用低甲烷浓度的储气向燃气轮机供给燃料的方法

文档序号:5244019阅读:217来源:国知局
专利名称:用低甲烷浓度的储气向燃气轮机供给燃料的方法
技术领域
本发明涉及低甲烷浓度天然气的燃烧过程,在没有本发明的情况下,该天然气用于通过燃气轮机进行经济发电的热值较低。更具体地说,本发明涉及甲烷相对于气体总体积的体积浓度不超过大约百分之40的混合气的燃烧过程。该混合气包括氢气,以便提高该混合气的可燃性。
背景技术
目前,大部分甲烷储气具有相对较低的甲烷气体浓度。多数这些储气中甲烷气体的体积浓度低于百分之40。目前,是通过从天然气中除去杂质,从而形成甲烷体积浓度通常从大约百分之95+至大约百分之99+的管道质量的天然气。从经济上考虑,将甲烷体积浓度不超过百分之40的天然气转变成管道质量的天然气,向燃气轮机供给燃料以便发电是不实际的,因为该转变过程的成本非常高。而且,甲烷体积浓度不超过百分之40的天然气不能作为燃气轮机的可靠燃料源来发电,因为在没有特殊的催化剂和没有特殊的氧与其他可燃物补偿的情况下,这么低的甲烷浓度不能提供用于燃料燃烧的稳定火焰。

发明内容
本发明涉及一种低甲烷浓度天然气储气向燃气轮机供给燃料的方法。本发明能够利用这样的储气来向燃气轮机供给燃料用以发电。如上所述,目前,这些储气只能用于在除去杂质之后生成合适的燃气轮机燃料。还如前所述,现在的方法成本非常高,根据当前的天然气价格,这在经济上没有吸引力。本发明的方法能够根据环保需要除去杂质,并使惰性气体例如二氧化碳留在燃料中,以便使流过燃气轮机的质量流最大,并使用氢气或将恰好足够的甲烷转变成氢气,以便生成氢气和甲烷气体的气体燃料混合物,该气体燃料混合物不仅可作为一种可接受的燃气轮机的燃料,而且该混合物能有效提供火焰稳定性(例如提供至少为110BTU/标准立方英尺气体热量的气体),且产生的能量比甲烷含量在大约百分之95+至大约百分之99+体积的的标准天然气更高。本发明的方法包括提供甲烷体积浓度不超过大约百分之40的天然气,并使天然气中的甲烷与氢气混合,提供由氢气增强的甲烷/氢气混合气(这也可以称为氢气增强的天然气),该混合气的氢气足以在燃烧时提供火焰稳定性。然后,若需要的话,将该氢气增强的甲烷/氢气混合气进行脱水,以便除去足够量的水,从而提供具有火焰稳定性的氢气增强脱水甲烷/氢气混合气。在一个重要方式中,该氢气增强的甲烷/氢气混合气有至少大约百分之6体积的氢气。然后再将具有火焰稳定性的氢气增强脱水甲烷/氢气混合气用于向发电燃气轮机供给燃料。与使用甲烷含量在大约百分之95至大约百分之99+体积的标准天然气的燃气轮机相比,本发明的方法能使燃气轮机电力输出有效增加至少大约百分之10。在大多数情况下,输出能够增加至少大约百分之20,并能达到百分之30,而后一界限值是由于受燃气轮机的机械设计限制。
在一个重要方式中,天然气中的一部分甲烷通过催化转变或重构成氢气,然后再形成氢气增强的甲烷/氢气混合气。实现该转变的反应式包括
在另一重要方式中,在转变反应之前,利用物理溶剂从天然气中除去硫化氢和其它酸性成分例如COS、RSH和RSSR,从而生成脱硫天然气,物理溶剂有选择地除去硫化氢和其他酸性气体,但是很少除去二氧化碳和其他惰性气体例如氦气、氩气和氮气。在此方式中,物理溶剂从以下组中选择,该组包括甲醇、聚乙二醇二甲醚混合物(分子量为大约280)、碳酸丙二酯(b.p.240℃)、N-甲基-2-吡咯烷酮(b.p.202℃)、低聚乙二醇甲基异丙基醚的混合物(b.p.320℃)、膦酸三正丁酯(在30mmHg时b.p.180℃)和氰基乙酸甲酯(b.p.202℃)。该脱硫天然气与足量水混合,以便能从甲烷足量产生氢气,从而获得火焰稳定性或是BTU/Scf值至少为大约110。在该方式中,重要的是在将一部分甲烷变换成氢气步骤之前要除去硫化氢和其他酸性气体,因为该重构过程是一个催化反应,硫化氢气体和其他酸性气体可能会使催化剂中毒。对酸性条件敏感且可在本发明该方式中使用的催化剂包括United Catalyst有限公司的C11系列催化剂、Haldor Topsoe公司的R67和BASF公司的G1-25。用于脱硫天然气的高温“重构催化剂”通常为铁、铬和铜,用于脱硫天然气的低温“重构催化剂”通常由铜、锌和铝制成。
在另一重要方式中,重构反应在酸性条件下利用催化剂进行,该催化剂例如United Catalyst有限公司的C25系列催化剂、BASF公司的K8-11催化剂和Haldor Topsoe公司的SSK催化剂。通常,这些催化剂是铬钼催化剂。在本发明的这一方式中,将酸性天然气与水混合,水的量应足以形成能够形成或重构成氢气含量足以使富含氢气的甲烷/氢气混合气具有火焰稳定性的甲烷气体/水混合物,该甲烷/氢气混合气含有不超过百分之40体积的甲烷。
在另一方式中,天然气储气可以含有低至百分之35、百分之25或者甚至低于百分之20体积的甲烷,且仍然能比管道质量甲烷提供更多的能量。在本发明的实际操作中,应将足量的甲烷转变成氢气,以生成氢气体积含量为至少百分之6,优选是从大约百分之6至大约百分之10的甲烷/氢气混合气。这将生成具有火焰稳定性的氢气增强甲烷/氢气混合气,该氢气增强甲烷/氢气混合气能非常有效地向燃气轮机供给燃料,以便发电。


图1是表示本发明方法的平面图。
具体实施例方式
参考图1,甲烷的体积浓度不超过大约百分之40的天然气从油井中出来,并利用物理溶剂处理,以便在不除去惰性气体的情况下除去硫化氢气体或其他酸性气体成分,从而提供甲烷体积含量不超过百分之40的脱硫天然气,该物理溶剂例如为甲醇、聚乙二醇二甲醚混合物、碳酸丙二酯、N-甲基-2-吡咯烷酮、低聚乙二醇甲基异丙基醚的混合物、膦酸三正丁酯和氰基乙酸甲酯。然后,该脱硫天然气通过管道1传送给氧化锌保护床2,以避免硫化氢气体溢出。该脱硫天然气从该氧化锌保护床2送出,并在管道3中与水混合,从而提供甲烷气体/水混合物。该气体/水混合物在管道3中在大约70°F和大约355psig下传送至进料排出物换热器4,在该进料排出物换热器4处,脱硫天然气/水混合物的温度升高至大约800°F。必须将足量的水与天然气混合,以便能足够转变成氢气,从而使该氢气增强的脱硫甲烷/氢气混合气在传送给燃气轮机发电时具有火焰稳定性。当脱硫天然气与水混合并在进料排出物换热器中加热后,加热的脱硫天然气/水混合物通过管道5在大约345psig和大约800°F下传送给余热蒸汽发生器盘管(HRSG盘管),以便使脱硫天然气/水混合物的温度进一步升高,并在管道3中提供温度为大约950°F的高热脱硫气体/水混合物。然后,该高热脱硫气体/水混合物在大约340psig下通过管道7传送给重构反应室8,以便将该脱硫气体/水中的一部分甲烷转变成氢气增强的甲烷/氢气/水混合物。脱硫气体/水混合物中的甲烷在至少约700°F,优选从约900°F至约950°F和约340psig下进行催化反应,使甲烷和水反应生成氢气。更高温度有利于该转变,但是更高压力对该转变有不利影响。压力不应当超过1500psig。在将足量甲烷转变成氢气,使脱水(下文中将介绍)后的气体中含有至少约百分之6体积的氢气之后,该氢气增强的甲烷/氢气/水混合物通过管道9在大约855°F和335psig条件下传送回进料排出物换热器,以便将热量转移给进入该进料排出物换热器的水和甲烷气体。在该氢气增强的甲烷/氢气/水混合物的温度降低后,它通过管道10传送到脱水分离罐(KO罐)12,以减少氢气增强甲烷/氢气混合气中的含水量。在KO罐中降温到露点,使水能够冷凝并与气体分离。足量的水被除去,使其具有火焰稳定性,且提供热量至少约110BTU/标准立方英尺气体的气体。通常,大约百分之97至大约百分之99重量的水从该气体中除去。将氢气增强甲烷/氢气/水混合物脱水而生成的水利用冷凝水泵并通过管道14从KO罐12中排出,并在大约i00°F和500psig下通过管道18送回进料排出物换热器4。现在,脱水的含有至少百分之6体积的氢气或含足以提供火焰稳定性氢气的氢气增强甲烷/氢气混合气从KO鼓通过管道20在大约100°F和大约325psig下供给燃气轮发电机。这样,这些气体的热量至少为约110BTU/标准立方英尺气体,并能为燃气轮发电机提供稳定的火焰。
同样的方法也可以用于所采用的催化剂对天然气中酸性气体不敏感或不受该酸性气体毒化的酸性天然气的应用过程中。不过,为了使该方法适应环保要求,可以至少部分除去至少某些酸性气体,例如H2S。
在未图示的另一实施例中,通过注入惰性气体以增加通过燃气轮发电机的质量流量,可以提高由脱水的氢气增强甲烷/氢气混合气所产生的能量。在此方式中,作为燃料供给的全部气体还必须有火焰稳定性,并有至少大约110BTU/Scf的热量。通常,是在氢气增强甲烷混合气在燃气轮机中燃烧之后,而且是在高热气体进入燃气轮机的扩管之前将惰性气体注入。根据在甲烷混合气中的氢气的量,燃气轮机的输出可以升高大约0.5%至大约9%。能量的增加量大约等于流过燃气轮机膨胀机的气体质量流量的百分比增量。
本发明可通过下面的实例说明。
实施例I


权利要求
1.一种用来自较低甲烷浓度的天然气储气中的甲烷向燃气轮机供给燃料的方法,该方法包括将天然气和氢气混合,天然气含有不超过百分之40体积的甲烷,以便提供氢气增强的甲烷混合气,氢气的量能够有效使该氢气增强甲烷混合气具有火焰稳定性;以及用氢气增强甲烷混合气向燃气轮机供给燃料。
2.按权利要求1所述的向燃气轮机供给燃料的方法,其中氢气增强的甲烷混合气包括至少大约百分之6体积的氢气。
3.按权利要求1所述的向燃气轮机供给燃料的方法,该方法进一步包括使天然气或氢气增强的甲烷混合气脱水的步骤,该脱水步骤能够有效使氢气增强的甲烷混合气具有至少大约110BTU/标准立方英尺气体的热量。
4.按权利要求1或3所述的向燃气轮机供给燃料的方法,其中天然气含有小于大约百分之35体积的甲烷,而氢气增强的甲烷混合气含有大约百分之6至百分之10体积的氢气。
5.按权利要求1或3所述的向燃气轮机供给燃料的方法,其中天然气含有小于大约百分之20体积的甲烷,而氢气增强的甲烷混合气含有大约百分之6至百分之10重量的氢气。
6.一种用来自较低甲烷浓度天然气储气中的甲烷向燃气轮机供给燃料的方法,该方法包括从含有不超过大约百分之40体积甲烷气体的天然气中除去至少一种酸性组分,以提供脱硫天然气;将脱硫天然气和水混合,以提供含水的脱硫天然气,含水的脱硫天然气中的水量应能有效将脱硫天然气中的一部分甲烷转变成氢气,并提供具有火焰稳定性的脱水的氢气增强天然气;将含水的脱硫天然气中的一部分甲烷催化转变成氢气,以便提供含水的氢气增强天然气,该转变过程能有效提供具有火焰稳定性的脱水的氢气增强天然气;将含水的氢气增强天然气脱水,以便提供具有火焰稳定性的脱水的氢气增强天然气;以及用脱水的氢气增强天然气向燃气轮机供给燃料。
7.按权利要求6所述的向燃气轮机供给燃料的方法,其中从天然气中除去酸性组分,包括从天然气中除去硫化氢。
8.按权利要求6所述的向燃气轮机供给燃料的方法,其中将含水的氢气增强天然气进行脱水,所脱水量应能有效使脱水的氢气增强天然气具有至少大约110BTU/标准立方英尺气体的热量。
9.按权利要求7所述的向燃气轮机供给燃料的方法,其中通过物理溶剂从该天然气中除去硫化氢,同时使惰性气体的移出量减至最小。
10.按权利要求9所述的向燃气轮机供给燃料的方法,其中物理溶剂从以下组中选择,该组包括甲醇、聚乙二醇二甲醚混合物、碳酸丙二酯、N-甲基-2-吡咯烷酮、低聚乙二醇甲基异丙基醚混合物、膦酸三正丁酯、氰基乙酸甲酯以及它们的混合物。
11.按权利要求6至10所述的向燃气轮机供给燃料的方法,其中脱水的富氢天然气包括至少百分之6体积的氢气。
12.按权利要求6至10所述的向燃气轮机供给燃料的方法,其中含水的脱硫天然气中的甲烷利用从以下组中选择的变换催化剂来进行催化转化,该组包括铁/铬/铜,铜/锌/铝以及它们的混合物。
13.按权利要求6或8所述的向燃气轮机供给燃料的方法,其中天然气含有不超过大约百分之35体积的甲烷,而脱水的氢气增强天然气包括大约百分之6至百分之10体积的氢气。
14.按权利要求6或8所述的向燃气轮机供给燃料的方法,其中天然气含有不超过大约百分之20体积的甲烷,而脱水的氢气增强天然气包括大约百分之6至百分之10体积的氢气。
15.一种用来自较低甲烷浓度的天然气储气中的甲烷向燃气轮机供给燃料的方法,该方法包括将酸性天然气和水混合,以便提供含水的酸性天然气,该含水的酸性天然气中的水量能有效将该酸性天然气中的一部分甲烷转变成氢气,并有效提供具有火焰稳定性的脱水的氢气增强天然气,该酸性天然气含有不超过百分之40体积的甲烷;将含水的酸性天然气中的一部分甲烷催化转变成氢气,以便提供含水的氢气增强天然气,该转换过程能有效提供具有火焰稳定性的脱水的氢气增强天然气;将含水的氢气增强天然气进行脱水,以便提供具有火焰稳定性的脱水的氢气增强天然气;以及用脱水的氢气增强天然气向燃气轮机供给燃料。
16.按权利要求15所述的向燃气轮机供给燃料的方法,其中将含水的氢气增强天然气进行脱水,脱水的量能有效使脱水的氢气增强天然气具有至少大约110BTU/标准立方英尺气体的热量。
17.按权利要求15所述的向燃气轮机供给燃料的方法,其中含水的氢气增强天然气包括至少百分之6体积的氢气。
18.按权利要求15所述的向燃气轮机供给燃料的方法,其中含水的酸性天然气中的甲烷用铬/钼催化剂进行催化转变。
19.按权利要求15或16所述的方法,其中天然气含有不超过大约百分之35体积的甲烷气体,而脱水的氢气增强天然气包括大约百分之6至百分之10体积的氢气。
20.按权利要求15或16所述的方法,其中天然气含有不超过大约百分之20体积的甲烷,而脱水的氢气增强天然气包括大约百分之6至百分之10体积的氢气。
21.按权利要求6所述的方法,进一步包括将隋性气体与脱水的氢气增强天然气一起注入燃气轮机的步骤。
22.按权利要求15所述的方法,进一步包括将惰性气体与该脱水的氢气增强天然气一起注入燃气轮机的步骤。
全文摘要
本发明涉及一种通过具有相对较低甲烷浓度的天然气储气向燃气轮机供给燃料的方法。本发明能够利用该天然气储气向燃气轮机供给燃料,以便发电。本发明的方法包括提供甲烷体积浓度不超过大约百分之40的天然气,并使天然气中的甲烷与氢气混合,以便提供由氢气增强的甲烷/氢气混合气,该混合气的氢气足以在燃烧时提供火焰稳定性。然后,需要时,该氢气增强的甲烷/氢气混合气进行脱水,以便除去足够量的水,从而提供火焰稳定的氢气增强的脱水甲烷/氢气混合气。该氢气增强的脱水甲烷/氢气混合气再用于向燃气轮机发电机供给燃料。
文档编号F02C3/20GK1425104SQ00817055
公开日2003年6月18日 申请日期2000年12月13日 优先权日1999年12月13日
发明者F·F·米切克 申请人:埃克森化学专利公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1