等人在“AdamantaneConsequences ofthe Diamondoid Structure”,Chem.Rev.vol.64,pp.277-300(1964)中进行了综述。金刚烷是类金刚石系列中最小的一员,并且可以被看作一个笼形结晶亚单元。二金刚烷含有两个亚单元,三金刚烷含有三个亚单元,四金刚烷含有四个亚单元,以此类推。尽管金刚烷、二金刚烷和三金刚烷仅有一个异构体形式,存在四个不同的四金刚烷异构体(其中两个代表一个对映体对),即排布所述四个金刚烷亚单元的四种不同的可能方式。可能的异构体的数目随类金刚石系列的各更高级成员,即五金刚烷、六金刚烷、七金刚烷、八金刚烷、九金刚烷、十金刚烷等非线性增加。
商业上可得到的金刚烷已经被广泛研究。所述研究针对若干个领域,例如热力学稳定性、官能化和含金刚烷的材料的性能。例如,如下专利讨论了包含金刚烷亚单元的材料U.S.专利3457318教导了从链烯基金刚烷制备聚合物;U.S.专利3832332教导了从烷基金刚烷二胺形成的聚酰胺聚合物;U.S.专利5017734讨论了从金刚烷衍生物形成热稳定的树脂;和U.S.专利6235851报导了多种金刚烷衍生物的合成和聚合。
相反,在科技文献中对类金刚石四金刚烷和更高级金刚烷的关注较少。McKervey等人在“Synthetic Approaches to Large DiamondoidHydrocarbons”,Tetrahedron,vol.36,pp.971-992(1980)中报导了使用费力的多步骤方法以低产率合成了反-四金刚烷。据本发明人所知,这是目前已合成的仅有的高级类金刚石。Lin等人根据质谱研究,提出在深石油层中存在(但未分离出)四金刚烷、五金刚烷和六金刚烷,报导在“Natural Occurrence of Tetramantane(C22H28),Pentamantane(C26H32)and Hexamantane(C30H36)in a Deep PetroleumReservoir”,Fuel,vol.74(10),pp.1512-1521(1995)中。Chen等人在U.S.专利5414189中讨论了在蒸馏含类金刚石的原料后在釜底材料中可能存在四金刚烷和五金刚烷。
所述四种四金刚烷结构是异-四金刚烷[1(2)3]、反-四金刚烷[121]和邻位交叉(skew)-四金刚烷[123]的两个对映体,在括号中对这些类金刚石的命名是按照Balaban等人在“Systematic Classificationand Nomenclature of Diamond Hydrocarbons-I”,Tetrahedron vol.34,pp.3599-3606(1978)中确立的规则。所有四种四金刚烷都具有分子式C22H28(分子量292)。存在10种可能的五金刚烷,九种具有分子式C26H32(分子量344),在这九种中,有一般由[12(1)3],,表示的三对对映体,九种对映异构的五金刚烷由[12(3)4],[1(2,3)4],表示。还存在一种由分子式C25H30(分子量330)表示的五金刚烷。
六金刚烷存在三十九种可能的结构,其中二十八种具有分子式C30H36(分子量396),并且在这二十八种中六种是对称的;十种六金刚烷具有分子式C29H34(分子量382),剩余的六金刚烷[12312]具有分子式C26H30(分子量342)。
七金刚烷被假定存在160种可能的结构,其中85种具有分子式C34H40(分子量448),并且在这85种中,七种是非手性的,没有对映体。其余的七金刚烷中,67种具有分子式C33H38(分子量434),六种具有分子式C32H36(分子量420),其余的两种具有分子式C30H34(分子量394)。
八金刚烷具有8个金刚烷亚单元,并存在5种不同的分子量。在所述八金刚烷中,18种具有分子式C34H38(分子量446)。八金刚烷还具有分子式C38H44(分子量500);C37H42(分子量486);C36H40(分子量472),和C33H36(分子量432)。
九金刚烷存在具有如下分子式的不同分子量的六个族C42H48(分子量552),C41H46(分子量538),C40H44(分子量524),C38H42(分子量498),C37H40(分子量484)和C34H36(分子量444)。
十金刚烷存在七种不同分子量的族。在所述十金刚烷中,有具有分子式C35H36(分子量456)的一种十金刚烷,其与其它十金刚烷相比在结构上是紧凑的。其它十金刚烷族具有分子式C46H52(分子量604);C45H50(分子量590);C44H48(分子量576);C42H46(分子量550);C41H44(分子量536);和C38H40(分子量496)。
十一金刚烷存在八种不同分子量的族。在所述十一金刚烷中,有两种十一金刚烷具有分子式C39H40(分子量508),其与其它十一金刚烷相比在结构上是紧凑的。其它十一金刚烷族具有分子式C41H42(分子量534);C42H44(分子量548);C45H48(分子量588);C46H50(分子量602);C48H52(分子量628);C49H54(分子量642);和C50H56(分子量656)。
这里使用的术语“杂类金刚石”是指含有杂原子的类金刚石,所述杂原子通常取代地取位于金刚石晶体结构的晶格位置上。杂原子是除碳以外的原子,按照本发明实施方案可以是氮、磷、硼、铝、锂和砷。“取代地取位于”意思是杂原子取代了金刚石晶格中的碳主体原子。虽然多数杂原子是取代地取位,但在某些情况下它们也可见于空隙位置。如同类金刚石那样,杂类金刚石可以被官能化或衍生化;这样的化合物可以被称为取代的杂类金刚石。在本公开内容中,n-型类金刚石通常是指n-型杂类金刚石,但在某些情况下所述n-型材料可以包含无杂原子的类金刚石。
虽然在文献中已报导过杂金刚烷(heteroadamantane)和杂二金刚烷化合物,据本发明人所知,以前未合成过杂三金刚烷或更高级的化合物,且没有报导过使用包括杂金刚烷或杂二金刚烷化合物在内的杂类金刚石,如n-型材料作为场致发射器件的元件,如所述器件的阴极的情况。本发明人构想了1)杂金刚烷和杂二金刚烷,或2)杂三金刚烷,或3)杂四金刚烷和更高级化合物作为用于场致发射器件阴极的可能材料的应用;然而,包含源自四金刚烷及更高级化合物的杂类金刚石的n-型材料由于更高的碳-氢比值而预期具有优点(其中更多的碳在季位,在季位碳仅与其它碳键合)。也可能有力学优点。
图2显示了以示意的形式图解的一种工艺流程,其中类金刚石可以从石油原料中萃取,图3列举了按照本发明实施方案可以得到的各种类金刚石异构体。
从石油原料分离类金刚石含有可回收量的高级类金刚石的原料包括例如天然气冷凝物和得自裂解、蒸馏、焦化过程等的炼油厂物流。特别优选的原料源自墨西哥湾的Norphlet地层和加拿大的LeDuc地层。
这些原料含有大比例的低级类金刚石(经常多达约三分之二)以及较低但显著量的高级类金刚石(经常多达约0.3至0.5wt%)。对这些原料进行加工来除去非类金刚石和分离出高级类金刚石和低级类金刚石(如需要),可以使用仅作为举例的例如尺寸分离技术如膜、分子筛等,蒸发和常压或减压下的热分离器,萃取器,静电分离器,结晶,色谱法,井口分离器等来进行。
一种优选的分离方法通常包括原料蒸馏。这可除去低沸点的非类金刚石组分。这也可以除去或分离出沸点小于所选择分离的高级类金刚石沸点的低级和高级类金刚石组分。在这两种情况下,低级馏分将富含低级类金刚石和低沸点的非类金刚石材料。可以进行蒸馏来提供在所感兴趣的温度范围的数个馏分,来提供所确认的高级类金刚石的初始分离。富含高级类金刚石或感兴趣的类金刚石的馏分被保留,并且可能要求进一步的纯化。用于除去污染物并进一步纯化富类金刚石馏分的其它方法可以还包括如下的非限定性实例尺寸分离技术、常压或减压下的蒸发、升华、结晶、色谱法、井口分离器、闪蒸、固定床和流化床反应器、减压等。
非类金刚石的脱除可以还包括蒸馏之前或之后的热处理步骤。所述热处理步骤可以包括加氢处理步骤、加氢裂化步骤、加氢操作步骤或热解步骤。热处理是从原料中除去烃质的非类金刚石组分的有效方法,并且作为其一种实施方案的热解,是通过在真空条件下或在惰性气氛中加热所述原料至至少约390℃的温度、最优选至约410至450℃的温度来实现的。热解在足够高的温度下持续足够长的时间,以使热解前存在于原料中的至少约10wt%的非类金刚石组分被加热降解。更优选至少约50wt%,更更优选至少90wt%的所述非类金刚石被加热降解。
虽然在一种实施方案中热解是优选的,但并不总是必须进行热解来促进类金刚石的回收、分离或纯化。对于给定的某些原料,其它分离方法可以使得类金刚石的浓度足够高,以至于诸如包括制备气相色谱法和高效液相色谱法在内的色谱法、结晶、分级升华之类的直接纯化方法可以被用来分离类金刚石。
甚至在蒸馏或热解/蒸馏之后,可能需要对所述材料进一步纯化,以提供适用于本发明所采用的组合物中的所选择的类金刚石。这类纯化技术包括色谱法、结晶、热扩散技术、区域精制、渐进重结晶、尺寸分离等。例如,在一种方法中,使回收的原料经历如下的附加步骤1)使用硝酸银浸渍的硅胶进行的重力柱色谱法;2)两柱制备毛细管气相色谱法,以分离类金刚石;和/或3)结晶,以提供高度浓缩的类金刚石晶体。
一种作为替代方案的方法是使用单柱或多柱的液相色谱法,包括高效液相色谱法,来分离感兴趣的类金刚石。同上,可以使用具有不同选择性的多个柱。使用这些方法的进一步加工使得可以更精细地分离,这可导致基本上纯的组分。
在U.S.临时专利申请60/262842,申请日2001年1月19日;U.S.临时专利申请60/300148,申请日2001年6月21日;和U.S.临时专利申请60/307063,申请日2001年7月20日,以及转让给本申请的受让人的B.Carlson等人的名称为“Processes for concentratinghigher diamondoids”的共同待审查申请中阐述了用于加工原料来获得高级类金刚石组合物的详细方法。这些申请通过引用全文结合在这里。
图2显示了以示意的形式图解的一种工艺流程,其中类金刚石可以从石油原料中萃取,图3列举了按照本发明实施方案可以得到的各种类金刚石异构体。
杂类金刚石的合成这里使用的术语“杂类金刚石”是指含有杂原子的类金刚石,所述杂原子通常取代地取位于金刚石晶体结构的晶格位置上。杂原子是除碳以外的原子,按照本发明实施方案可以是氮、磷、硼、铝、锂和砷。“取代地取位于”意思是杂原子取代了金刚石晶格中的碳主体原子。虽然多数杂原子是取代地取位,但在某些情况下它们也可见于空隙位置。
图4图示了示例性的杂类金刚石,标明了其中杂原子可以取代地取位的碳位置的类型。在图4的示例性类金刚石中,这些位置被标为C-2和C-3。术语“类金刚石”在这里以一般含义来使用,包括有和无杂原子取代的类金刚石。如以上所公开的,所述杂原子可以是给电子元素如N、P或As,或是给空穴元素如B或Al。在本公开内容中,重点将放在含氮杂类金刚石上,因为给电子的氮原子的性能是本发明场致发射器件的焦点。
以下将讨论这类杂类金刚石的示例性合成方法。虽然过去已合成了某些杂金刚烷和杂二金刚烷化合物,并且这可能提示了合成具有两个以上或三个以上稠合金刚烷亚单元的杂类金刚石的起点,但本领域技术人员可理解,各个反应及整体合成路线的复杂性随着金刚烷亚单元数目的增加而增加。例如,可能必须采用保护基团,或者溶解反应物可能变得更困难,或者反应条件可能与用于金刚烷的类似反应的条件大大地不同。然而,基于使用金刚烷或二金刚烷作为底物的杂类金刚石合成讨论化学过程可能是有益的,因为据本发明人所知,这些是在本申请前可得到数据的仅有的体系。
过去已合成了氮杂金刚烷化合物。例如,在T.Sasaki等人的文章“Synthesis of adamantane derivatives.39.Synthesis andacidolysis of 2-azidoadamantanes.A facile route to4-azahomoadamant-4-enes,”Heterocycles,Vol.7,No.1,p.315(1977)中。这些作者报导了从1-羟基金刚烷合成1-叠氮基金刚烷和3-羟基-4-氮杂高金刚烷(azahomoadamantane)。所述程序包括通过形成碳正离子来用叠氮官能团取代羟基,随后酸解叠氮化物产物。
在相关的合成路线中,Sasaki等人能使金刚烷酮经历Schmidt反应条件,产生4-酮-3-氮杂高金刚烷作为重排产物。与Schmidt反应有关的细节参见T.sasaki等人,“Synthesis of AdamantaneDerivatives.XII.The Schmidt Reaction of Adamantane-2-one,”J.Org.Chem.Vol.35,No.12,p.4109(1970)。
或者,可由1,3-二溴金刚烷合成1-羟基-2-氮杂金刚烷,如A.Gagneux等人在“1-Substituted 2-heteroadamantanes,”Tetrahedron Letters No.17,pp.1365-1368(1969)中所报导的。这是一个多步骤方法,其中首先将二溴起始原料加热生成甲基酮,该甲基酮随后经历臭氧化,生成二酮。将所述二酮与四当量的羟胺一起加热,以生成顺式和反式二肟的1∶1混合物;该混合物被氢化成化合物1-氨基-2-氮杂金刚烷二盐酸化物。最后,亚硝酸将所述二盐酸化物转变为杂金刚烷1-羟基-2-氮杂金刚烷。
或者,可以从双环[3.3.1]壬烷-3,7-二酮合成2-氮杂金刚烷化合物,如J.G.Henkel和W.C.Faith在“Neighboring group effects inthe β-halo amines.Synthesis and solvolytic reactivity of theanti-4-substituted 2-azaadamantyl system,”in J.Org.Chem.Vol.46,No.24,pp.4953-4959(1981)中所报导的。所述二酮可以通过还原胺化作用(但使用乙酸铵和氰基硼氢化钠产生更高的产率)转化成中间体,使用亚硫酰氯可以将所述中间体转化成另一中间体。在DME中使用LiAlH4可以以良好的产率实现该第二中间体的脱卤,从而生成2-氮杂金刚烷。
S.Eguchi等人在“A novel route to the 2-aza-adamantylsystem via photochemical ring contraction of epoxy4-azahomoadamantanes,”J.Chem.Soc.Chem.Commun.,p.1147(1984)中报导了与本发明中所使用的合成路线在原理上相关的一个合成路线。在这种方法中,2-羟基金刚烷与基于NaN3的试剂体系反应,生成氮杂高金刚烷,其然后被间氯过苯甲酸(m-CPBA)氧化,生成环氧4-氮杂高金刚烷。所述环氧化物然后在光化学环缩小反应中被辐射,生成N-酰基-2-氮杂-金刚烷。
在图5A中图示了用于合成含氮的杂异四金刚烷的示例性反应路线。本领域技术人员将会明白,由于四金刚烷与金刚烷在大小、溶解度和反应活性上的差别,在图5A中绘出的路线的反应条件将明显不同于Eguchi采用的那些条件。在图5B中图示了可用于合成含氮的杂类金刚石的第二条路线。
在本发明的另一种实施方案中,通过改变J.J.Meeuwissen等人在“Synthesis of 1-phosphaadamantane,”Tetrahedron Vol.39,No.24,pp.4225-4228(1983)中描述的路线可合成含磷的杂类金刚石。预期这种路线能够合成同时含有取代地取位于类金刚石结构中的氮和磷原子的杂类金刚石,其优点是在同一结构中具有两种不同类型的给电子杂原子。
在由不具有包含在其中的杂质原子的类金刚石制备杂类金刚石后,所得到的杂类金刚石可以被官能化,来产生本发明实施方案的给电子材料。或者,类金刚石(不具有杂质原子)可以先被官能化,然后被转化成杂原子形式。
在名称为“Heterodiamondoids(杂类金刚石)”、序列号为10/622,130、申请日为2003年7月16日的U.S.专利申请中提供了合成杂类金刚石的其它信息,所述文献通过引用全文结合在这里。
n-型杂类金刚石材料的制备在图1中图示了由杂类金刚石分子制备n-型材料的示例性方法的综述。这些方法包括CVD技术、聚合技术、杂类金刚石本身的结晶或杂类金刚石与其它材料一起的结晶以及类金刚石和/或杂类金刚石在分子水平的应用。这里使用的术语“材料制备”是指在由类金刚石原料合成杂类金刚石后获取杂类金刚石并将其制成n-型含类金刚石的材料的方法。
在第一种实施方案中,将杂类金刚石注入到进行常规的CVD方法的反应器中,使得所述杂类金刚石被加在扩展的金刚石结构上并成为所述扩展的金刚石结构的一部分,且所述杂原子取代地取位于金刚石晶格位置上,表现如同通常制备的掺杂金刚石中的掺杂剂。在第二种实施方案中,所述杂类金刚石可以用能够进行聚合反应的官能团来衍生化(或官能化),在一种变化形式中,连接两个相邻杂类金刚石的官能团是电的半导体。在第三种实施方案中,所述n-型材料在杂类金刚石晶体本体中仅包含杂类金刚石,其中在所述晶体中的各个杂类金刚石通过范德华(London)力保持在一起。最后,在第四种实施方案中,可使用单一的杂类金刚石来作为场致发射器件的阴极的部件。
在第一种实施方案中,使用化学气相沉积(CVD)技术来制备n-型类金刚石材料。使用常规的CVD技术,杂类金刚石可以被用作碳前体和作为在金刚石晶格中已sp3杂化的自包含的掺杂剂源。在一种新方法中,使用常规的CVD技术,杂类金刚石的应用可以被用来在金刚石薄膜中成核,其中这种常规的技术包括热CVD、激光CVD、等离子体增强或等离子体辅助的CVD、电子束CVD等。
通过等离子体增强的化学气相沉积(PECVD)技术合成金刚石的通用方法是本领域公知的,并可追溯至1980年代早期左右。虽然不必因为它们与本发明相关而讨论这些方法的具体细节,但是有一点应特别提及,因为其与氢在由“通用”等离子体-CVD技术合成金刚石中所起的作用相关。
在A.Erdemir等人在“Tribology of Diamond,Diamond-LikeCarbon,and Related Films,”in Modern Tribology handbook,Vol.Two,B.Bhushan,Ed.(CRC Press,Boca Raton,2001)pp.871-908中讨论的一种合成金刚石薄膜的方法中,一种改进的微波CVD反应器被用于使用C60富勒烯或甲烷、气体碳前体来沉积纳晶态金刚石薄膜。为将所述C60富勒烯前体引入到反应器中,将一种被称为“石英蒸发器(quartz transpirator)”的装置连接到所述反应器上,其中这种装置基本上将富含富勒烯的烟灰加热至约550至600℃的温度来使C60富勒烯升华成气相。
可以想到,可以使用类似的装置来使杂类金刚石升华成气相,从而使得它们可以被引入到CVD反应器中。在图6中图示了总体标为600的一个示例性反应器。反应器600包括反应器壁601,所述壁601界定了一操作空间602。使用气体进口管603来将工艺气体引入到操作空间602中,所述工艺气体包含甲烷、氢和非必要的惰性气体如氩。可以使用与以上所讨论的石英蒸发器相似的类金刚石升华或挥发装置604来挥发含类金刚石的气体和将其注入到反应器600中。所述挥发器604可以包括用于引入载气如氢、氮、氩或惰性气体如除氩外的稀有气体的装置,且它可以含有其它碳前体气体如甲烷、乙烷或乙烯。
常规的CVD反应器一样,反应器600可以具有用来从所述操作空间602中除去工艺气体的排放出口605;用来将能量耦合进入到操作空间602(并从操作空间602内所含的工艺气体触发等离子体)的能量源;用来将分子氢转变为单原子氢的灯丝607;在其上生长含类金刚石的薄膜609的基座(susceptor)608;用于使所述基座608旋转来提高含类金刚石的薄膜609的sp3杂化均匀性的装置610;以及用于调节和控制经由进口603的气体流量、从源606耦合进入操作空间602的能量的数量、注入操作空间602中的类金刚石的数量、经由排出口405排出的工艺气体的数量、由灯丝607的氢的原子化和旋转基座608的装置610的控制系统611。在一个示例性实施方案中,等离子体能量源606包括感应线圈,这样能量被偶合进在操作空间602中的工艺气体中,产生等离子体612。
按照本发明的实施方案,可通过挥发器604将杂类金刚石前体注入到反应器600中,所述挥发器604用来使类金刚石挥发。可使用载气如甲烷或氩,来协助载气中夹带的类金刚石转移到操作空间602中。这样的杂类金刚石的注入提供了一种方法,由该方法可将杂质原子插入到金刚石薄膜中,而无需求助于破坏晶体的技术如离子植入。或者,可通过在将基材插入到反应器之前,简单地将杂类金刚石放置在要在其上面沉积所述薄膜的基材上,来将杂类金刚石引入到所述反应器中。
可以想到,在某些实施方案中,所述注入的甲烷气体提供了在CVD方法生产的薄膜中存在的大多数的碳材料,输入气体中的杂类金刚石部分影响生长速率、结晶取向和可能影响晶粒结构,但更重要的是,输入气体中的杂类金刚石部分提供了杂原子杂质,其最后将用作n-型金刚石或金刚石样薄膜中的给电子物质。在图7A-7C中示意性地图示了这一方法。
参考图7A,将基材700放置在CVD反应器600中,在所述基材700上生长常规的CVD金刚石薄膜701。这种金刚石薄膜701包括四面体成键的碳原子,其中在图7A-C中碳原子由两条直线的交叉点来代表,例如由标号702所标示的,以及由直线的终点表示的由氢封端的表面,如标号703所标示的。金刚石薄膜701的氢钝化的表面703是很重要的。通过使生长的金刚石表面的sp3键特征稳定化,氢参与了通过PECVD技术合成金刚石的过程。如以上引用的参考文献中所讨论的,A.Erdemir等人教导,氢还控制初始晶核的尺寸、碳的溶解和在气相中可缩合的碳基团的产生、从附着到生长的金刚石薄膜表面上的烃夺取氢、sp3键合的碳前体可插入其中的空位的产生。氢从生长的金刚石薄膜表面刻蚀掉大多数的双键或sp2键合的碳,从而阻止石墨和/或非晶态碳的形成。氢还刻蚀掉较小的金刚石晶粒并抑制成核作用。因而,在存在足够氢的条件下,CVD生长的金刚石薄膜导致主要具有有高度小平面化表面(with highly faceted surfaces)的大晶粒的金刚石涂层。
再次参考图7A,杂类金刚石704被经由上述的挥发器604以气相形式注入到CVD反应器中。示意地,杂类金刚石704具有在直线交叉点的四面体成键的碳原子702,以及在直线端点的氢钝化的表面703,如前述。杂类金刚石704还具有取代地位于其晶格结构中的杂原子705,所述杂原子可以是电子给体或受体。
如图7B所示,在沉积过程中,杂类金刚石704沉积在CVD金刚石薄膜701的表面上。杂类金刚石704的碳原子变为与薄膜701的碳原子四面体配位(键合),沿新产生的杂类金刚石704与金刚石薄膜701的界面生成连续的金刚石晶格结构。
结果是得到具有取代地位于在金刚石晶体结构内的晶格位置上的杂质原子(其可为电子给体或受体)的金刚石薄膜707,如图7C所示。由于杂类金刚石已被引入到生长的金刚石薄膜中,所以其杂原子已结合到所述生长的薄膜中,且所述杂原子通过所述沉积过程保持了其sp3杂化特性。本发明实施方案的优点包括在不必借助破坏晶体的植入技术的条件下杂质原子向金刚石晶格中的插入。
作为CVD薄膜总重量的函数(其中杂类金刚石官能团的重量被包括在杂类金刚石部分中),在一个实施方案中,杂类金刚石和取代的杂类金刚石的重量可以在约1ppm至1%重量的范围内。在另一实施方案中,杂类金刚石和取代的杂类金刚石的含量为约10ppm至1%重量。在又一实施方案中,在CVD薄膜中杂类金刚石和取代的杂类金刚石相对于所述薄膜总重量的比例为约100ppm至0.01%重量。
在可作为替代方案的一个实施方案中,杂类金刚石可以通过聚合组装到n-型材料中。为此,必须在聚合之前将所述杂类金刚石衍生化(或官能化),并且形成类金刚石衍生物的方法及聚合衍生化的类金刚石的技术已经在Shenggao Liu,Jeremy E.Dahl和Robert M.Carlson的、申请日为2002年1月16日、名称为“Polymerizable HigherDiamondoid Derivatives”的U.S.专利申请序列号10/046486中进行了讨论,通过引用将其全文引入这里。
为了制备含有杂类金刚石组分作为聚合物主链的部分或作为所述主链的侧基或支链的聚合物膜,首先要合成衍生化的杂类金刚石分子,即,具有取代原来的氢的至少一个官能团的杂类金刚石。如在该申请中所讨论的,有两个主要的反应序列可用来衍生杂类金刚石亲核(SN1-型)和亲电(SE2-型)取代反应。
SN1-型反应包括产生杂类金刚石碳正离子,其随后与各种亲核试剂反应。由于在SN1反应条件下杂类金刚石的叔(桥头)碳被认为比仲碳反应活性更大,所以有利于在叔碳上的取代。
SE2-型反应包括经由五配位碳正离子中间体的C-H键的亲电取代。在可用于杂类金刚石官能化的所述两个主要反应路线中,SN1-型反应可以被更广泛地采用来产生各种杂类金刚石衍生物。单和多溴化的杂类金刚石是用于官能化杂类金刚石的最通用的中间体中一些。这些中间体被用于例如Koch-Haaf,Ritter和Friedel-Crafts烷基化和芳基化反应中。虽然在桥头(叔)碳上直接溴化杂类金刚石是有利的,但溴化衍生物也可以在仲碳上被取代。对后一种情况,当总体上希望在仲碳上进行合成时,经常采用自由基历程。
虽然在本发明某些实施方案中上述的反应路线可能是优选的,但当然也可使用许多其它反应路线来使杂类金刚石官能化。这些反应序列可用来产生具有各种官能团的衍生化的杂类金刚石,以至于所述衍生物可以包括用除溴外的元素(如氟)卤化的杂类金刚石、烷基化的类金刚石、硝化的类金刚石、羟基化的类金刚石、羧化的类金刚石、乙烯基化的(ethenylated)类金刚石和胺化的类金刚石。可被连接到杂类金刚石上的示例性取代基的列表参见共同待审查的申请“Polymerizable Higher Diamondoid Derivatives”的表2。
可以使杂类金刚石以及具有能够进入聚合反应的取代基的杂类金刚石衍生物经受适当的反应条件,从而生成聚合物。所述聚合物可以是均聚物或杂聚合物,并且所述可聚合的类金刚石和/或杂类金刚石衍生物可以与非含类金刚石、类金刚石和/或杂类金刚石的单体共聚合。通常使用如下方法中的一种来进行聚合自由基聚合,阳离子或阴离子聚合,和缩聚。用于引发自由基、阳离子、阴离子聚合及缩聚反应的步骤是本领域公知的。
在吸收足够量的热、紫外线或高能辐射时可自发发生自由基聚合。但是,通常这种聚合过程由少量的自由基引发剂如过氧化物、氮杂化合物、Lewis酸和有机金属试剂来增强。自由基聚合可以使用非衍生化的或衍生化的杂类金刚石单体。作为聚合反应的结果,在类金刚石、非类金刚石和杂类金刚石单体之间形成了共价键,使得所述类金刚石或杂类金刚石变为聚合物主链的一部分。在另一种实施方案中,可以聚合在类金刚石或杂类金刚石上的含官能团的取代基,从而使得类金刚石或杂类金刚石最终作为侧基连接到所述主链上。具有一个以上官能团的类金刚石和杂类金刚石能够将聚合链交联在一起。
对于阳离子聚合,可使用阳离子催化剂来促进所述反应。适用的催化剂是Lewis酸催化剂,例如三氟化硼和三氯化铝。这些聚合反应通常在低温下在溶液中进行。
在阴离子聚合中,衍生化的类金刚石或杂类金刚石单体通常经受强亲核试剂的作用。这类亲核试剂包括但非仅限于格氏试剂和其它有机金属化合物。从反应介质中除去水和氧经常促进阴离子聚合。
当一个类金刚石或杂类金刚石的官能团与另一个的官能团偶合时发生缩聚反应;例如,一个类金刚石或杂类金刚石的胺基与另一个的羧酸基团反应,形成酰胺链。换句话说,当第一种类金刚石或杂类金刚石的官能团是适当的亲核试剂如醇、胺或硫醇基团,而第二种类金刚石或杂类金刚石的官能团是适当的亲电试剂如羧酸或环氧基团时,一种类金刚石或杂类金刚石可与另一种类金刚石或杂类金刚石缩合。可以经缩聚反应形成的含杂类金刚石的聚合物的实例包括聚酯、聚酰胺和聚醚。
在本发明的一种实施方案中,一种用于杂类金刚石聚合的合成技术包括两步骤合成。第一步骤包括氧化,以在杂类金刚石的仲碳(亚甲基)位置形成至少一个酮官能团。所述杂类金刚石可以使用如浓硫酸之类的试剂直接氧化,以生成酮式杂类金刚石。在其它情况下,可能希望将烃转化为醇,然后将所述醇氧化成所需的酮。或者,杂类金刚石可以首先被卤化(例如用N-氯代琥珀酰亚胺,NCS),所得到的卤化的类金刚石与碱(如KHCO3或NaHCO3,在二甲亚砜存在下)反应。本领域技术人员可理解,在进行氧化步骤之前,可能必须保护杂类金刚石中的杂原子。
所述第二步骤包括偶联两个或更多个酮式杂类金刚石,以生成所需的杂类金刚石的聚合物。通过酮化学偶联类金刚石在本领域中是已知的,并且被称为McMurry偶联方法的一种方法已被公开在U.S.专利4225734中。或者,也可以通过在TiCl3,Na和1,4-二噁烷存在下使酮式-杂类金刚石反应来进行偶联。此外,在加拿大专利号2100654中叙述了类金刚石(金刚烷)的聚合物。本领域技术人员可理解,由于存在大量的氧化和偶联反应条件,可制备出各种不同构型、位置和立体构型的许多种酮式-杂类金刚石。
在作为替代方案的一个实施方案中,希望进行一系列的氧化/偶联步骤来使杂类金刚石聚合物的产率最大化。例如,当所需的聚合杂类金刚石含有插入的桥头碳时,一种三步骤程序可能是有用的。该程序包括用选择的试剂如NCS对中间体偶联的聚合杂类金刚石进行氯化。这产生了一种氯化的衍生物,其具有在与所述中间体中存在的双键(或多个双键)相邻的亚甲基基团上的新引入的氯。通过用羟基取代所述氯,并进一步用试剂如在二甲亚砜(DMSO)中的碳酸氢钠进行氧化,所述的氯衍生物可以被转化为所需的酮。可进行附加的氧化来增加酮的产率,所述附加的处理包括用吡啶氯铬酸盐(PCC)进行的进一步处理。
在图8A中示意性地图示了杂类金刚石单体之间的聚合反应。使用硫酸将杂类金刚石800氧化为酮式-杂类金刚石801。801所示的特定类金刚石是四金刚烷,但上述的任何类金刚石都可应用。再次地,符号“X”代表取代地取位于类金刚石的晶格位置上的杂原子。在这种情况下,所述酮基连接在位置802上。
如在步骤802中所示,两个杂类金刚石801可使用McMurry试剂来偶联。按照本发明的实施方案,两个相邻杂类金刚石之间的偶联可以在各个杂类金刚石的核结构的任意两个碳原子之间实现,且在这种示例性的情况下,所述偶联在类金刚石806的碳803与杂类金刚石806的碳804之间实现。对本领域技术人员来说显而易见的是,该方法可以被继续;例如,在807总体显示的杂类金刚石对可以用酮基分别在杂类金刚石805和806上官能化,以生成中间体808,其中两个中间体808可以被偶联,以形成复合体809。以这种方式,使用各个杂类金刚石800可构建一种聚合物,从而制备n-型材料。这种材料由于在相邻杂类金刚石单体之间的π-键而被预期是导电性的。
在一种可作为替代方案的实施方案中,可以用导电的聚合物“连接物”来偶联各个杂类金刚石分子,从而产生n-型杂类金刚石材料。在本文中,连接物被定义为包含较大聚合物的一至十个单体片段的短的聚合物链段。本发明的连接物可以包括导电聚合物,使得在总的本体材料中的相邻杂类金刚石之间建立起导电性。具有共轭π-电子主链的聚合物能够表现出这些电性能。导电聚合物是已知的,在J.E.Frommer和R.R.Chance,High Performance Polymers and Composites,J.I.Kroschwitx,Ed.(Wiley,New York,1991),pp.174至219中的标题为“Electrically Conductive Polymers”的章节中叙述了这些材料的技术。在这一章节中叙述了这些聚合物中的许多的导电性,并且与金属、半导体和绝缘体相对比。一种典型的半导体聚合物是对聚苯硫,其具有高达103Siemens/cm2(这些单位与Ω-1cm-1相同)和低至10-15(这与尼龙同样绝缘)的导电性。聚乙炔是更导电性的,具有103Ω-1cm-1的最高导电性和约10-9Ω-1cm-1的最低导电性。
按照本发明的实施方案,杂类金刚石可以使用以上讨论的聚合物的低聚物电连接,来形成大块的n-型材料。在这种情况下,低聚物是指约2至20个单体的聚合。因而,低聚物可以被看作短的聚合物。在这种情况下,低聚物和/或连接物的目的是将若干个杂类金刚石电连接成三维结构,使得可以实现具有p-型或n-型导电性的大块材料。
J.E.Frommer和R.R.Chance在High Performance Polymers andComposites,J.I.Kroschwitz,Ed.(Wiley,New York,1991),pp.174至219中的标题为“Electrically Conductive Polymers”的章节中一般性地讨论了导电性聚合物。为了合成常规的导电性聚合物,重要的是引入具有长的π-电子共轭的部分。通常用来合成这类聚合物的单体是芳族的,或含有多个碳-碳双键,所述双键保留在最终的聚合物主链中。或者,也可以在随后的将初始聚合物产物转化成共轭聚合物的步骤中来实现共轭。例如,乙炔的聚合产生共轭乙烯单元的产物,而苯聚合产生共价连接的芳族单元的链。
可用来以导电性方式连接杂类金刚石的示例性低聚物(连接物)目录图示在图9A-N中。已显示为是导电性的典型的连接物是图9A中的聚乙炔,图9E中的聚噻吩和图9F中的聚(对亚苯基亚乙烯基)。在以下讨论中作为例子着重突出的导电性连接物是聚苯胺,其低聚物被描述在图9N中。
在图10中描绘了用聚苯胺连接基团产生的杂类金刚石聚合物的示意图。图10的聚合物仅是示例性的,因为在相邻杂类金刚石之间的导电性连接物基团是聚苯胺官能团,但当然所述连接基团可以是任何导电性聚合物,其中的许多包含导电性二烯体系。在图10中,杂类金刚石1001通过聚苯胺低聚物的短链段1003与杂类金刚石1002连接。同一连接物也用于在同一线性链中的1004与杂类金刚石1005的连接。
在1000总体显示的聚合物可以还含有将线性链1006与1007连接的交联物。这产生了三维意义上的具有导电性的三维交联聚合物。交联链1008可用来连接相邻的线性链1006和1007。这样建立了导电性的含有类金刚石的三维矩阵。各杂类金刚石1001和1002在其结构内含有杂原子,所述杂原子是电子给体或电子受体。总体上,实现了n-型杂类金刚石材料的制备。
制备n-型材料的第三种方法是将杂类金刚石结晶成固体,其中构成所述固体的各个杂类金刚石通过范德华力(也称为London力或色散力)保持在一起。以这种方式保持在一起的分子已由J.S.Moore和S.Lee在“Crafting Molecular Based Solids,”Chemistry andIndustry,July,1994,pp.556-559中进行了讨论,并在现有技术中被称为“分子固体”。这些作者称,与扩展的固体或离子晶体相反,在分子晶体中分子的优选排布大概是使总自由能最小化的那一种,因而分子晶体的制造由热力学原因控制,不同于合成过程。下文中将讨论包含五金刚烷[1(2,3)4]的分子晶体的一个实例。
在一个示例性实施方案中,通过上述的色谱和结晶学技术来形成包含五金刚烷[1(2,3)4]的分子晶体。这些类金刚石的聚集物叠积,以形成晶格加基物(basis)可以被限定意义上的实际晶体。在该实施方案中,发现[1(2,3)4]五金刚烷在具有空间群Pnma的正交晶系中叠积,晶胞尺寸分别是a=11.4786,b=12.6418,和c=12.5169埃。为了获得所述衍射数据,在Bruker SMART 1000衍射仪中使用波长0.71073埃的辐射对五金刚烷晶体进行测试,所述晶体保持在90K的温度。
图11中图示了五金刚烷分子晶体的晶胞。该示了其中类金刚石可叠积以便可用于本发明实施方案的普遍的方式。这些分子晶体显示出界限分明的外晶体晶面,并且对于可见光辐射是透明的。
参考图11,所述[1(2,3)4]五金刚烷的叠积被图示成两个晶胞1102和1103的立体图。所述晶体的每个晶胞含有四个五金刚烷分子,其中所述分子的排布使得每个晶胞存在一个中心腔或孔。在本发明的某些实施方案中,由五金刚烷晶胞叠积所产生的腔1106可容纳小的杂质,或可以被扩大来容纳过渡元素金属如金。包括这些杂质的目的可以是提高导电性。
在图11中图示的所述[1(2,3)4]五金刚烷的叠积的一个重要特征是,除使用色谱技术的分离以外几乎不用进一步的加工,就可以实现p或n-型类金刚石材料。换句话说,不需要官能化来聚合或连接各个类金刚石分子,并且在这种实施方案中不需要昂贵的沉积设备。由于这些晶体在力学上是柔软的并可容易地压缩,由范德华力保持在一起,可能需要外“模具”来支撑所述n-型给电子材料。所述模具可以包括例如sp2杂化的碳材料的区域。
在另一种实施方案中,一个杂类金刚石(或数个杂类金刚石的小簇)被设想在分子水平上作为量子器件发挥功能,例如在单电子发射器中。单电子器件是已知的,在现有技术中已讨论了单电子晶体管。参见例如授予Park等人的U.S.专利6335245,和Quantum SemiconductorDevices and Technologies,T.P Pearsall,ed.(Kluwer,Boston,2000),pp.8-12。Park公开到,在半导体工业中减小器件尺寸的努力会驱使在一个通道(例如,在晶体管的源极(source)和漏极(drain)之间的导电通道)中存在的电子的数目由2010年的约300个减少到2020年的不超过30个。随着操作器件所需的电子数目被减少,电子行为的统计变化会更引人关注。因而,虽然单电子晶体管已被构思,但就它们的实施而言仍有许多困难要克服,包括使用现今的平版印刷技术制备它们的能力。Pearsall综述了数种类型的单电子晶体管,包括金属、半导体、碳纳米管和超导单电子晶体管。
被构想用于单电子发射器的杂类金刚石的一个实例图示在图12中。参考图12,包含具有氮杂原子的四金刚烷1201的n-型杂类金刚石经碳-碳双键1208偶联到相似的四金刚烷1202上,如在以上聚合物部分中所讨论的。在这一复合体中,杂类金刚石分子的数目可以为约1至10000。本实施方案构想的电子发射器不局限于n-型材料。换句话说,所述发射器(FED的阳极)也可包括p-型材料。所述p-型材料起电子受体的作用,并且希望给电子元素的数目大于电子受体元素的数目,使得总体上所述材料是给电子的。在某些情况下,设想在所述发射器材料中包含接受电子的元素,以提高对实际发射的电子的数目和分布的控制。因而,在图12中,具有硼杂原子的p-型四金刚烷1203可以通过碳-碳双键1209偶联到相似的四金刚烷1204上。当然,在所述簇中也可以存在不含有任何杂原子的类金刚石(未在图12中图示)。
在分子水平上,n-型类金刚石的复合物1205可以与p-型类金刚石的复合物1206偶联,形成复合物1207。这种分子复合物可以用作单电子发射器。
本发明的杂类金刚石提供了用现有技术方法不可能得到的提高的可靠性、可控制性和再现性。
n-型金刚石的性能目前,公知的用来掺杂金刚石的杂质原子包括硼和氮。硼是活化能为0.37eV的p-型掺杂剂。氮是n-型杂质,其可被称为深给体(deepdonor),因为它具有离导带底部1.7eV的能级。因为硼和氮在元素周期表中的相同行中与碳相邻,这些原子具有相似的尺寸,因而如果仅考虑尺寸因素它们可容易地引入到晶体中。R.Kalish和C.Uzan-Saguy在Properties,Growth and Applications of Diamond,edited byM.H.Nazare and A.J.Neves(Inspec,London,2001),pp.321-330中标题为“Doping of diamond using ion implantation”的章节B3.1中已讨论了硼和氮掺杂的金刚石的性能,尤其是它们与离子注入有关时的性能。
在过去,相对于n-型材料来说,开发p型金刚石材料取得了更大的成功。用氮满意地掺杂金刚石已证实是难掌握的,虽然用热丝CVD方法最近已取得了一些成功。最近由CVD方法已证实,磷在金刚石带隙中具有给体态,报导的活化能为约0.46至0.6eV。
含硼金刚石是天然存在的(称为IIb型天然金刚石),并且其电子性能已被广泛地研究。这些研究表明,硼受体的活化能级位于价带以上0.37eV。更最近,使用高压高温(HPHT)和化学气相沉积(CVD)技术二者制备出掺杂硼的p-型金刚石。迄今制备出的最佳的p-型金刚石材料显然是通过在<100>金刚石面上的CVD外延生长制备的。这些材料据报导在室温下给出1800cm2V-1s-1的载流子迁移率和约2.3×1014cm-3的载流子浓度。据推测,制备硼掺杂的p-型金刚石的成功是因为硼原子的小尺寸,这使得它能够容易地进入金刚石晶格。一旦处在所述晶格内,它占据了取代位置的优势(与空隙位置相反),其中它在电子上起电子受体作用。
Kalish和Uzan-Saguy总结了关于p-型金刚石的要点,指出硼是金刚石中最佳的已研究过的p-型掺杂剂。硼掺杂的材料证实有高达600cm2/Vs的空穴迁移率,和低于5%的补偿比。已发现最佳的退火历程是在大于1400℃的温度下的高温退火。
与p-型金刚石相反,n-型金刚石更难于制造。在用于金刚石的可能的取代的给体中,似乎仅有氮和磷可以进入所述晶体,以对其电性能产生贡献。这两种元素可以在CVD生长过程中引入到金刚石中。另外,占据空隙位置的I族元素如钠和锂,被预期起给体作用,它们的活化能分别为0.1和0.3eV。将氮键合到碳晶格内的生成能据预测是负的,为-3.4eV,与对于磷(10.4eV)、锂(5.5eV)和钠(15.3eV)所预测的高的正生成能相反。这表明这些元素在金刚石中的溶解度低,氮是例外。
如同硼一样,氮也取代地存在于天然金刚石(Ib型金刚石)中,其中所述杂质具有1.7eV的活化能。由于这是很高的离子化能量,含氮杂质的金刚石在室温下是电绝缘的,并且因此这些材料不能通过常规的电测量技术来进行研究。使用与用于硼的那些技术相似的注入技术,发现在退火后约50%的注入的氮位于取代位置上,但深能级的性质使得这种类型的材料不适于在室温下使用。
磷已被预测在金刚石中起浅给体(shallow donor)的作用,磷具有0.1eV的活化能。但最近,磷掺杂的金刚石已通过CVD技术生长,并且Hall效应测量表明,磷产生的一个给体能级(donor level),离子化能量低于导带底部约0.5eV。已发现在这种材料中载流子的迁移率为约30至180cm2V-1s-1,并且发现典型的室温载流子浓度为约1013至1014cm-3。换言之,已发现磷在1200℃下退火后约70%的时间占据取代的位置。
虽然这看起来是制备n-型金刚石的吸引人的方法,但作者陈述到,未发现在金刚石中离子注入的磷的n-型电活性。原因据推测是磷原子相对于金刚石晶格尺寸来说的大尺寸。这种不相称导致了在金刚石晶格中的应变,这似乎吸引并产生无电活性的缺陷。
人们还尝试了通过锂注入来制备n-型金刚石。在一项研究中,通过热探针测量证实了n-型导电性,活化能为0.23eV。另一项研究发现活化能为0.22eV。在再一项研究中,发现约40%的注入的锂占据了空隙晶格位置,17%占据取代位置,但在这种情况下没有发现明显的n-型电信号。据推测,取代的锂起受体作用,空隙的锂起给体作用,在这两种效应之间可能的补偿导致无电活性。
C.Johnston等人在Properties,Growth and Applications ofDiamond,edited by M.H.Nazare and A.J.Neves(Inspec,London,2001),pp.337-344中名为“Boron doping andcharacterization of diamond”的B3.3章节中给出了对硼掺杂金刚石的进一步讨论。这些作者陈述到从对天然金刚石的研究中已知硼起受体作用,能级在价带边缘以上0.368eV。基本上有三种途径来实现硼对金刚石的掺杂,这些方法包括1)在生长过程中原位将硼引入到金刚石中,2)在外部通过离子注入,和3)高温扩散。上述方法的一个缺点是硼的引入可能取决于金刚石薄膜的结构或在其上面沉积金刚石的基材的取向。在一项研究中,向具有<111>取向的生长的金刚石薄膜中引入硼的概率最高比向具有<100>取向的薄膜中引入硼的概率大一个数量级。向生长的金刚石薄膜中引入掺杂剂还取决于沉积的材料的形态。例如,当硼浓度从约1016增加到1021cm-3时,平均结晶尺寸减少一个数量级。
如上面所讨论的,通过离子注入制备n-型金刚石比制备p-型金刚石更难,但近来使用CVD方法向金刚石中引入氮和磷已证实是更成功的。这种技术已由G.Z.Cao在Properties,Growth and Applicationsof Diamond,edited by M.H.Nazare and A.J.Neves(Inspec,London,2001),pp.345-347中名为“Nitrogen and phosphorus doping in CVDdiamond”的B3.4章节中进行了讨论。该作者陈述到,由于其独特的物理性能,金刚石有希望用于高功率、高频率和高温的电子应用。这些性能包括0.16m2/Vs的高载流子迁移率、高达约1.5×104W/mK的高导热率和5.5eV的宽带隙能量。在天然存在的IIb型金刚石以及通过高压高温(HPHT)技术或通过化学气相沉积CVD技术合成的p-型金刚石这两者中均证实了p-型传导性。为了产生n-型金刚石,氮和磷被认为是可能的给体元素。
在天然存在的金刚石中氮是最普遍的杂质,并可容易地使用N2或NH3作为前体引入到CVD金刚石中。热丝CVD是优选的方法。典型的浓度是6×1019原子/cm3。然而,向生长的金刚石薄膜中引入氮的速率依赖于所述生长的薄膜的取向,且所述薄膜的生长速率依赖于在进料气体中的氮的数量。例如,(100)面向金刚石中引入最高浓度的氮,其次是(111)面,(100)面引入最小数量的氮。然而,向进料气体中添加氮导致(100)面的生长有最大的提高,其次是(111)面,(110)面有最小的提高。
Cao重申,磷是用于n-型半导体金刚石薄膜的有希望的给体备选物。模型显示,磷在金刚石中可以表现为浅给体,具有距导带底部0.2eV的能级。然而,磷具有大的正生成能(10.4eV),因而在金刚石中具有低的平衡溶解度。这部分是由于相对于碳而言磷的大尺寸;例如,相对于碳的0.77埃半径,磷具有1.10埃的半径。
在早期的磷掺杂研究中,仅可实现低浓度的磷掺杂,但发现在存在其它杂质如硼的条件下磷的浓度可提高。不幸的是,由于以上讨论的给体-受体补偿效应,不能获得n-型传导。
回顾掺杂的金刚石的性能依赖于掺杂剂的性质。硼掺杂的金刚石具有高于价带0.368eV的受体能级,其可被视为浅能级,并且因此空穴可以用较低的能量由带隙内的能态激发到价带的顶部。然而,氮是能级距导带底部1.7eV的深给体(deep donor),因而需要较大的能量来将电子由导带内的给体能态提升到导带的底部。因而,当用金刚石掺杂n-型金刚石时,它在室温下不是导电性的,因为这些温度不能提供足够的能量来将电子由其在带隙内的能态激发到导带。按照模型磷是浅给体,其能态距导带边缘0.2eV,使得磷成为用作n-型掺杂剂的潜在的备选物,而锂是另一种可能性。
应指出,在某些情况下,金刚石的氢化表面可以赋予所述晶体p-型传导性。K.Bobrov等人在“Atomic-scale imaging of insulatingdiamond through resonant electron injection,”Nature,Vol.413,pp.616-619(2001)中对此进行讨论。该研究证实,可使用扫描隧道显微技术来使“绝缘”金刚石表面成像,从而在原子尺度上研究电子性能。(100)金刚石的单晶的氢化表面可以在负的试样偏压下用STM成像。无氢的金刚石表面是绝缘的。
本发明实施方案通过合成杂类金刚石,使得在制造n型半导体材料之前杂质电子给体原子被包含在金刚石晶格结构中,绕过了现有技术的困难。这种n-型杂类金刚石材料可用于器件,例如场致发射器件中。
场致发射器件按照本发明实施方案,将杂类金刚石或含杂类金刚石的材料用作场致发射器件中的冷阴极灯丝,所述场致发射器件适用于平板显示器以及其它用途。含杂原子的类金刚石的独特性能使得这成为可能。这些性能包括氢化金刚石表面的负的电子亲合性,以及典型的高级类金刚石分子的小尺寸。后者在类金刚石中心的金刚石材料包含高纯度的金刚石单晶的意义上提供惊人的电子特征,在类金刚石表面存在显著不同的电子态。这些表面态使得导带电子可具有很长的扩散长度。电子给体杂原子,例如氮,提供电子给所述材料的导带,来促进电子由所述阴极的发射。
在W.Zhu等人撰写的Vacuum Micro-electronics(Wiley,New York,2001),pp.247-287中的标题为“Novel Cold Cathode Materials”的章节中,给出了用于微尖端(microtip)场致发射器阵列的电流要求,以及改进的场致发射阴极预期将提供的性能。可能常规的场致发射阴极存在的最困难的问题是为了从灯丝夺取电子必须施加在所述器件上的高压。Zhu等人报导了由于通常构成场致发射阴极的材料的高功函,用于微尖端场致发射器阵列的典型控制电压为约50-100伏。总体上,金刚石(尤其是氢化的金刚石表面)提供了对这一问题的独特解决方案,因为金刚石表面表现出负的电子亲合力的这一事实。
材料的电子亲合力是在所述材料表面的电子状态的函数。当金刚石表面用氢钝化时,也就是说,在所述表面上的各碳原子是sp3杂化的,即与氢原子成键,该氢化的金刚石表面的电子亲合力可变成负的。具有负的电子亲合力的表面的显著结果是对试图选出所述材料的电子来说的能垒在能量方面是有利的,并且呈“下坡”方向。金刚石是在空气中具有负的电子亲合力的唯一的已知材料。
以更具体的术语来说,一种材料的电子亲合力χ是负的,其中χ被定义为将电子由在导带最小值的电子态激发到真空能级所需要的能量。对于多数半导体来说,导带的最小值低于真空能级的最小值,从而该材料的电子亲合力是正的。在这类材料的导带中的电子由等于所述电子亲合力的能量束缚于所述半导体,并且必须提供该能量给所述半导体来将电子由所述材料的表面激发。
应指出的是,包含金刚石灯丝的场致发射阴极可能受固有性能的困扰虽然在导带中的电子可容易地发射到真空能级中,但是由价带激发电子到导带以使它们可用于场致发射可能是成问题的。这是因为金刚石的宽的带隙。在正常情况下,几乎没有电子能够横穿所述带隙,换言之,从在价带中的电子态向在导带中的电子态移动。因此,因为其绝缘性质,金刚石一般被认为不能维持电子发射。重申一下,虽然由于氢化的金刚石薄膜表面的负电子亲合力电子可容易地从所述表面逸出到真空中,但问题是没有电子可以由本体激发到电子表面态的容易获得的机制。
可以有数种途径来解决这一问题。电子从金刚石表面发射的观察结果具有1)高缺陷密度,例如较大含量的元素氮,或者2)异常的微结构,包括气相沉积的岛或具有纳晶态形态的薄膜。它们还可证实量子力学隧道效应(quantum mechanically tunneling)。本领域已知具有小晶粒尺寸和高缺陷密度的金刚石材料一般比具有大结晶尺寸和低缺陷浓度的金刚石材料更容易地发射电子。在含有尺寸在1至20nm范围内的微晶的超细金刚石粉末中观察到突出的发射性能已有报导(参见以上的Zhu文献)。已发现电子发射源于与金刚石中的缺陷结构相联系的位点,而不是与表面相联系的清晰形貌(sharp features),并且与常规的硅或金属微尖端发射器相比,金刚石发射器显示出较低的阈场、改进的发射稳定性和强度及真空环境。
按照本发明实施方案,场致发射阴极包含杂类金刚石、衍生化的杂类金刚石、聚合的杂类金刚石以及本说明书先前部分讨论过的所有或任意其它含类金刚石的材料。按照本发明的进一步的实施方案,所述杂类金刚石中的杂原子是给电子物种如氮。
在图13中图示了一个示例性的包含杂类金刚石的场致发射阴极。参考图13,以1300总体显示的场致发射器件包括用作所述器件1300的阴极的含杂类金刚石的灯丝1301,和面板1302,在所述面板上已沉积磷光涂层1303。所述器件的阳极可以是位于所述磷光涂层1303后面的导电层1304,或者是与所述灯丝1301相邻的电极1305。在操作过程中,将来自电源1306的电压施加在灯丝电极1307和所述器件的阳极即电极1304或者1305之间。典型的操作电压(即阴极与阳极间的电势差)小于约10伏。这是允许所述阴极在所谓的“冷”结构中操作的原因。对于类金刚石表面,可以想到典型的电子亲合力小于约3eV,且在其它实施方案中它可以是负的。小于约3eV的电子亲合力被认为是“低的正值”。
虽然金刚石材料一般被认为是电绝缘的,但杂类金刚石灯丝(或阴极)1301含有给电子杂原子1310,其可以是任何V族(IUPAC符号)或VI族元素,例如分别地N、P、As或O、S、Se。这些给电子元素提供一个电子(对于V族的情况)或两个电子(对于VI族的情况)给构成所述含杂类金刚石的阴极的所述材料的导带。另外,所述阴极在二维上可以是足够小的,以允许电子从灯丝电极1307穿过隧道(在量子力学意义上)到所述杂类金刚石的相反表面上,其可以是表面1308或尖端1309。本领域技术人员可理解,对于杂类金刚石灯丝1301来说,具有顶点或尖端1309不是必需的,因为所述类金刚石的表面是氢化的,并且是sp3杂化的。在一个可供选择的实施方案中,阴极1301的表面可以包括含杂类金刚石的材料,所述材料至少部分被衍生化使得所述表面同时包括sp2和sp3杂化。在本发明实施方案中,阴极的电子亲合力小于约3eV,并且可以是负的。
对于含杂类金刚石的组分,不论所述含杂类金刚石的组分是CVD反应的产物、聚合物、分子晶体或各个杂类金刚石的簇,阴极1301的杂类金刚石含量可以为约1至100%重量。另外,含杂类金刚石的材料的形式可以包括纤维或薄膜形。含杂类金刚石的材料的表面可以包含基本上sp3杂化的碳原子,但所述表面还可以被衍生化或共结晶,使得所述表面同时包含sp2和sp3杂化的碳。
本发明该实施方案的预期的一个优点是,相对于常规的场致发射器件,可实现所述器件的更大的分辨率,这是因为更多数量的可发射电子,典型的杂类金刚石的小尺寸,及使用杂类金刚石可获得的更可再现和更均匀的结构。
实施例以下实施例显示了按照本发明实施方案合成含氮和硼的杂类金刚石及聚合的杂类金刚石的方法。它们意图是作为实施例,而不应视为对以下要求保护的本发明的限制。
实施例1-3描述了可用来制备含氮的杂类金刚石,例如氮杂类金刚石的方法。实施例4公开了由杂类金刚石制备聚合物,包括包含通过类金刚石晶格位置的碳之间的双键偶联的杂类金刚石的聚合物的示例性方法。实施例1例证了从含有包括某些烷基四金刚烷和其它杂质的四金刚烷混合物的原料来制备氮杂四金刚烷。含有不同类金刚石(如三金刚烷,或四金刚烷和更高级类金刚石)的其它原料也可以应用,并产生类似的杂类金刚石混合物。
实施例1从含有四金刚烷异构体的混合物制备氮杂四金刚烷在以下实施例中,从含有三种四金刚烷异构体,即异-四金刚烷、反-四金刚烷和邻位交叉-四金刚烷的混合物的原料来制备氮杂四金刚烷的混合物。
在这种示例性合成中的第一步包括含四金刚烷的原料的光致羟基化。所述原料可以通过在2002年1月17日申请的U.S.专利申请10/052636中叙述的方法获得,所述文献通过引用全文结合在这里。获得含有至少一种四金刚烷异构体的馏分,所述馏分可以包括取代的四金刚烷(如烷基四金刚烷)以及烃杂质。这一馏分组成的气相色谱/质谱(GC/MS)分析表明是一种四金刚烷混合物。
将200mg上述含四金刚烷的原料在6.1g二氯甲烷中的溶液与1.03g(13.5mmol)过乙酸在乙酸乙酯中的溶液4.22g混合。在强烈搅拌下,用100瓦UV光照射该溶液。从开始就看见有气体产生。在约21小时的照射期间,将温度保持在40-45℃。然后所述溶液被浓缩至接近干,每次用10mL甲苯连续处理两次,再蒸发至干。然后对产物进行GC/MS表征,显示存在羟基化的四金刚烷异构体。
在一种可供选择的实施方案中,可以按照McKervey等人(参见J.Chem.Soc.,Perkin Trans.1,1972,2691)的步骤直接氧化所述四金刚烷原料。然后对所述粗产物混合物进行GC/MS表征,显示存在异四金刚烷酮。然后用在乙醚中的氢化锂铝在低温下还原通过直接氧化制备的所述氧化的原料(其中所述产物含有四金刚烷酮)。在该反应完成后,通过在低温下添加饱和Na2SO4水溶液以分解过量的氢化锂铝,对所述反应混合物进行后处理。由沉淀的盐倾析得到干的乙醚溶液,然后将其蒸发,得到粗产物。所述粗产物可以通过GC/MS进行表征,表明存在羟基化的四金刚烷异构体。
在下一步中,可以从上面的羟基化的四金刚烷或从光氧化的四金刚烷制备氮杂高四金刚烯(azahomo tetramantane-ene)。向搅拌和用冰冷却的98%甲磺酸(1.5ml)和二氯甲烷(3.5ml)的混合物中,添加固体叠氮化钠(1.52g,8.0mmol)。向该混合物中添加以上制备的羟基化的四金刚烷。向这种得到的混合物中用约0.5h以小的量逐渐添加叠氮化钠(1.04g,16mmol)。在20-25℃下持续搅拌约8小时,然后将所述混合物倒入冰水(约10ml)中。分离出水层,用CH2Cl2(3ml)洗涤,用50% KOH水溶液-冰碱化,并用CH2Cl2(10ml×4)萃取。合并的萃取物用Na2SO4干燥,除去溶剂得到褐色的油状产物。所述产物用GC/MS进行表征,表明存在氮杂高四金刚烯异构体。
在下一步中,通过如下程序从所述氮杂高四金刚烯制备环氧氮杂高四金刚烷。将上述混合物用在CH2Cl2-NaHCO3中的m-CPBA(1.1当量)在约20℃的温度下处理12小时,并且所述反应混合物然后用CH2Cl2萃取来进行后处理,得到一种粗产物,将其用GC/MS进行表征,表明存在环氧氮杂高四金刚烷。
在下一步中,通过使用高强度Hg灯照射在环己烷中的环氧氮杂四金刚烷混合物约0.5小时,从环氧氮杂高四金刚烷混合物制备N-甲酰氮杂四金刚烷的混合物。所述反应在氩气氛中进行。一般来说,如果允许反应仅进行一短的时间,则获得较简单的反应产物;较长的反应时间则给出复杂的混合物。初始产物由GS/MS表征,显示是N-甲酰氮杂四金刚烷的混合物。
在最终步骤中,通过将N-甲酰氮杂四金刚烷与10mL 15%盐酸混合,由上述的N-甲酰氮杂四金刚烷制备氮杂四金刚烷。将得到的混合物加热至沸腾达约24小时。在冷却后,对该混合物进行典型的后处理,得到一种产物,其由GS/MS表征,表明存在氮杂四金刚烷。
实施例2从异-四金刚烷制备氮杂异-四金刚烷在这一实施例中,从单一的四金刚烷异构体即异四金刚烷制备氮杂异四金刚烷,如在图5A-B中所示。如同四金刚烷的混合物的情况,这种合成路线也从异四金刚烷的光致羟基化或化学氧化/还原成羟基化化合物2a开始,如在图5A中所示。
将3.7mmol异四金刚烷在6.1g二氯甲烷中的溶液与1.03g(13.5mmol)过乙酸在乙酸乙酯中的溶液4.22g混合。在强烈搅拌下,用100瓦UV光照射所述溶液,并且照射过程一开始就看到有气体产生。在约21小时的照射时间内,将温度保持在40-45℃。然后将所述溶液浓缩至接近干,每次用10mL甲苯连续处理两次,再蒸发至干。含有在C-2和C-3位羟基化的异四金刚烷混合物的粗产物不进行纯化,而是将该混合物直接用于包括将羟基化化合物2a氧化为酮化合物1的反应中。
将含有C-2和C-3羟基化的异四金刚烷混合物的光致羟基化的异四金刚烷部分溶解在丙酮中。所述被氧化的组分进入溶液中,但不是所有未反应的异四金刚烷都能够被溶解。然后滴加铬酸和硫酸的溶液直到存在过量的酸,并将所述反应混合物搅拌过夜。从沉淀的硫酸铬和未反应的异四金刚烷中倾析出丙酮溶液,并用硫酸钠干燥。通过将所述铬盐溶解在水中并随后过滤,来回收未反应的异四金刚烷。蒸发丙酮溶液得到一种白色固体。使用常规的程序在三氧化二铝上对所述粗固体进行色谱分离,其中开始可以用1∶1(v/v)苯/石油醚洗脱,接着用乙醚或乙醚与甲醇的混合物(95∶5v/v)洗脱,以首先收集未反应的异四金刚烷,然后收集所述酮化合物1。通过从环己烷中再结晶来进行进一步的纯化,可以得到基本上纯的产物1。
或者,按照McKervey等人的程序(参见J.Chem.Soc.,PerkinTrans.1,1972,2691),可以将异四金刚烷直接氧化为所述酮化合物1。在氧化步骤后,通过在低温下用在乙醚中的过量氢化锂铝处理所述酮化合物1,可以将所述酮化合物1还原为C-2羟基化的异四金刚烷2a。在该反应完成后,通过在低温下添加饱和Na2SO4水溶液以分解过量的氢化物,来对所述反应混合物进行后处理。由沉淀的盐倾析得到干的乙醚溶液,然后将其蒸发,得到粗的在仲碳上取代的单羟基化异四金刚烷。这种化合物可以被称为C-2四金刚烷醇。从环己烷中进一步再结晶给出基本上纯的产物。
或者,通过在-78℃(干冰/甲醇)下向搅拌的酮化合物1(2mmol)在干燥的THF(20mL)中的溶液中滴加甲基锂在乙醚中的0.8M溶液(2.8mL,2.24mmol),可以从所述酮化合物1制备C-2甲基羟基异四金刚烷2b。在-78℃下持续搅拌约2小时,并在室温下再搅拌1小时。然后,添加饱和氯化铵溶液(1mL),并用乙醚(2×30mL)萃取所述混合物。所述有机层用硫酸钠干燥并浓缩,给出所述产物2b,其随后通过色谱法或再结晶来纯化。
在下一步中,从羟基化化合物2制备氮杂高异-四金刚烯3。向搅拌和用冰冷却的98%甲磺酸(15ml)和二氯甲烷(10ml)的混合物中,添加固体叠氮化钠(1.52g,8.0mmol),然后添加上述的C-2羟基化的化合物2a或2b(6mmol)。向得到的混合物中用约0.5h以小的量逐渐添加叠氮化钠(1.04g,16mmol)。在添加叠氮化钠后,在约20-25℃下持续搅拌约8小时。然后将所述混合物倒入冰水(约10ml)中。分离出水层,用CH2Cl2(3ml)洗涤,用50% KOH水溶液-冰碱化,并用CH2Cl2(10ml×4)萃取。合并的萃取物被干燥(Na2SO4),除去溶剂得到褐色的油状物,对其进行色谱纯化,给出基本上纯的样品3(3a或3b)。
在下一步中,从氮杂高异-四金刚烯3制备环氧氮杂高异四金刚烷4。将氮杂高异-四金刚烯3(3a或3b)与在CH2Cl2-NaHCO3中的m-CPBA(1.1当量)的混合物贮存在5-20℃,接着进行通常的后处理和短柱色谱分离,得到环氧氮杂高异-四金刚烷4(4a或4b)。
在下一步中,通过使用UV灯照射在环己烷中的环氧氮杂高异四金刚烷4b约0.5小时,从环氧氮杂高异四金刚烷4b制备N-酰基氮杂异四金刚烷5b。所述照射穿过石英滤光器,且所述反应在氩气氛中进行。总体来说,当允许反应仅进行一短的时间时,则形成单一的产物;较长的反应时间给出复杂的产物混合物。产物可由色谱技术来分离。
类似地,可由环氧氮杂高异四金刚烷4a制备N-甲酰氮杂异-四金刚烷5a。
在下一步中,通过将N-酰基氮杂异-四金刚烷5b(5mmol)与2g粉末氢氧化钠在20mL二甘醇中的溶液加热至回流达约5小时,从N-酰基氮杂异-四金刚烷5b制备氮杂异-四金刚烷6。在冷却后,将所述混合物倾倒至50mL水中并用乙醚萃取。用氢氧化钾干燥所述乙醚萃取物。蒸馏掉乙醚后得到产物氮杂异-四金刚烷6。通常制备盐酸盐用于分析。因而,将干氯化氢通过所述胺的醚溶液中,从而所述盐呈晶态化合物分离出来。所述盐可通过在乙醇中溶解、并用无水乙醚沉淀来进行纯化。通常,所述溶液在不扰动的条件下放置数天来获得完全结晶。
或者,可通过将N-甲酰基氮杂异-四金刚烷5a(2.3mmol)与10mL15%盐酸混合来由N-甲酰基氮杂异-四金刚烷5a制备氮杂异四金刚烷6。将得到的混合物加热至沸腾达约24小时。在混合物冷却后,过滤沉淀物并在异丙醇中重结晶,得到产物氮杂异-四金刚烷6。
实施例3通过酮化合物1碎裂成不饱和羧酸7来制备氮杂异-四金刚烷6产品在图5B中图示了用于制备产物氮杂异-四金刚烷6的另一种合成路线。参考图5B,按照McKervey等人(Synth.Commun.,1973,3,435)的方法,通过不规则Schmidt反应,可以将上面制备的异-四金刚烷酮1碎裂成不饱和羧酸7。预期这种合成与文献中报导的用于金刚烷和二金刚烷的合成相似(参见例如Sasaki等人,J.Org.Chem.,1970,35,4109;和Fort,Jr.等人,J.Org.Chem.,1981,46(7),1388)。
在下一步中,可由羧酸7来制备化合物8。向4.6mmol羧酸7中添加12mL冰醋酸和3.67g(4.48mmol)无水乙酸钠。所述混合物被搅拌并加热至约70℃。分3份经30分钟添加乙酸铅(IV)(3.0g,6.0mmol,90%纯,4%乙酸)。在70℃下持续搅拌45分钟。然后将所述混合物冷却至室温并用20mL水稀释。所得到的悬浮液与20mL乙醚一起搅拌,添加数滴联氨水合物来溶解沉淀的二氧化铅。然后分离乙醚层,用水洗涤数次,用饱和碳酸氢钠洗涤一次,并用无水硫酸钠干燥。除去乙醚给出一种油状物质,由该物质获得化合物8的两种异构体(外式-和内式-)的混合物。通过在真空下蒸馏可实现所述立体异构体(外式-和内式-)的进一步纯化和分离。
然后通过向化合物8(0.862mmol)在5mL无水乙醚中的溶液中添加0.13g(3.4mmol)氢化锂铝,可以由化合物8(外式或内式-)制备化合物9(外式-或内式-)。所述混合物搅拌下回流约24小时。通过滴加水来破坏过量的氢化锂铝,并且将沉淀的氢氧化锂和氢氧化铝溶解在过量的10%盐酸中。分离醚层,用水洗涤,用无水硫酸钠干燥,并蒸发,给出化合物9(如果起始原料是外式-8和内式-8的混合物,则化合物9是外式-9和内式-9异构体的混合物)。通过由甲醇-水中对产物重结晶可实现进一步纯化。
然后从化合物9的外式-和内式混合物制备化合物10。在Erlenmeyer烧瓶中在25℃下搅拌醇9的混合物(1.05mmol)在5mL丙酮中的溶液。向该溶液中滴加8N铬酸直到桔色持续;温度保持在25℃。然后将所述桔色溶液在25℃下搅拌另外约3小时。除去大多数的丙酮,并向残余物中添加5mL的水。用乙醚萃取含水混合物两次,并且合并的萃取物用饱和碳酸氢钠洗涤,用无水硫酸钠干燥,并蒸发,给出粗化合物10。在水蒸气浴上升华,得到基本上纯的10。
在一种可供选择的实施方案中,可以从单独的化合物9的异构体而不是外式-和内式-9异构体的混合物来制备化合物10。例如,通过在Erlenmeyer烧瓶中在25℃下搅拌外式-9(1.05mmol)在5mL丙酮中的溶液,可以从外式-9制备化合物10。向这种溶液中滴加8N铬酸直到桔色持续,温度保持在约25℃。然后将所述桔色溶液在25℃下搅拌约3小时。除去大多数的丙酮,并向残余物中添加5mL的水。用乙醚萃取含水混合物两次,并且合并的萃取物用饱和碳酸氢钠洗涤,用无水硫酸钠干燥,并蒸发,给出粗化合物10。在水蒸气浴上升华,得到基本上纯的10。
在另一种可供选择的实施方案中,可直接从羧酸7制备化合物10,而不经过中间体化合物8和9。为达此目的,将羧酸7(4.59mmol)在15mL干燥THF中的溶液在于燥氩气下搅拌并冷却至0℃。在氩气氛下,通过注射器将1.5g(13.76mmol)二异丙基氨锂在25mL干燥THF中的溶液添加到7的溶液中,添加的速率应使得温度不升高到约10℃以上。所得到的7的双阴离子的溶液在0℃搅拌约3小时。然后将该溶液用干冰-丙酮浴冷却到约-78℃,并使干燥的氧缓慢鼓泡通过所述溶液约3小时或更长时间。向所述反应混合物中添加约10mL THF和1mL水的混合物,然后使之升温至室温并搅拌过夜。将所述溶液在真空中浓缩至约10mL,倾倒至过量的10% HCl中,并用乙醚萃取。用5%的NaOH洗涤醚层以除去未反应的7,其可以通过酸化所述碱性洗涤液来回收。所述醚层用无水硫酸盐干燥并被汽提,产生粗的10。在3-5托下在水蒸气浴上升华,得到基本上纯的产物。
再参考图5B,可以按如下方式从化合物10制备化合物11。向化合物10(1.6mmol)在吡啶和95%乙醇的(1∶1)混合物中的溶液中添加250mg(3.6mmol)的盐酸羟胺,并将所述混合物在回流下搅拌约3天。在空气流中蒸发掉大部分溶剂,并将残余物溶解在25mL水中。将所述水溶液的乙醚萃取物用10% HCl洗涤,以萃取肟11。用10%氢氧化钠中和酸洗涤液来沉淀肟11,将其过滤出并在乙醇-水中再结晶。
在最后的步骤中,通过如下方法从化合物11制备氮杂异-四金刚烷6向搅拌的250mg(6.58mmol)氢化锂铝在25mL无水乙醚中的悬浮液中,滴加化合物11(0.98mmol)在25mL无水乙醚的溶液。所述混合物在回流下搅拌约2天。用水破坏过量的氢化锂铝,并将沉淀的氢氧化锂和氢氧化铝溶解在过量的25%氢氧化钠中。所得到的碱性溶液用乙醚萃取两次,然后用10% HCl洗涤合并的萃取物。用10%氢氧化钠中和酸性洗涤液,沉淀出产物6,其被萃取回新鲜的乙醚中。醚溶液用无水硫酸钠干燥并被汽提。通过在水蒸气浴中在真空下重复升华来纯化所述粗产物。
实施例4制备由在位于金刚石晶格位置上的碳之间的双键偶联的聚合杂类金刚石这一实施例描述了一种示例性的方法,该方法可以用来制备由在相邻杂类金刚石的位于金刚石晶格位置上的碳原子之间的双键偶联的聚合杂类金刚石。在该实施例中,可以制备许多不同构型的聚合杂类金刚石,包括环状、线性和Z字形聚合物,取决于在类金刚石自身内的碳原子的位置。本领域技术人员可理解,使用本实施方案的方法可以制备出基本上无限数量的构型,但下面将描述一种具体的氧化反应,并在实施例9中描述偶联反应。
通过将10mmol的杂类金刚石添加到100mL 96%硫酸中,来制备杂类金刚石酮(酮式-杂类金刚石)。然后将所述反应混合物在强烈搅拌下在约75℃下加热约5小时。再在室温下持续搅拌约1小时。将黑色反应混合物倾倒至冰上并进行水蒸气蒸馏。用乙醚萃取所述水蒸气蒸馏物,合并的醚萃取物用水洗涤并用MgSO4干燥。蒸发出乙醚,产生粗的产物混合物。在三氧化二铝上进行的色谱法分离出未反应的杂类金刚石,产生酮级分(用石油醚或其它合适的溶剂洗脱)和副产物醇级分(用乙醚或其它合适溶剂洗脱)。所述酮(不同位置和立体异构体的混合物)的产率一般为约20%。本领域技术人员可理解,在经历本文所述的氧化/偶联反应之前,在杂类金刚石中的某些杂原子可能需要被保护。
来自用强氧化剂如H2SO4进行的氧化或来自温和氧化如用叔丁基氢过氧化物进行氧化的直接氧化产物的副产物醇,可以如下所述通过用H2SO4进行处理来转化成酮。在偶而摇动的用瓶塞很松地塞口的烧瓶中,将溶解在96% H2SO4中的所述醇在75℃下强烈搅拌约4.5小时。在约5小时后,将反应骤冷,并如上所述进行后处理。总的酮产率一般为约30%。
实施例5引入到双键偶联的杂类金刚石中的酮基高选择性地位于与连接所述类金刚石的双键相邻的亚甲基基团上的酮化合物的制备向1mmol双键偶联的杂类金刚石在20mL CH2Cl2中的溶液中,添加1.05mmol(140mg)NCS。将所述反应混合物在室温下搅拌约1小时,用CH2Cl2稀释,并用水洗涤两次。有机层用MgSO4干燥并蒸发。制备出氯化产物(不同位置或立体异构体的混合物)。通过将中间体氯化物在碳酸氢钠在DMSO的溶液中加热至约100℃数小时,所述中间体氯化物被转化为相应醇和酮的混合物。将所述反应混合物在己烷和水中分配,并将己烷层蒸发,得到产物混合物。通过在搅拌条件下与0.15mol的PCC溶液一起回流约2小时,来实现其余醇向酮的转化。通过向冷却的混合物中添加大大过量的乙醚,并用附加的乙醚洗涤所有固体,来分离所述酮。使所述醚溶液通过Florisil的短柱(short pad)并蒸发出所述醚,以得到具有不同位置或立体异构体的酮产物,其可以被分离并用于随后的偶联反应。
通过如下所述的选择性溴化,也可以实现酮引入到双键相邻位置的高选择性向3mmol双键偶联的杂类金刚石在40mL CH2Cl2中的溶液中,添加6.6mmol(1.175g)N-溴代琥珀酰亚胺(NBS)。将所述反应混合物回流和搅拌约12小时。将所述反应混合物用CH2Cl2稀释,并用水和饱和Na2S2O3溶液洗涤两次。有机层用MgSO4干燥并蒸发。所述溴化产物的产率为约90%。使用与上述相同的程序实现了这种中间体向酮产物的转化。
实施例6杂类金刚石的二酮的制备通过比上述实施例(实施例4和5)更强烈的氧化,使用强氧化剂如H2SO4或CrO3/Ac2O,可以制备杂类金刚石的二酮,但优选通过系列氧化来制备杂类金刚石的二酮。首先生成单酮或羟基酮,接着进行进一步的氧化或重排-氧化,取决于所涉及的中间体。单酮一般用CrO3在醋酸酐中的溶液在接近室温下处理约2天。所述反应用稀苛性碱水溶液(NaOH)终止,并且通过用乙醚萃取来分离所述产物。产物二酮然后被分离和用于偶联反应。
实施例7在同一杂类金刚石面上的相邻酮的制备用于制备在同一类金刚石面上的相邻酮的一种特别有用的氧化程序是用SeO2/H2O2选择性地氧化中间体酮成为内酯,然后用强酸将所述内酯重排成羟基酮,并氧化该羟基酮成为所需的二酮。例如,在提高的温度下,用1.5摩尔过量的在30% H2O2中的SeO2对单酮杂类金刚石在约60℃处理数小时。通过用水稀释所述反应溶液,用己烷萃取并通过蒸发除去己烷,来分离混合的内酯产物。通过与50% H2SO4一起加热,所述内酯被水解和重排。再次地,所述产物被如上所述分离,并进一步转化成位置上的二酮异构体的混合物,其被分离和用于进一步的偶联反应中。
实施例8混合的酮式-杂类金刚石的制备在某些实施方案中,可能希望经杂类金刚石酮的偶联反应由杂类金刚石混合物制备用双键连接的聚合杂类金刚石。因此,通过在约75℃下用96%的H2SO4处理约10小时或通过用CrO3/Ac2O在接近室温下处理约一天,将含有杂类金刚石的混合物(杂四金刚烷、杂五金刚烷等)的组合物氧化,以制备一种酮混合物。使用上述的程序来实现产物酮的分离,并用来通过在下一实施例中叙述的偶联反应制备混合的聚合杂类金刚石。
实施例9通过偶联杂类金刚石的酮衍生物制备聚合杂类金刚石使用数种程序,通过偶联杂类金刚石的酮衍生物,可以制备聚合杂类金刚石。一种非常有用的程序是下述的McMurray偶联反应。可以通过在手套箱中称重20mmol的TiCl3进三颈烧瓶中来进行试剂(M)(含Mg,K,或Na还原剂,Na是最优选的还原剂)的制备。然后添加60mL的干溶剂(例如THF)。在氩气氛下,由Schlenk管向搅拌的浆液中添加所需数量(一般为约30至100mmol)的Grignard镁。所述混合物回流约3小时,在该时间内所有Mg已反应且所述混合物的颜色已由紫色经兰、绿和褐变成黑色。可使用相当量的新切割并用己烷洗涤的K来替代Mg。在回流时间达约12小时后还原反应完成。
为了用LiAlH4还原试剂来制备试剂(M),将TiCl3/THF混合物冷却至约0℃,呈小份添加所需数量(一般为15至50mmol)的LiAlH4,以保持对剧烈的反应(析出H2)的控制。在所述添加完成之后,在0℃下搅拌所述反应混合物约0.5小时。如果作为副反应的氢化应被最小化,将(M)的黑色悬浮液再回流一小时。
偶联反应如下进行向(M)的所述冷的黑色悬浮液中添加所需数量的酮(一般为10到20mmol的酮基)。观察到H2的快速释放,特别是用LiAlH4作为还原剂时。在所述添加完成之后,根据被偶联的具体的类金刚石,将所述混合物在室温下搅拌6至20小时。在反应过程中,保持轻微的氩气流。实验表明,上述反应时间足以获得完全的偶联。然后通过添加40mL的2N盐酸来终止所述反应,用10mL的CHCl3萃取所述反应混合物三次。将合并的有机层在MgSO4上干燥,蒸发出溶剂,以约80%的产率得到聚合的杂高级类金刚石。通过用适当溶剂如石油醚洗脱的在Al2O3上进行的柱色谱分离以及从适当溶剂中再结晶,可以实现所述产物的纯化。
使用这一程序,所述中间体酮可以以高产率被偶联,从而制备出二聚体。如果两种不同的酮式杂类金刚石被共偶联,则导致混合的二聚体。另外,在偶联多取代的杂类金刚石时形成了高级聚合产物形式,例如线性刚性棒形(rigid rod)聚合物,其比相应的Z形聚合物具有更低溶解度和更高熔点。
在特殊条件如高稀释偶联(酮式类金刚石浓度<0.01摩尔/升)条件下,可以从允许环闭合的所述二酮形成环状聚合杂高级类金刚石。在这些环化作用中,四聚物一般是优选的,但在特定情况下也形成环状三聚物。本领域技术人员可理解,在这种偶联条件下,可以从不同的酮式-杂类金刚石、它们的不同的位置异构体和立体异构体制备聚合杂类金刚石。
从带有2个以上酮基的杂类金刚石可以形成两维片状聚合物。这种前体可通过母体杂类金刚石的延长氧化或通过上述实施例中所述的系列氧化/偶联来形成。环状四聚物特别适用于作为通过附加的如前述实施例中所述的氧化/偶联系列来制备两维片状聚合物的中间体。
除使用McMurray偶联反应的聚合以外,在杂类金刚石之间形成双键的其它方法也是适用的。另一种非常有用的程序也使用酮作为中间体。这种方法包括用联氨缩合杂类金刚石(G)酮以形成连氮化合物(G=N-N=G),向这种连氮化合物中添加H2S来形成双类金刚石噻二唑烷(bisdiamondoid thiadiazolidine),氧化这种中间体成为双类金刚石噻二嗪,和最终消除N和S杂原子以制备所需的偶联产物(G=G)。这一程序是有用的,因为它允许人们通过一个杂类金刚石然后另一个杂类金刚石与联氨的顺序反应来形成混合的连氮化合物,来系统地制备混合的偶联类金刚石聚合物。从偶联的杂类金刚石中除去副产物也是更容易的。
以下是经这种路线偶联杂类金刚石的一个实例。为了形成连氮化合物,在氮气氛下,将联氨水合物(98%,1.30g,26mmol)在15mL叔丁醇中的溶液用约45分钟时间滴加到杂类金刚石酮(35mmol)在60mL的叔丁醇中的搅拌的回流溶液中。在添加完成之后,所述溶液再回流约12小时,随后将之在室温下放置约24小时。除去溶剂得到结晶物质,向其中添加200mL的水。用乙醚(4×100mL)萃取所述含水混合物。将合并的乙醚萃取物用盐水洗涤,干燥(MgSO4),并将连氮化合物产物再结晶。
为了形成噻二唑烷(thiadiazolidine),在室温下使硫化氢鼓泡经过上述连氮化合物(41.1mmol)和5mg对甲苯磺酸在300mL的1∶3丙酮∶苯中的溶液。在约12小时后转化完成。蒸发出溶剂,得到>90%的噻二唑烷。不经进一步的纯化将这种物质用于随后的步骤。
为制备噻二嗪,向0℃的CaCO3(20.7g,0.21mol)在300mL苯中的悬浮液中分若干份添加四乙酸铅(20.7g,46.7mmol)。搅拌所述混合物约20分钟。在搅拌条件下经约1.5小时的时间滴加上述噻二唑烷(35.9mmol)和300mL苯的混合物。在添加完成后,该混合物在室温下搅拌约8小时。在添加400mL水后,形成褐色沉淀物,其通过过滤除去。分离含水层,用NaCl饱和,并用乙醚萃取。合并有机部分,用盐水洗涤,在MgSO4上干燥,并进行浓缩,以约90%的产率得到作为黄色残余物的噻二嗪。这种物质不经进一步的纯化就用于随后的步骤。
为偶联杂类金刚石,将噻二嗪(3.32mmol)和三苯基膦(2.04g,7.79mmol)的均匀混合物在氮气氛中在125-130℃下加热约12小时。使用合适的溶剂在硅胶上进行残余物的柱色谱分离,得到约70%产率的所需的偶联产物。
在本申请中引用的所有出版物、专利和专利申请通过引用全文结合在这里,其程度如同各出版物、专利或专利申请的公开内容具体并单独地被指明通过引用全部结合在这里一样。
对本领域技术人员来说,以上公开的本发明的示例性实施方案可容易地进行许多改变。因此,本发明应被解释为包括落在所附权利要求书范围内的所有结构和方法。
权利要求
1.一种具有阴极的场致发射器件,其中所述阴极包含杂类金刚石。
2.权利要求1的场致发射器件,其中所述杂类金刚石是含杂类金刚石材料的部分。
3.权利要求1的场致发射器件,其中所述杂类金刚石包含衍生化的杂类金刚石。
4.权利要求1的场致发射器件,其中所述杂类金刚石包含未衍生化的杂类金刚石。
5.权利要求1的场致发射器件,其中所述杂类金刚石包含含杂原子的低级类金刚石。
6.权利要求1的场致发射器件,其中所述杂类金刚石包含含杂原子的高级类金刚石。
7.权利要求6的场致发射器件,其中所述含杂原子的高级类金刚石由选自下组的类金刚石合成四金刚烷、五金刚烷、六金刚烷、七金刚烷、八金刚烷、九金刚烷、十金刚烷和十一金刚烷。
8.权利要求2的场致发射器件,其中所述含杂类金刚石的材料是薄膜。
9.权利要求2的场致发射器件,其中所述含杂类金刚石的材料是纤维。
10.权利要求2的场致发射器件,其中所述含杂类金刚石的材料选自下组含杂类金刚石的聚合物、含杂类金刚石的CVD薄膜和含杂类金刚石的分子晶体。
11.权利要求10的场致发射器件,其中对于含杂类金刚石的聚合物来说,所述阴极的杂类金刚石含量为约1至100wt%。
12.权利要求10的场致发射器件,其中对于含杂类金刚石的CVD薄膜来说,所述阴极的杂类金刚石含量为约1至100wt%。
13.权利要求10的场致发射器件,其中对于含杂类金刚石的分子晶体来说,所述阴极的杂类金刚石含量为约1至100wt%。
14.权利要求11的场致发射器件,其中所述阴极的电子亲合力是负的。
15.权利要求12的场致发射器件,其中所述阴极的电子亲合力是负的。
16.权利要求13的场致发射器件,其中所述阴极的电子亲合力是负的。
17.权利要求11的场致发射器件,其中所述阴极的电子亲合力小于约3.0eV.
18.权利要求12的场致发射器件,其中所述阴极的电子亲合力小于约3.0eV。
19.权利要求13的场致发射器件,其中所述阴极的电子亲合力小于约3.0eV。
20.权利要求2的场致发射器件,进一步包括位置邻近所述阴极的阳极,和用于在所述阳极和阴极之间提供电势差的电源。
21.权利要求20任一项的场致发射器件,其中施加在所述阳极和阴极之间的电势差小于约10伏。
22.权利要求2任一项的场致发射器件,其中所述含杂类金刚石的材料的表面包含基本上sp3杂化的碳原子。
23.权利要求3任一项的场致发射器件,其中所述含杂类金刚石的材料的表面被衍生化,以使得所述表面同时包含sp2和sp3杂化的碳。
全文摘要
本发明公开了新型的含杂类金刚石的场致发射器件(FED)。在本发明的一种实施方案中,所述杂类金刚石的杂原子包括给电子物种(如氮),作为所述场致发射器件的阴极或电子发射元件的部件。
文档编号H01J1/02GK1981356SQ200580004141
公开日2007年6月13日 申请日期2005年2月2日 优先权日2004年2月4日
发明者J·E·达尔, R·M·卡尔森, 刘升高 申请人:切夫里昂美国公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1