一种在机动车冷启动过程中吸附氮氧化物和/或烃类化合物的方法与流程

文档序号:17475679发布日期:2019-04-20 06:06阅读:340来源:国知局
一种在机动车冷启动过程中吸附氮氧化物和/或烃类化合物的方法与流程

本发明涉及机动车尾气净化技术领域,具体涉及一种在机动车冷启动过程中吸附氮氧化物和/或烃类化合物的方法以及一种消除机动车发动机尾气中的氮氧化物和/或烃类化合物的方法。



背景技术:

机动车排放的尾气组成包括氮氧化物nox、碳氢化合物hcs和一氧化碳co。尾气后处理催化剂被广泛地应用于降低污染物的排放。这些催化剂能够在200℃以上表现出非常高的脱除效率。但是低于该温度时(“冷启动”阶段)其脱除效率比较差。随着排放法规的日益加严(如中国将于2020年施行国六排放标准),污染物排放限值越来越低,有效控制机动车冷启动阶段污染物的排放成为主要挑战。

针对机动车冷启动阶段污染物脱除,现阶段主要工作集中在开发高性能铂族金属基分子筛催化剂。从载体类型划分,一是碱性金属氧化物;二是分子筛。这些催化剂表现出较好的低温nox或hcs吸附性能,能够满足冷启动阶段污染物排放控制的需求。但是上述催化剂主要以贵金属为活性位点,成本昂贵。当前全球产量约50%的铂、70%的钯、80%的铑被用于汽车尾气净化。随着新兴经济体的成长及全球环保意识的增强,贵金属资源供需矛盾将会愈加突出。

因此,寻求一种消除机动车发动机尾气中的氮氧化物和/或烃类化合物的方法已成为目前值得关注的课题。



技术实现要素:

为了解决上述问题,提出本发明。

本发明第一方面涉及一种在机动车冷启动过程中吸附氮氧化物和/或烃类化合物的方法,其包括使包含氮氧化物和/或烃类化合物的机动车尾气与非贵金属基分子筛催化剂在小于150℃的温度下接触,其中所述非贵金属基分子筛催化剂包括非贵金属活性组分和分子筛载体,所述非贵金属活性组分选自稀土金属或过渡金属;其中基于该非贵金属基分子筛催化剂的总质量,非贵金属活性组分占0.1-20wt%。

在本发明优选的实施方案中,所述非贵金属活性组分选自钇、镧、铈、镨、钕,锰、铁、钴、镍或铜;所述分子筛载体选自bea、mfi或cha型分子筛。

在本发明优选的实施方案中,所述非贵金属基分子筛催化剂中的非贵金属活性组分选择性赋存于分子筛骨架交换位点;分子筛孔径范围0.1nm-1nm,si/al范围5-100。

在本发明优选的实施方案中,所述非贵金属基分子筛催化剂的制备方法包括以下步骤:

a.将铝源与去离子水混合,搅拌,得到第一混合物;

b.将模板剂、硅源和非贵金属盐加入到所述第一混合物中,搅拌,得到第二混合物;

c.向所述第二混合物中加入去离子水和与分子筛载体对应的晶种,继续搅拌,得到第三混合物;

d.将所述第三混合物置于聚四氟内衬的不锈钢反应釜中,密闭后升温以进行水热晶化,反应结束后进行固液分离并对固体进行干燥,得到粉末;

e.将所述粉末置于马弗炉中,升温煅烧脱除模板剂,得到所述非贵金属基分子筛催化剂。

在本发明优选的实施方案中,步骤a中所述铝源包括异丙醇铝、偏铝酸钠或拟薄水铝石,搅拌时间为0.5-12h;步骤b中所述模板剂包括四乙基氢氧化铵、三乙胺、四丙基氢氧化铵或n,n,n-三甲基-1-1-金刚烷氢氧化铵,所述硅源包括硅酸钠、硅溶胶、白炭黑、正硅酸乙酯或正硅酸甲酯,所述非贵金属盐包括硝酸盐、硫酸盐或醋酸盐,搅拌时间为0.5-12h;步骤c中搅拌时间为0.5-12h;步骤d中水热晶化温度为100-300℃,晶化时间为10-200h,干燥温度60-120℃,干燥时间2-18h;步骤e中先升温至第一温度保持第一时间,再继续升温至第二温度并保持第二时间,其中升温速率为0.5-10℃/min,第一温度为150-350℃,第一时间为0.1-3h,第二温度为500-750℃,第二时间为1-8h。

在本发明优选的实施方案中,所述非贵金属基分子筛催化剂的制备方法包括以下步骤:

a.将铝源与去离子水混合,搅拌,得到第一混合物;

b.将模板剂、硅源加入到所述第一混合物中,搅拌,得到第二混合物;

c.向所述第二混合物中加入去离子水和与分子筛载体对应的晶种,继续搅拌,得到第三混合物;

d.将所述第三混合物置于聚四氟内衬的不锈钢反应釜中,密闭后升温以进行水热晶化,反应结束后进行固液分离并对固体进行干燥,得到粉末;

e.将所述粉末置于马弗炉中,升温煅烧脱除模板剂,得到分子筛。

f.将所述分子筛与非贵金属盐溶液共同投入三口烧瓶中,恒温水浴及一定ph下搅拌,过滤,水洗,直至下层滤液ph值呈中性。随后将滤饼烘干,得到固体粉末。

g.在马弗炉中焙烧,得到所述非贵金属基分子筛催化剂。

在本发明优选的实施方案中,步骤a中所述铝源包括异丙醇铝、偏铝酸钠或拟薄水铝石,搅拌时间为0.5-12h;步骤b中所述模板剂包括四乙基氢氧化铵、三乙胺、四丙基氢氧化铵或n,n,n-三甲基-1-1-金刚烷氢氧化铵,所述硅源包括硅酸钠、硅溶胶、白炭黑、正硅酸乙酯或正硅酸甲酯,搅拌时间为0.5-12h;步骤c中搅拌时间为0.5-12h;步骤d中水热晶化温度为100-300℃,晶化时间为10-200h,干燥温度60-120℃,干燥时间2-18h;步骤e中先升温至第一温度保持第一时间,再继续升温至第二温度并保持第二时间,其中升温速率为0.5-10℃/min,第一温度为150-350℃,第一时间为0.1-3h,第二温度为500-750℃,第二时间为1-8h;步骤f中所述非贵金属盐溶液包括硝酸盐溶液、硫酸盐溶液或醋酸盐溶液,所述非贵金属盐溶液质量分数为1-60wt.%,水浴温度为40-100℃,ph为2.0-10.0,搅拌时间为0.5-5h,烘干温度50-120℃,烘干时间2-20h;步骤g中焙烧温度为300-750℃,焙烧时间为2-8h。

在本发明优选的实施方案中,所述非贵金属基分子筛催化剂的制备方法包括以下步骤:

a.将铝源与去离子水混合,搅拌,得到第一混合物;

b.将模板剂、硅源加入到所述第一混合物中,搅拌,得到第二混合物;

c.向所述第三混合物中加入去离子水和与分子筛载体对应的晶种,继续搅拌,得到第三混合物;

d.将所述第三混合物置于聚四氟内衬的不锈钢反应釜中,密闭后升温以进行水热晶化,反应结束后进行固液分离并对固体进行干燥,得到粉末;

e.将所述粉末置于马弗炉中,升温煅烧脱除模板剂,得到分子筛。

f.将非贵金属盐溶液滴加到所述分子筛中,搅拌,烘干,得到固体粉末。

g.在马弗炉中焙烧,得到所述非贵金属基分子筛催化剂。

在本发明优选的实施方案中,步骤a中所述铝源包括异丙醇铝、偏铝酸钠或拟薄水铝石,搅拌时间为0.5-12h;步骤b中所述模板剂包括四乙基氢氧化铵、三乙胺、四丙基氢氧化铵或n,n,n-三甲基-1-1-金刚烷氢氧化铵,所述硅源包括硅酸钠、硅溶胶、白炭黑、正硅酸乙酯或正硅酸甲酯,搅拌时间为0.5-12h;步骤c中搅拌时间为0.5-12h;步骤d中水热晶化温度为100-300℃,晶化时间为10-200h,干燥温度60-120℃,干燥时间2-18h;步骤e中先升温至第一温度保持第一时间,再继续升温至第二温度并保持第二时间,其中升温速率为0.5-10℃/min,第一温度为150-350℃,第一时间为0.1-3h,第二温度为500-750℃,第二时间为1-8h;步骤f中所述非贵金属盐溶液包括硝酸盐溶液、硫酸盐溶液或醋酸盐溶液,所述非贵金属盐溶液质量分数为1-60wt.%,烘干温度50-120℃,烘干时间2-20h;步骤g中焙烧温度为300-750℃,焙烧时间为2-8h。

本发明第二方面涉及一种消除机动车发动机尾气中的氮氧化物和/或烃类化合物的方法,其特征在于,在机动车冷启动过程采用前述任意一项方法来吸附氮氧化物和/或烃类化合物;在冷启动结束后的发动机正常运行状态下,在高于150℃的温度下将所吸附的氮氧化物和/或烃类化合物脱附并在所述非贵金属基分子筛催化剂上原位转化为氮气、二氧化碳和水。

本发明的有益效果:

1、本发明的非贵金属基分子筛催化剂在小于150℃低温条件下能够迅速地吸附nox和cxhy,对nox和cxhy具有很好的吸附性能,同时非贵金属基分子筛催化剂还可以在高于所述低温时脱附和转化吸附的nox和cxhy,能够满足机动车冷启动阶段污染物排放控制的需求,在机动车冷启动阶段污染物脱除领域具有很好的应用前景。

2、本发明的非贵金属基分子筛催化剂以稀土金属和过渡金属为活性组分,具有合成工艺简单、成本低廉、性能好等优点,在机动车冷启动污染物脱除领域实现了利用非贵金属基催化剂替代贵金属基催化剂的实质性转变,有效缓解贵金属资源的供需矛盾。

附图说明

图1是本发明的非贵金属基分子筛催化剂m2的低温nox吸附实验结果。

图2是本发明的非贵金属基分子筛催化剂m2的低温c3h6吸附实验结果。

图3是本发明的非贵金属基分子筛催化剂m2的nox脱附实验结果。

图4是本发明的非贵金属基分子筛催化剂m2的c3h6脱附实验结果。

图5是本发明的非贵金属基分子筛催化剂m3的低温nox吸附实验结果。

图6是本发明的非贵金属基分子筛催化剂m3的低温c3h6吸附实验结果。

图7是本发明的非贵金属基分子筛催化剂m3的nox脱附实验结果。

图8是本发明的非贵金属基分子筛催化剂m3的c3h6脱附实验结果。

图9是本发明的非贵金属基分子筛催化剂与对比例所述的钯基分子筛催化剂nox、c3h6吸附量对比结果。

具体实施方式

给出以下实施例以举例说明本发明,这些实施例并非限制性的。

对比例

通过以下步骤制备钯(pd)基分子筛催化剂:

将一定量的硝酸钯溶液逐滴滴加到分子筛载体上,并充分搅拌均匀,置于100滴干燥12h,然后置于500置马弗炉焙烧6h,最终得到粉末催化剂。

将通过此方法制备的钯(pd)基分子筛催化剂命名为m0。

实施例1-4:

通过以下步骤制备非金属基分子筛催化剂m1:

a.将铝源与去离子水混合,搅拌,得到第一混合物;

b.将模板剂、硅源和非贵金属盐加入到所述第一混合物中,搅拌,得到第二混合物;

c.向所述第二混合物中加入去离子水和与分子筛载体对应的晶种,继续搅拌,得到第三混合物;

d.将所述第三混合物置于聚四氟内衬的不锈钢反应釜中,密闭后升温以进行水热晶化,反应结束后进行固液分离并对固体进行干燥,得到粉末;

e.将所述粉末置于马弗炉中,升温煅烧脱除模板剂,得到所述非贵金属基分子筛催化剂。

具体实验情况如表1所示:

表1:实施例1-4的制备条件

实施例5-7

通过以下步骤制备非金属基分子筛催化剂m2:

a.将铝源与去离子水混合,搅拌,得到第一混合物;

b.将模板剂、硅源加入到所述第一混合物中,搅拌,得到第二混合物;

c.向所述第二混合物中加入去离子水和与分子筛载体对应的晶种,继续搅拌,得到第三混合物;

d.将所述第三混合物置于聚四氟内衬的不锈钢反应釜中,密闭后升温以进行水热晶化,反应结束后进行固液分离并对固体进行干燥,得到粉末;

e.将所述粉末置于马弗炉中,升温煅烧脱除模板剂,得到分子筛。

f.将所述分子筛与非贵金属盐溶液共同投入三口烧瓶中,恒温水浴及一定ph下搅拌,过滤,水洗,直至下层滤液ph值呈中性。随后将滤饼烘干,得到固体粉末。

g.在马弗炉中焙烧,得到所述非贵金属基分子筛催化剂。

具体实验情况如表2所示:

表2:实施例5-7的制备条件

实施例8-10

通过以下步骤制备非贵金属基分子筛催化剂m3:

a.将铝源与去离子水混合,搅拌,得到第一混合物;

b.将模板剂、硅源加入到所述第一混合物中,搅拌,得到第二混合物;

c.向所述第三混合物中加入去离子水和与分子筛载体对应的晶种,继续搅拌,得到第三混合物;

d.将所述第三混合物置于聚四氟内衬的不锈钢反应釜中,密闭后升温以进行水热晶化,反应结束后进行固液分离并对固体进行干燥,得到粉末;

e.将所述粉末置于马弗炉中,升温煅烧脱除模板剂,得到分子筛。

f.将非贵金属盐溶液滴加到所述分子筛中,搅拌,烘干,得到固体粉末。

g.在马弗炉中焙烧,得到所述非贵金属基分子筛催化剂。

具体实验情况如表3所示:

表3:实施例8-10的制备条件

实施例11

将在实施例5-7中制备的非贵金属基分子筛催化剂m2-1、m2-2、m2-3用于含有nox和c3h6混合气体的低温吸附实验,反应气氛:200ppmnox、200ppmco、167ppmc3h6、5%co2、10%o2、5%h2o、余量为n2;催化剂用量为0.25g、总气体流量1l/min、吸附温度为80℃。nox吸附性能评价实验结果如图1所示。m2-1催化剂,nox浓度迅速下降,大约在17s时nox浓度达到最低值。m2-2催化剂在nox吸附初始阶段表现出较慢的吸附速率,大约在13s时nox浓度曲线才呈现出较快的下降速率,大约在30s时nox浓度达到最低值。m2-3催化剂在nox吸附初始阶段也表现出较快的吸附速率,但吸附速率明显低于m2-1催化剂。该结果说明m2-1具有相对较好的nox吸附性能。

c3h6吸附性能评价实验结果如图2所示,在m2-1催化剂,c3h6浓度迅速下降,大约在17s时c3h6浓度达到最低值在前14s内,m2-2催化剂基本上没有吸附c3h6,而m2-3催化剂在前11s内基本上也没有吸附c3h6。因此,m2-1具有更好的低温c3h6吸附性能。

实施例12

将在实施例5-7中制备的非贵金属基分子筛催化剂m2-1、m2-2、m2-3用于含有nox和c3h6混合气体的程序升温脱附实验,反应气氛:200ppmnox、200ppmco、167ppmc3h6、5%co2、10%o2、5%h2o、余量为n2;催化剂用量为0.25g、总气体流量1l/min、升温速率10℃/min。nox脱附实验结果如图3所示。当温度升至约230℃,nox开始从m2-1催化剂脱附,并在约281℃时脱附的nox瞬时浓度达到最大。对于m2-2催化剂,当温度升至300℃时,nox开始脱除,并在400℃附近脱附的nox瞬时浓度达到最大。而当温度升至约180℃时,nox开始从m2-3催化剂上脱附。因此,m2-2催化剂具有更高的nox脱附温度。

c3h6脱附实验结果如图4所示。当温度升高至大约220℃,c3h6开始从m2-1催化剂上脱附,升至270℃附近脱附的c3h6瞬时浓度达到最大。对于m2-2催化剂,当温度高于110℃时,c3h6便开始发生脱附,此外出现最大c3h6脱附瞬时浓度的温度仍低于200℃。而当温度在100℃左右,c3h6开始从m2-3催化剂上脱附。因此,m2-1催化剂具有更高的c3h6脱附温度。

实施例13

将在实施例8-10中制备的非贵金属基分子筛催化剂m3-1、m3-2、m3-3用于含有nox和c3h6混合气体的低温吸附实验,反应气氛:200ppmnox、200ppmco、167ppmc3h6、5%co2、10%o2、5%h2o、余量为n2;催化剂用量为0.25g、总气体流量1l/min、吸附温度为80℃。nox吸附性能评价实验结果如图5所示。m3-1催化剂,nox浓度迅速下降,在18s-23s的区间内,nox浓度降低至0ppm。m3-2催化剂在nox吸附初始阶段表现出相对较慢的吸附速率,大约在6.7s时nox浓度曲线才呈现出较快的下降速率,此外在nox浓度最低时也并未达到0ppm。而在nox吸附初始阶段m3-3催化剂表现出相对较慢的吸附速率,大约在10s时nox浓度曲线才呈现出较快的下降速率。因此,m3-1催化剂具有相对更好的nox吸附性能。

c3h6吸附性能评价实验结果如图6所示。初始阶段,在m3-1催化剂的作用下,c3h6浓度迅速下降,在16s-36s的区间内,c3h6浓度降低至0ppm。与之不同的是,在前13s内,m3-2催化剂基本上没有吸附c3h6,在c3h6浓度最低时也并未达到0ppm。而在前11s内,m3-3催化剂基本上没有吸附c3h6。因此,m3-1催化剂具有更好的低温c3h6吸附性能。

实施例14

将在实施例8-10中制备的非贵金属基分子筛催化剂m3-1、m3-2、m3-3用于含有nox和c3h6混合气体的程序升温脱附实验,反应气氛:200ppmnox、200ppmco、167ppmc3h6、5%co2、10%o2、5%h2o、余量为n2;催化剂用量为0.25g、总气体流量1l/min、升温速率10℃/min。nox脱附实验结果如图7所示。当温度升至约240℃,m3-1样品开始脱附nox,并在约272℃时脱附的nox瞬时浓度达到最大。对于m3-2催化剂,当温度升至150℃时,nox便开始脱除,并在350℃附近脱附的nox瞬时浓度达到最大。而当温度大约100℃,nox开始从m3-3催化剂上脱附。因此,m3-2催化剂具有更合适的nox脱附温度。

c3h6脱附实验结果如图8所示。当温度升高至大约230℃,c3h6开始从m3-1样品上脱附,升至270℃附近脱附的c3h6瞬时浓度达到最大。对于m3-2样品,当温度高于140℃时,c3h6便开始发生脱附,出现最大c3h6脱附瞬时浓度的温度仍低于200℃。而当温度在160℃左右,c3h6开始从m3-3催化剂上脱附。因此,m3-1催化剂具有更合适的c3h6脱附温度。

实施例15

将对应比例制备的钯(pd)基分子筛催化剂m0进行相同实验条件下的低温吸附实验,并将实验结果与m1-1、m1-2、m1-3、m1-4、m2-1、m2-2、m2-3、m3-1、m3-2、m3-3实验结果进行对比。如图9所示。虽然m0具有最高的nox和c3h6吸附数量,但本发明的非贵金属基分子筛催化剂完全具备替代贵金属基分子筛催化剂的潜力,而且更重要的是本发明的非贵金属基分子筛催化剂的成本远远低于贵金属基材料。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1