机械驱动空气载具热管理装置的制作方法

文档序号:17294599发布日期:2019-04-03 04:16阅读:173来源:国知局
机械驱动空气载具热管理装置的制作方法

本发明通常涉及利用燃气涡轮发动机为飞行器系统提供动力。更具体地,本主题涉及一种由燃气涡轮发动机机械驱动的热管理系统。



背景技术:

飞行器燃气涡轮发动机为飞行器运动传送推进推力以及为诸如热管理系统(tms)的飞行器系统提供能量,其可包括环境控制系统(ecs)。tms还包括飞行器推进和电力生成单元(electricalpowergenerationunit)、流体热交换器、电子冷却装置、和环境控制系统(ecs)中的能量和热传递的管理,其向飞行器舱、存储装置(storage)、和航空电子设备(avionic)提供调节空气。ecs通常包括反向布雷顿循环系统(rbc),其由从推进发动机以及管道和排放端口转移的压缩空气气动驱动,以将压缩空气从推进发动机输送到rbc。压缩空气取决于发动机的推力设定从低压(lp)压缩机或高压(hp)压缩机转移。在低推力设定下,压缩空气通常从hp压缩机转移,因为压力会太低而无法从lp压缩机转移。在高推力设定下,压缩空气通常从lp压缩机转移,以减少来自推进发动机热动力循环的排放的高压/高温空气的有害影响。在一些实施例中,压缩空气来自风扇并且进一步被赋能以与ecs使用。

然而,无论空气是从风扇、lp压缩机或hp压缩机转移,空气通常都处于过高的压力和温度下,而不能在到达rbc用于在ecs中使用之前在没有通过热交换器系统和压力调节器的进一步减压和冷却的情况下被转移至rbc。因此,通过使用来自推进发动机的压缩空气为rbc供以动力浪费了大量有用能量。

此外,从推进发动机转移压缩空气中断了推进发动机的热动力循环,因此降低了其效率,因为来自压缩空气的能量被转移离开推进发动机。此外,用于在压缩空气到达rbc之前从压缩空气中去除能量的压力调节器和热交换器增加了推进发动机和飞行器的重量和复杂性,因此进一步降低了发动机和飞行器的效率。

因此,存在如下需要,即,为热管理系统的反向布雷顿循环(reversebraytoncycle)提供能量,同时减少对推进发动机和飞行器的效率的有害影响。



技术实现要素:

本发明的方面和优点将在下面的说明中部分地阐明,或者可从说明书中是明显的,或可通过本发明的实践而习得。

通常提供包含反向布雷顿循环系统、燃气涡轮发动机和齿轮箱(gearbox,有时也称为变速箱)的飞行器动力生成系统。燃气涡轮发动机包括压缩机区段、涡轮区段和发动机轴。压缩机区段与涡轮区段布置成串联流动布置。发动机轴可与压缩机区段的至少一部分且与涡轮区段的至少一部分一起旋转。反向布雷顿循环系统包括压缩机、驱动轴、涡轮、和第一交换器。驱动轴可与压缩机或涡轮一起旋转,并且压缩机、第一热交换器、和涡轮处于串联流动布置中。齿轮箱构造成从发动机轴接收机械能并通过驱动轴将机械能传递到反向布雷顿循环。

参考随后的描述和所附权利要求,本方面的这些和其它特征、方面和优点将变得更好理解。并入且构成该说明书的一部分的附图图示了本发明的实施例,并且结合描述用于解释本发明的原理。

附图说明

在参考附图的说明书中阐释了针对本领域普通技术人员的本发明的完整且能够实现的公开内容,包括其最佳模式,其中:

图1是根据本主题的各种实施例的示例性燃气涡轮发动机的示意性横截面图;

图2是示例性飞行器系统的示意图,该飞行器系统包括燃气涡轮发动机、齿轮箱、反向布雷顿循环、电动力系(electricalpowertrain)、和推进装置;

图3是另一示例性飞行器系统的示意图,该飞行器系统包括燃气涡轮发动机、齿轮箱、反向布雷顿循环、电动力系、和推进装置;

图4是示例性飞行器系统的示意图,该飞行器系统包括燃气涡轮发动机、齿轮箱、反向布雷顿循环、第二齿轮箱、和推进装置;

图5是另一示例性飞行器系统的示意图,该飞行器系统包括燃气涡轮发动机、齿轮箱、反向布雷顿循环、第二齿轮箱、和推进装置;

图6是示例性飞行器系统的示意图,该飞行器系统包括燃气涡轮发动机、齿轮箱、反向布雷顿循环、和齿轮驱动系统;

图7是示例性飞行器系统的示意图,该飞行器系统包括燃气涡轮发动机、齿轮箱、反向布雷顿循环、第二齿轮箱、和齿轮驱动系统;且

图8是示例性飞行器系统的示意图,该飞行器系统包括燃气涡轮发动机、反向布雷顿循环、和环境控制系统。

在本说明书和附图中重复使用参考符号旨在表示本发明的相同或类似的特征或元件。

具体实施方式

现在将详细参考本发明的实施例,其一个或多个示例在附图中示出。每个实施例借助于解释本发明、而非限制本发明来提供。事实上,对于本领域技术人员来说将明显的是,在不脱离本发明的范围或精神的情况下,可以在本发明中进行各种修改和变型。例如,作为一个实施例的一部分示出或描述的特征可以与另一个实施例一起使用以产生又另一个实施例。因此,旨在本发明覆盖落入所附权利要求及其等同物的范围内的此类修改和变型。

如本文使用的那样,用语“第一”、“第二”和“第三”可互换地使用来将一个部件与另一个部件区分开,且不旨在表示独立部件的位置和重要性。

用语“上游”和“下游”指的是相对于流体路径中的流体流动的相对方向。例如,“上游”指液体流自的方向,且“下游”指流体流至的方向。

通常提供一种借助于齿轮箱将燃气涡轮发动机的轴机械地联接到反向布雷顿循环来为反向布雷顿循环(rbc)供以动力的系统。rbc由来自燃气涡轮发动机的机械能操作。发动机的轴(例如,低压、中压或高压轴)机械地联接到齿轮箱并将机械能从发动机轴传递到齿轮箱。齿轮箱通过驱动轴将机械能从发动机轴输出到rbc,该驱动轴机械联接至rbc并可相对于rbc旋转。齿轮箱相对于发动机轴向驱动轴输出相同的或成比例的或恒定的旋转速度,使得rbc旋转速度可操作地独立于发动机推力设定更接近其最佳效率来操作。

在闭环构造中,rbc使用任何可压缩流体作为工作流体来操作。工作流体与进入ecs的空气处于热联通中,以达到对于系统所期望的温度。在开环构造中,rbc获得外部空气作为工作流体,其最终成为用于机舱、存储装置和航空电子设备的调节空气(conditionedair)。

在开环构造中,使用机械能为rbc供以动力而不是从来自发动机的压缩空气气动地获得能量可以提供在更适合于热管理系统(tms)的压力和温度条件下的工作流体。rbc的机械操作允许rbc基于tms的要求而不是基于发动机的输出来操作。此外,rbc在尺寸上可以比例调整(scale,有时也称为比例增减),以更精确地满足tms和其他飞行器能源管理系统的需求,其包括如下系统,诸如环境控制系统(ecs)、涡轮机主动间隙控制(acc)、飞行器防冰系统、机舱防冰系统、液压和气动泵、流体热交换器、以及飞行器电子和电气系统。

此外,机械驱动rbc比使用来自发动机的压缩空气气动驱动rbc更加有效能高效(exergy-efficient,有时也称为反射本领高效)。除了分析能量效率之外,其中能量是有用能量(有效能)和无用能量(无效能(anergy))的总和,由来自发动机轴的机械能驱动的rbc通过限制由于热力学和能量转换导致的无效能增加导致的低效率(inefficiency)是更有效能高效的。热力学损失通过去除以高压/高温压缩空气的形式的来自推进发动机的有效能来产生。此外,热力学损失源自于压缩空气的高压和高温是通过热交换器和压力调节器处理成有效能来驱动rbc的无效能。通过将发动机机械地联接到rbc,当用于驱动rbc时,发动机中的以高压/高温压缩空气的形式的有效能被保持而不是被视为无效能。

现在参考附图,图1是根据本公开内容的一种示例性实施例的燃气涡轮发动机的示意性横截面图。更具体地,对于图1的实施例,燃气涡轮发动机是高旁通涡扇喷气发动机10,本文称为“涡扇发动机10”。尽管下面大致参考涡扇发动机10进行进一步描述,但是本公开内容也适用于涡轮机械(turbomachinery),通常包括涡喷、涡桨和涡轮轴涡轮发动机,包括工业和海事涡轮发动机和辅助动力单元。如图1中所示,涡扇发动机10限定轴向方向a(平行于提供用于参考的纵向中心线12延伸)和径向方向r。通常,涡扇10包括风扇区段14和设置在风扇区段14下游的核心涡轮发动机16。

所描绘的示例性核心涡轮发动机16通常包括大致管状的外壳体18,其限定环形入口20。外壳体18以串联流动关系包围压缩机区段21,其包括增压器或低压(lp)压缩机22和高压(hp)压缩机24;燃烧区段26;涡轮区段31,其包括高压(hp)涡轮28和低压(lp)涡轮30;和喷气排气喷嘴区段32。高压(hp)轴或卷轴34将hp涡轮28驱动地连接到hp压缩机24。低压(lp)轴或卷轴36将lp涡轮30驱动地连接到lp压缩机22。压缩机区段21、燃烧区段26、涡轮区段31和喷嘴区段32一起限定了核心空气流动路径37。

对于所描绘的实施例,风扇区段14包括可变节距风扇38,其具有以间隔开的方式联接到盘42的多个风扇叶片40。如所描绘的,风扇叶片40通常沿径向方向r从盘42向外延伸。每个风扇叶片40借助于可操作地联接到构造成共同一致地改变风扇叶片40的节距的合适的致动构件44的风扇叶片40而相对于盘42围绕俯仰轴线p可旋转。风扇叶片40、盘42和致动构件44可通过跨过动力齿轮箱46的lp轴36围绕纵向轴线12一起旋转。动力齿轮箱46包括多个齿轮,用于将风扇38相对于lp轴的旋转速度调整到更高效的旋转风扇速度。

动力齿轮箱46可包括周转齿轮系(epicyclicalgeartrain),其包括至少两种齿轮类型,其中太阳齿轮(sungear)位于齿轮系的中心并且行星齿轮(planetgear)相对于太阳齿轮处于周转关系中。换句话说,当太阳齿轮在其固定轴线上旋转时,至少一个行星齿轮的中心围绕太阳齿轮的中心回转。行星齿轮由托架支撑,该托架可以有助于将扭矩从太阳齿轮传递到行星齿轮。行星齿轮由固定的环形齿轮包围,其中行星齿轮的齿在环形齿轮和太阳齿轮上骑行。在其他实施例中,第二行星齿轮组径向地放置在第一行星齿轮组和环形齿轮之间。在另一个实施例中,周转齿轮系具有星形齿轮构造,其中每个行星齿轮的中心被固定,使得行星齿轮相对于太阳齿轮在固定轴线上旋转。包围的环形齿轮旋转并从传递到太阳齿轮的输入动力来传递扭矩。托架充当太阳齿轮和行星齿轮之间的间隔件并固定每个行星齿轮的轴线。

仍然参考图1的示例性实施例,盘42由可旋转的前毂48覆盖,该前毂在空气动力学上轮廓构造成提升通过多个风扇叶片40的气流。此外,示例性风扇区段14包括环形风扇壳体或外机舱50,其周向地围绕风扇38和/或核心涡轮发动机16的至少一部分。应该认识到的是,机舱50可以构造成通过多个周向间隔开的出口导向导叶52相对于核心涡轮发动机16支撑。此外,机舱50的下游区段54可以在核心涡轮发动机16的外部分上方延伸,以在其间限定旁通气流通道56。

在涡扇发动机10的操作期间,一定体积的空气58通过机舱50的相关入口60进入涡扇10和/或风扇区段14。当所述体积的空气58越过风扇叶片40时,如由箭头62所示的空气58的第一部分被引导或导引到旁通气流通道56中,并且如由箭头64所示的空气58的第二部分被引导或导引到核心空气流动路径37中、或更具体地到lp压缩机22中。空气的第一部分62和空气的第二部分64之间的比率通常称为旁通比。然后,当空气的第二部分64导引通过高压(hp)压缩机24且到燃烧区段26(在那里其与燃料混合并燃烧以提供燃烧气体66)中时,空气的第二部分64的压力增加。

燃烧气体66导引通过hp涡轮机28,在那里来自燃烧气体66的热能和/或动能的一部分经由联接到外壳体18的hp涡轮定子导叶68和联接到hp轴或卷轴34的hp涡轮转子叶片70的连续级被提取,从而使hp轴或卷轴34旋转,因此支持hp压缩机24的运行。然后燃烧气体66导引通过lp涡轮30,在那里经由联接到外壳体18的lp涡轮定子导叶72和联接到lp轴或卷轴36的lp涡轮转子叶片74的连续级从燃烧气体66中提取热能和动能的第二部分,从而导致lp轴或卷轴36旋转,因此支持lp压缩机22的操作和/或风扇38的旋转。

随后,燃烧气体66导引通过核心涡轮发动机16的喷气排气喷嘴区段32,以提供推进推力。同时,空气的第一部分62的压力大致增加,因为空气的第一部分62在其从涡扇10的风扇喷嘴排气区段76排出之前被导引通过旁通气流通道56,也提供推进推力。hp涡轮28、lp涡轮30和喷气排气喷嘴区段32至少部分地限定热气体路径78,用于将燃烧气体66导引通过核心涡轮发动机16。

齿轮162的系统机械地联接到hp轴34和塔轴160,并且将机械能从hp轴34的旋转通过塔轴160传递到至少一个附件齿轮箱(agb)45。此外,齿轮162转变机械能的传递方向,诸如至垂直或平行于中心线12的角度,或至倾斜于中心线12的角度。合适类型的齿轮162可包括锥齿轮(诸如但不限于螺旋线齿轮、零度锥齿轮、准双曲面齿轮或等径伞齿轮)、螺旋齿轮、正齿轮、环齿轮、斜齿轮或蜗轮、或其组合。所采用的齿轮162的类型取决于塔轴160相对于hp轴34的角度以及从发动机轴35到塔轴160的输出速度和扭矩传递。塔轴160以与hp轴34倾斜的角度延伸,或者在另一实施例中,可以从hp轴34大致垂直地(在径向方向r上)延伸。塔轴160径向向外(沿径向方向r)延伸穿过核心流动路径37中的压缩机中间壳导叶103并穿过外壳体18。

在一个实施例中,agb45定位在外壳体18内并包括从塔轴160接收机械能并输出机械能以驱动用于发动机10和飞行器的辅助设备、诸如燃料和油泵、液压泵、流体冷却器、电力生成机、和燃料和油热交换器的齿轮。在一个实施例中,agb45还机械地联接到起动机马达(startermotor),该起动机马达提供机械能以初始地驱动hp轴34并旋转hp压缩机24以在燃烧区段26中引入燃料和点燃燃料/空气混合物之前产生足够的空气流64。产生的燃烧气体66流动到hp涡轮28中,从而使hp轴34旋转,且因此如前面所提及的支持燃气涡轮发动机10的操作。在另一个实施例中,agb45定位成外壳体18的径向向外(在方向r上)或风扇壳50的径向外侧。在又另一个实施例中,agb45定位在飞行器机翼或挂架(pylon,有时也称为悬臂)上。

图2示出了包括燃气涡轮发动机10、齿轮箱47和反向布雷顿循环(rbc)系统104的实施例的示意图。发动机10包括以串联流动布置的压缩机区段21、燃烧区段26和涡轮区段31。发动机10包括发动机轴35,该发动机轴可与压缩机区段21的至少一部分一起旋转并且与涡轮区段31的至少一部分一起旋转。压缩机区段21的一部分包括至少一个压缩机,例如lp压缩机22、或hp压缩机24、或中间压缩机。涡轮区段31的一部分包括至少一个涡轮,例如lp涡轮28、或hp涡轮30、或中间涡轮。在一个实施例中,发动机轴35是hp轴34。在另一个实施例中,发动机轴35是lp轴36。在又另一个实施例中,发动机轴35是中间轴。

齿轮箱47构造成从发动机轴35接收机械能并将机械能传递到驱动轴168以操作rbc104。驱动轴168机械地联接到齿轮箱47、压缩机110和rbc的涡轮112,并且可与rbc104一起旋转。

仍然参考图2中所示的实施例,rbc104处于可操作闭环构造中,其中工作流体122从压缩机110循环通过第一热交换器106然后通过涡轮112并通过第二热交换器107并返回到压缩机110中。在可操作闭环构造中,工作流体122是任何可压缩流体,作为非限制性示例包括二氧化碳、氧气、氮气、空气或其混合物。

工作流体122循环通过压缩机110并作为高压、高温(hp/ht)流体130离开压缩机110。hp/ht流体130进入第一热交换器106并作为高压、低温(hp/t1)流体131离开。hp/t1流体131进入涡轮112并作为低压、低温(lp/t2)流体132膨胀和离开。lp/t2流体132进入第二热交换器107并作为低压、低温(lp/t3)流体133离开。当rbc104和工作流体122处于闭环构造中时,lp/t3流体133进入压缩机110并重复前面提到的循环。

由于闭环系统遭受泄漏或损失,可操作闭环系统周期性地以工作流体122“再装填”rbc104。在一个实施例中,再装填还可以调节工作流体122压力并基于自控制系统的输入和至控制系统的输出来调整rbc104的性能。在闭环构造的一个实施例中,其中工作流体122是空气,来自发动机10的压缩机区段21的排放阀(bleedvalve)操作以将压缩空气64从发动机10的压缩机区段21提供到压缩机110。在其中工作流体122是除空气之外的可压缩流体的其他实施例中,系统作为非限制性示例由二氧化碳、氮气或氧气源而不是由来自发动机10的压缩机区段21的空气64再装填。

在一个实施例中,rbc104的热交换器106,107与热管理系统(tms)108处于热联通中。tms108包括环境控制系统(ecs)。ecs通常包括除湿器、水提取器、传感器、压力和温度调节器、加压和分配系统、以及空气,在其中空气通过tms108调节以用于飞行器舱、存储装置、航空电子设备、和防冰系统。在其他实施例中,tms108还可包括燃料、油、液压和气动流体、电子和电气系统、应急系统、以及与推进单元和辅助动力单元(apu)子系统的热联通的热管理。用于tms108的空气可以是来自发动机10的压缩机区段21的外部大气空气或压缩空气64。外部空气在温度上涵盖从地面上的那些温度(例如高达约60c)到约16200米海拔处的那些温度(例如约-58c)。外部空气与热交换器106,107置于热联通中,直到温度适合于tms108使用。

在一个实施例中,齿轮箱47构造成向驱动轴168输出可操作恒定旋转速度,使得rbc104以恒定旋转速度操作,该旋转速度在功能上独立于发动机轴35的旋转速度。换句话说,在发动机轴35旋转速度大于某个阈值之后,驱动轴168旋转速度与发动机轴35旋转速度不同,不管发动机轴35的旋转速度的大小或变化。

然而,在另一个实施例中,齿轮箱47构造成向驱动轴168输出成比例旋转速度,使得rbc104以发动机轴35的旋转速度的一小部分操作。例如,驱动轴168旋转速度可以是例如发动机轴35的旋转速度的一半、或三分之一、或四分之一、或六分之一、或十分之一等。

在还另一个实施例中,齿轮箱47可以构造成相对于发动机轴35的旋转速度向驱动轴168输出成比例旋转速度和可操作恒定旋转速度的组合。例如,发动机10的功率输出状态可以按推力输出的递增顺序涵盖从零到地面空转(gidle)、到飞行空转(fidle)、以及到最大起飞(mto)状态,其中,mto被视为发动机10的最大功率输出,并且gidle被视为发动机10的最小功率输出。驱动轴168和发动机轴35的旋转速度大致从零到gidle成比例或相同。从状态gidle到mto,驱动轴168独立于发动机轴35旋转速度在gidle和mto状态之间的变化具有与发动机轴35不同且通常恒定的旋转速度。备选地,在另一实施例中,驱动轴168和发动机轴35的旋转速度大致从零到fidle成比例或相同。从状态fidle到mto,驱动轴168独立于发动机轴35旋转速度在fidle和mto状态之间的变化具有与发动机轴35不同且通常恒定的旋转速度。在又另一实施例中,在gidle和fidle之间,驱动轴168旋转速度通常恒定在第一值并且不同于发动机轴35旋转速度。在fidle和mto状态之间,驱动轴168旋转速度通常恒定在第二值并且不同于发动机轴35旋转速度。

在又另一实施例中,齿轮箱47构造成相对于发动机轴35的旋转速度向驱动轴168输出可变旋转速度。齿轮箱47可包括控制器和通信器件(communicationsmeans),以接收操作输入、传达负载要求、以及支配驱动轴168的旋转速度的变化。例如,在飞行器巡航期间发动机10可以在fidle和mto之间以恒定旋转速度操作的情况下,齿轮箱47可以根据对于tms108的热负荷要求向驱动轴168输出变化的旋转速度。

仍然参考图2中所示的实施例,齿轮箱47以并联布置机械地联接到电动力系156。电动力系156将从齿轮箱47传递的机械能转换成电能以驱动推进装置170。在一个实施例中,推进装置170是涡扇发动机10的风扇区段14。在另一个实施例中,推进装置170是涡桨或涡轮轴发动机的螺旋桨。在还其他的实施例中,电动力系156还可包括功率调节器(例如整流器或变压器)和通信系统,以将电能分配到除推进装置170之外的飞行器系统,例如,航空电子设备、照明、应急系统、液压和气动泵、执行器和传感器。

在齿轮箱47的其他实施例中,其中齿轮箱47将机械能从发动机10传递到rbc104和另一个并联布置的系统,齿轮箱47可以构造成向rbc104和另一个并联布置的系统输出不同的旋转速度。例如,齿轮箱47可以构造成向rbc104输出可操作恒定旋转速度,而齿轮箱47还构造成输出成比例的旋转速度(相对于发动机轴35)至电动力系156。

在一个实施例中,齿轮箱47构造为动力齿轮箱46,其中动力齿轮箱46机械地联接到lp轴36并且还构造成将机械能传递到rbc104。在另一个实施例中,齿轮箱47构造为agb45,其中agb45机械地联接到hp轴34并且还构造为将机械能传递到rbc104。在又另一个实施例中,齿轮箱47与agb45或动力齿轮箱46分开,其中齿轮箱47构造成通过驱动轴168将机械能从hp轴36、lp轴34或中间轴传递到rbc104,该驱动轴168机械联接至rbc104并可相对于rbc104旋转。

图3示出了在其中齿轮箱47、rbc104、电动力系156和推进装置170串联布置的实施例。驱动轴168机械地联接至rbc104并可相对于rbc104旋转并将机械能传递到电动力系156。电动力系156联接到推进装置170。电动力系156可以构造成向推进装置170输出旋转速度,该旋转速度独立于驱动轴168或发动机轴35的旋转速度。如图3中所示,tms108可以构造成与电动力系156处于热联通中。tms108还可以被构造为根据对于电动力系156的热要求来传达rbc104输出。

图4和图5各示出了在其中推进装置170分别由并联布置或串联布置的第二齿轮箱172机械驱动的实施例。第二齿轮箱172构造成从齿轮箱47接收机械能。类似于齿轮箱47,第二齿轮箱172可构造成向推进装置170输出与发动机轴35相同的旋转速度、或与发动机轴35成比例的旋转速度、或可操作恒定驱动速度、或可变驱动速度、或其组合。

图6示出了在其中齿轮箱47将机械能从发动机10传递到与驱动轴168和rbc104并联布置的齿轮驱动系统174的实施例。齿轮驱动系统174可包含例如辅助设备,诸如但不限于液压泵、气动泵、或热交换器。

图7示出了在其中齿轮驱动系统174与齿轮箱47、rbc104和第二齿轮箱172串联布置的实施例。齿轮箱47将机械能从发动机10传递到驱动轴168,其中驱动轴168机械地联接到rbc104和第二齿轮箱172。类似于齿轮箱47,第二齿轮箱172可以向齿轮驱动系统174输出与驱动轴168或发动机轴35相同的旋转速度、或输出成比例的旋转速度、或恒定的驱动速度、或其组合。在另一个实施例中,第二齿轮箱172是agb45。

图8示出了包含燃气涡轮发动机10和rbc104的实施例的示意图,其中rbc104处于开环构造中并且与tms108流体联通。在开环构造中,rcb104中的工作流体122是外部空气118。当飞行器在海拔处或地面上时,外部空气118通过飞行器中的一个或若干气室(plenum)从大气条件接收。更具体地,“在海拔处”指的是除在地面上之外的所有海拔,诸如,例如,一旦飞行器已起飞。

在图8中所示的实施例中,工作流体122进入压缩机110并被压缩成高压、高温(hp/ht)流体130。hp/ht流体130进入第一热交换器106并变成高压、低温(hp/t1)流体131。hp/t1流体131进入涡轮112,在那里流体131膨胀,因此降低压力和温度,并变成低压、低温(lp/t2)流体132。lp/t2流体132进入第二热交换器107并作为低压、低温(lp/t3)流体133离开。hp/ht流体130可以部分地导引到lp/t3流体133并与lp/t3流体133混合。lp/t3流体133或其与hp/ht流体130的混合物由控制阀124调节。lp/t3流体133或其与hp/ht流体130的混合物作为ecs空气123导引到tms108。此外,离开压缩机110的hp/ht流体130可以部分地导引到tms108的其他系统,诸如但不限于飞行器机翼防冰系统或机舱防冰系统。

在其他实施例中,可以排除第二热交换器107并且仅采用单个热交换器106,取决于热交换器性能和相对于飞行器尺寸和类型的特定系统要求。在还其它的实施例中,ecs空气123是lp/lt流体133和hp/t1流体131的混合物。此外,其他实施例不包括第二热交换器107,并且lp/t2流体132是ecs空气123或与hp/ht流体130或hp/t1流体131混合。

如图8中所示,来自rbc工作流体122的工作流体117的一部分可以作为用于主动间隙控制(acc)系统151的冷却空气被引导至发动机10的涡轮区段31。进入acc151的工作流体117的部分由acc阀116调节。acc151中的工作流体117到涡轮壳上的部分减小了在发动机操作期间涡轮壳和涡轮叶片之间的径向距离。在叶片尖端和壳之间的区域中通过的燃烧气体66大致不驱动涡轮叶片。因此,涡轮壳和涡轮叶片之间的径向间隙是发动机低效率的来源。

随着发动机操作并且功率上增加,因素的组合有助于在发动机操作期间涡轮叶片尖端与周围涡轮壳之间的径向距离(图1中的方向r)的变化。这些因素包含但不限于涡轮叶片和盘的离心力、径向膨胀涡轮叶片和盘的热燃烧气体66的影响、以及由于燃烧气体66作用在涡轮壳上的压力变化。acc151通过将较冷流体从压缩机110引导至与涡轮区段31处的热外壳体18热联通来操作,因此使涡轮区段31处的热外壳体18朝向涡轮叶片收缩并减小叶片和壳之间的径向区域。

本公开内容可以通过提供冷却能力来增加燃气涡轮发动机和飞行器效率,而不从发动机10提取放气(bleedair,有时也称为引气),并且因此避免由于发动机10的热力循环的中断而导致的低效率。此外,本公开内容避免了由于将机械能转换为电能再转换回机械能以驱动机械系统(例如反向布雷顿循环系统)的功率转换损失导致的低效率。

此书面描述使用示例来公开本发明,包括最佳模式,并且还使任何本领域的技术人员能够实践本发明,包括制造和使用任何装置或系统以及执行任何并入的方法。本发明的可取得专利的范围由权利要求限定,且可包括本领域的技术人员想到的其他示例。如果这些其他示例包括与权利要求的字面语言并非不同的结构元件,或者如果它们包括带有与权利要求的字面语言无实质差异的等同结构元件,则这些其他示例旨在处于权利要求的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1