钢铁厂新型余能余热回收发电改造结构的制作方法

文档序号:15583667发布日期:2018-10-02 18:07阅读:179来源:国知局

本实用新型涉及一种钢铁厂新型余能余热回收发电改造结构。



背景技术:

目前钢铁厂的余能余热利用方式较为分散,高参数的为高炉煤气发电,低参数过热蒸汽的为烧结余热发电、干熄焦余热发电、荒煤气余热发电,饱和蒸汽的为转炉和轧钢加热炉。这种配置方式存在以下问题:一是饱和蒸汽波动较大,时有蒸汽放散,造成能源损失;二是饱和蒸汽发电,机组效率低,叶片安全问题突出;三是机组较为分散,投资较高。



技术实现要素:

本实用新型针对上述现有技术存在的问题做出改进,即本实用新型所要解决的技术问题是提供一种钢铁厂新型余能余热回收发电改造结构,结构简单、合理,可提高余热资源利用率及汽轮机热功转换效率。

为了实现上述目的,本实用新型采用的技术方案是:一种钢铁厂新型余能余热回收发电改造结构,包括产生高参数蒸汽的第一类锅炉、产生低压过热蒸汽或低压饱和蒸汽的第二类锅炉、蒸汽混合器、抽凝式汽轮机、凝汽式汽轮机以及低压再热器,所述第一类锅炉的蒸汽出口经蒸汽管A与抽凝式汽轮机的进汽口相连通,抽凝式汽轮机的抽汽口经蒸汽管B与蒸汽混合器的进汽口相连通;所述第二类锅炉的蒸汽出口经蒸汽管C与蒸汽混合器的进汽口相连通,所述蒸汽混合器的出汽口连接有低压再热器,所述低压再热器的出汽口经蒸汽管D与凝汽式汽轮机的进汽口相连通,所述凝汽式汽轮机和抽凝式汽轮机的动力输出端分别连接有发电机,凝汽式汽轮机和抽凝式汽轮机的出汽口均依次连接有凝汽器和凝结水泵。

进一步的,所述凝结水泵的出水口与除氧装置相连,所述除氧装置包括热力除氧器,所述热力除氧器的凝结水进口经输水管A与所述凝结水泵的出水口相连通;所述热力除氧器的除氧水出口分别连接有低压给水泵和高压给水泵,所述低压给水泵的出水口经低压给水管分别与第二类锅炉相连接;所述高压给水泵的出水口经高压给水管与第一类锅炉相连接。

进一步的,所述凝汽器的冷却水进口与冷却水出口之间连接有循环冷却装置,所述循环冷却装置包括冷却塔,所述冷却塔的进水口经输水管B与凝汽器的冷却水出口相连通,冷却塔的出水口连接有循环水泵,所述循环水泵的出水口经输水管C与凝汽器的冷却水进口相连通。

进一步的,所述第一类锅炉为高炉煤气锅炉;所述第二类锅炉包括烧结余热锅炉、焦炉荒煤气余热锅炉、转炉汽化烟道式余热锅炉以及加热炉汽化冷却系统,所述烧结余热锅炉和焦炉荒煤气余热锅炉的蒸汽出口输出低压过热蒸汽;与转炉汽化烟道式余热锅炉相连接的蒸汽管C上设置有蓄热器,以利转炉汽化烟道式余热锅炉输出低压饱和蒸汽;所述加热炉汽化冷却系统的蒸汽出口输出低压饱和蒸汽。

进一步的,所述抽凝式汽轮机抽汽口的蒸汽压力、烧结余热锅炉蒸汽出口的蒸汽压力、焦炉荒煤气余热锅炉蒸汽出口的蒸汽压力、转炉汽化烟道式余热锅炉经蓄热器后的蒸汽压力、加热炉汽化冷却系统蒸汽出口的蒸汽压力相一致。

进一步的,所述抽凝式汽轮机为超高压或高压抽凝式汽轮机。

进一步的,所述凝汽式汽轮机为低压凝汽式汽轮机或低压凝汽补汽式汽轮机。

与现有技术相比,本实用新型具有以下效果:

(1)汽轮机组可以集中布置,采用抽凝式汽轮机和抵押凝汽式汽轮机就可以对钢铁厂的余能余热进行全部回收,简化了原有余热回收发电系统;

(2)整合后的低压蒸汽为过热蒸汽,解决了饱和蒸汽发电效率低和叶片安全问题;

(3)将全厂的低压蒸汽整合到一起,大大降低了转炉饱和蒸汽波动对汽轮机的影响,转炉低压蒸汽的量原来进入饱和蒸汽发电机组的70%左右,降低到现在整合后的占比为总蒸汽量20%以下;

(4)提高钢铁厂余能余热回收的利用水平,余能余热整体回收发电能力可提升10%以上,余热回收部分发电能力可提升35%以上;

(5)本实用新型设计合理,将原有多台低参数汽轮机整合为一台,不仅结构更加紧凑,降低生产成本,而且实现钢铁厂余能余热回收发电系统发电量增加及机组运行可靠性提高的目标。

附图说明:

图1是本实用新型实施例的构造示意图。

图中:

1-高炉煤气锅炉;2-烧结余热锅炉;3-焦炉荒煤气余热锅炉;4-转炉汽化烟道式余热锅炉;5-加热炉汽化冷却系统;6-蒸汽混合器;7-抽凝式汽轮机;8-凝汽式汽轮机;9-低压再热器;10-蒸汽管A;11-蒸汽管B;12-蒸汽管C;13-蒸汽管D;14-发电机;15-凝汽器;16-凝结水泵;17-输水管A;18-热力除氧器;19-低压给水泵;20-高压给水泵;21-低压给水管;22-高压给水管;23-冷却塔;24-输水管B;25-输水管C;26-循环水泵;27-蓄热器。

具体实施方式:

下面结合附图和具体实施方式对本实用新型做进一步详细的说明。

如图1所示,本实用新型一种钢铁厂新型余能余热回收发电改造结构,包括产生高温高压的高参数蒸汽的第一类锅炉、产生低压过热蒸汽或低压饱和蒸汽的第二类锅炉、蒸汽混合器6、抽凝式汽轮机7、凝汽式汽轮机8以及低压再热器9,所述第一类锅炉的蒸汽出口经蒸汽管A10与抽凝式汽轮机7的进汽口相连通,抽凝式汽轮机7的抽汽口经蒸汽管B11与蒸汽混合器6的进汽口相连通;所述第二类锅炉的蒸汽出口经蒸汽管C12与蒸汽混合器6的进汽口相连通,所述蒸汽混合器6的出汽口连接有低压再热器9,所述低压再热器9的出汽口经蒸汽管D13与凝汽式汽轮机8的进汽口相连通,所述凝汽式汽轮机8和抽凝式汽轮机7的动力输出端分别连接有发电机14,凝汽式汽轮机8和抽凝式汽轮机7的出汽口均依次连接有凝汽器15和凝结水泵16。即第一类锅炉产生的高参数蒸汽输送至抽凝式汽轮机7做功发电,再从抽凝式汽轮机7抽出低压过热蒸汽至蒸汽混合器6内,第二类锅炉产生的低压过热蒸汽或低压饱和蒸汽输送至蒸汽混合器6内,蒸汽混合器6将所有低压蒸汽进行混合,再通过低压再热器9输出低压过热蒸汽至凝汽式汽轮机8做功发电。整个改造结构停运了钢铁厂日前常规的回收转炉、轧钢加热炉的饱和蒸汽汽轮发电机,烧结、荒煤气等多台机组,最终整合成一台高压或超高压抽凝式汽轮发电机及一台低参数凝汽式汽轮发电机组,系统简化了,效率及可靠性提高了,投资减少了。

本实施例中,输送至抽凝式汽轮机7的高参数蒸汽,一部分做功后形成低压过热蒸汽,另一部分继续用于与抽凝式汽轮机7相连接的发电机14进行发电。输送至凝汽式汽轮机8的低压过热蒸汽用于与抽凝式汽轮机8相连接的发电机14进行发电。即实现将钢铁厂的余能余热回收用于发电。

本实施例中,所述凝结水泵16的出水口与除氧装置相连,所述除氧装置包括热力除氧器18,所述热力除氧器18的凝结水进口经输水管A17与所述凝结水泵16的出水口相连通;所述热力除氧器18的除氧水出口分别连接有低压给水泵19和高压给水泵20,所述低压给水泵19的出水口经低压给水管21分别与第二类锅炉相连接;所述高压给水泵20的出水口经高压给水管22与第一类锅炉相连接。即,经抽凝式汽轮机7和凝汽式汽轮机8做功后的乏汽输送到凝汽器15,乏汽经凝汽器15后变成凝结水,再由凝结水泵16输送到热力除氧器18内进行除氧。经热力除氧器18除氧后的热水,由高压给水泵20输送到第一类锅炉,由低压给水泵19输送到第二类锅炉。

本实施例中,所述凝汽器15的冷却水进口与冷却水出口之间连接有循环冷却装置,所述循环冷却装置包括冷却塔23,所述冷却塔23的进水口经输水管B24与凝汽器15的冷却水出口相连通,冷却塔13的出水口连接有循环水泵26,所述循环水泵26的出水口经输水管C25与凝汽器15的冷却水进口相连通。即,冷却塔23内低温水通过循环水泵26从凝汽器15的冷却水进口输入,吸收乏汽的潜热后变成高温水,最后从凝汽器15的冷却水出口输出,最后输送到冷却塔23内冷却,依此循环。

本实施例中,所述第一类锅炉为高炉煤气锅炉1;所述第二类锅炉包括烧结余热锅炉2、焦炉荒煤气余热锅炉3、转炉汽化烟道式余热锅炉4以及加热炉汽化冷却系统5。所述烧结余热锅炉2和焦炉荒煤气余热锅炉3的蒸汽出口输出低压过热蒸汽;与转炉汽化烟道式余热锅炉4相连接的蒸汽管C12上设置有蓄热器27,以利转炉汽化烟道式余热锅炉4输出稳定的低压饱和蒸汽,还可起到起到削峰补谷的作用。所述加热炉汽化冷却系统5的蒸汽出口输出低压饱和蒸汽。

本实施例中,所述抽凝式汽轮机7抽汽口的蒸汽压力、烧结余热锅炉2蒸汽出口的蒸汽压力、焦炉荒煤气余热锅炉3蒸汽出口的蒸汽压力、转炉汽化烟道式余热锅炉4经蓄热器后的蒸汽压力、加热炉汽化冷却系统5蒸汽出口的蒸汽压力相一致。

本实施例中,所述抽凝式汽轮机7为超高压或高压抽凝式汽轮机。

本实施例中,所述凝汽式汽轮机8为低压凝汽式汽轮机或低压凝汽补汽式汽轮机。

本实施例的改造点在于:高炉煤气锅炉1产生蒸汽参数为高温高压或高温超高压,改造后,将现有的纯凝式汽轮发电机组改造为抽凝式汽轮机组。所述烧结机的余热锅炉2的余热是利用冷却机产生的热风和烧结机尾的高温烟气,产生低压过热蒸汽;改造后,将现有的烧结低压凝汽式汽轮发电机组停运。所述焦炉荒煤气余热锅炉3的余热是利用荒煤气的余热,产生低压过热蒸汽,改造后,将现有的荒煤气低压凝汽式汽轮发电机组停运。所述转炉汽化烟道式余热锅炉4产生的蒸汽,蒸汽首先进入蓄热器27,经蓄热器27之后变成低压饱和蒸汽。轧钢加热炉的蒸汽,由加热炉的汽化冷却系统产生蒸汽,产生的蒸汽是低压饱和蒸汽,改造后,将现有的饱和蒸汽汽轮发电机组停运。上述混合后的低压过热蒸汽输送到新建的低压凝汽式汽轮机组(包括低压凝汽式汽轮机、发电机、凝汽器以及凝结水泵)做功发电。

上述改造方案还可以根据已有第二类锅炉压力及产生蒸汽温度的过热度,压力及温度较高的过热蒸汽以主汽的形式进入补汽凝汽式汽轮机的主进汽口,压力及温度较低的蒸汽与饱和蒸汽通过再热以补汽方式进入补汽凝汽式汽轮机(包括补汽凝汽式汽轮机、发电机、凝汽器以及凝结水泵)做功发电。

而且,上述本实用新型中高参数抽凝式汽轮机排出低压过热蒸汽、烧结过热蒸汽、荒煤气过热蒸汽、转炉饱和蒸汽、加热炉饱和蒸汽根据钢铁厂新型余能余热回收发电系统的整体热力计算结果,可以设计成不同的压力,部分或全部不进行再热,以不同的压力分别以主汽或补汽的形式送入低压补凝式汽轮机做功。因此,以上述本实用新型演生出的不同压力等级的低压余热锅炉、不同压力等级的低压再热器及不同压力以主汽或补汽方式进汽的低压补凝式汽轮机等热机组合方式均属于本实用新型创造保护范围。

本实用新型中,汽轮机回热系统的高压加热器和低压加热器,根据汽轮机回热的利用情况设置,亦属于本实用新型的内容。如所述低压加热器设置在输水管A17上,高压加热器设置在高压给水管22和低压给水管21,以提高回用水的温度。

本实施例中,抽凝式汽轮机、凝汽式汽轮机、蒸汽混合器、低压再热器、凝气器、凝结水泵以及发电机均为现有技术。凝气器、凝结水泵、发电机以及抽凝式汽轮机组成抽凝式汽轮机组;凝气器、凝结水泵、发电机以及凝汽式汽轮机组成低压凝汽式汽轮机组。

本实施例中,所述高参数蒸汽是指:9.8~13.7MPa、540℃过热蒸汽。所述低压过热蒸汽是指:0.5~2.5MPa低压过热蒸汽。所述低压饱和蒸汽是指:0.5~2.5MPa低压饱和蒸汽。

本实施例的具体工作过程,包含如下步骤:

(1)将超高压或高压抽凝式汽轮机7抽汽口的蒸汽压力、烧结余热锅炉2蒸汽出口的蒸汽压力、焦炉荒煤气余热锅炉3蒸汽出口的蒸汽压力、转炉汽化烟道式余热锅炉4经蓄热器后的蒸汽压力、加热炉汽化冷却系统5蒸汽出口的蒸汽压力设置为一致;

(2)高炉煤气锅炉1产生的高参数蒸汽输送至超高压或高压抽凝式汽轮机7做功发电,经做功后变成低压过热蒸汽、烧结余热锅炉2与焦炉荒煤气余热锅炉3产生的低压过热蒸汽、转炉汽化烟道式余热锅炉4与加热炉汽化冷却系统5产生的低压饱和蒸汽均输送至蒸汽混合器6内;蒸汽混合器6将低压过热蒸汽及低压饱和蒸汽进行混合,混合后的低压蒸汽通过低压再热器9再热后变成低压再热蒸汽,输送至低压凝汽式或低压凝汽补汽式汽轮机8做功发电;

(3)经超高压或高压抽凝式汽轮机7、低压凝汽式或低压凝汽补汽式汽轮机8做功后的乏汽输送到凝汽器15,乏汽经凝汽器15后变成凝结水,再右凝结水泵16输送到热力除氧器18;乏汽冷却方式为循环水冷却,低温水通过循环水泵26输送到凝汽器15,吸收乏汽的潜热后,变成温度高的水,送到冷却塔23冷却;

(4)经热力除氧器18除氧后的热水,通过高压给水泵20输送到高炉煤气锅炉1;通过低压给水泵19输送到烧结余热锅炉2、焦炉荒煤气余热锅炉3、转炉汽化烟道式余热锅炉4以及加热炉汽化冷却系统5。

以上所述仅为本实用新型的较佳实施例,凡依本实用新型申请专利范围所做的均等变化与修饰,皆应属本实用新型的涵盖范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1