电解制氢的处理分离系统及电解制氢系统的制作方法

文档序号:32854840发布日期:2023-01-06 23:45阅读:135来源:国知局
电解制氢的处理分离系统及电解制氢系统的制作方法

1.本实用新型涉及电解制氢技术领域,特别涉及一种电解制氢的处理分离系统及电解制氢系统。


背景技术:

2.利用光伏、风力等可再生能源发电采用电解水制氢方式产生的“绿氢”是未来氢能源的发展方向,电解水制氢装置一般包括电解单元、后处理单元、纯化单元、辅助单元,其中后处理分离系统包含了整个制氢系统最为复杂的物系,它是将电解产生的氢气、氧气、碱液进行分离,将碱液回收循环使用,将氢气、氧气分别进行初次提纯的工艺过程。
3.但是现有的后处理单元通常是对电解产生的氢气、氧气、碱液直接进行分离,或者仅仅是进行简单的冷却处理后就进行分离,在长时间的处理流程下,很容导致气液混合物温度较高而对后处理单元的分离效率造成影响,甚至会对后处理单元造成严重的腐蚀,从而导致严重的系统安全性问题。


技术实现要素:

4.本实用新型的主要目的是提出一种电解制氢的处理分离系统,旨在现有工艺流程的系统安全性低的问题。
5.为实现上述目的,本实用新型提出的电解制氢的处理分离系统,应用于电解制氢系统中,所述电解制氢系统包括电解装置,电解制氢的处理分离系统包括:
6.多级换热装置,包括换热器及冷却器,所述换热器的进气口与所述电解装置连通,所述换热器的出气口与所述冷却器的进气口连通,所述换热器用于对电解装置输出的气液混合物进行换热处理后输出,所述冷却器用于对所述换热器输出的气液混合物进行冷却处理后输出。
7.可选地,所述电解装置具有氧气出气口、氢气出气口、第一进液口及第二进液口;
8.所述电解制氢的处理分离系统还包括:
9.氧气处理装置,所述氧气处理装置的进气口与所述多级换热装置的氧气出气口连通,所述氧气处理装置的出气口用于接入氧气收集装置,所述氧气处理装置的出液口与所述电解装置的第一进液口连通,所述氧气处理装置用于对所述多级换热装置输出的氧气液体混合物进行气液分离,并将气液分离后的氧气自出气口送至氧气收集装置;
10.氢气处理装置,所述氢气处理装置的进气口与所述多级换热装置的氢气出气口连通,所述氢气处理装置的出气口用于接入氢气收集装置,所述氢气处理装置的出液口与所述电解装置的第二进液口连通,所述氢气处理装置用于对所述多级换热装置输出的氢气液体混合物进行气液分离,并将气液分离后的氢气自出气口送至氢气收集装置。
11.可选地,所述多级换热装置包括:
12.氧侧换热器,所述氧侧换热器的进气口与所述电解装置的氧气出气口连通,所述氧侧换热器的进液口与所述氧气处理装置的出液口连通,所述氧侧换热器的出液口与所述
电解装置的第一进液口连通,所述氧侧换热器用于使自进气口进入的氧气液体混合物与自进液口进入的液体进行热量交换;
13.氧侧冷却器,所述氧侧冷却器的进气口与所述氧侧换热器的出气口连通,所述氧侧冷却器的出气口与所述氧气处理装置的进气口连通,所述氧侧冷却器的进液口用于接入冷却剂补充装置,所述氧侧冷却器的出液口用于接入冷却剂收集装置,所述氧侧冷却器用于对自进气口流入的氧气液体混合物进行冷却处理后,输送至所述氧气处理装置;
14.氢侧换热器,所述氢侧换热器的进气口与所述电解装置的氢气出气口连通,所述氢侧换热器的进液口与所述氢气处理装置的出液口连通,所述氢侧换热器的出液口与所述电解装置的第一进液口连通,所述氢侧换热器用于使自进气口进入的氢气液体混合物与自进液口进入的液体进行热量交换;
15.氢侧冷却器,所述氢侧冷却器的进气口与所述氢侧换热器的出气口连通,所述氢侧冷却器的出气口与所述氢气处理装置的进气口连通,所述氢侧冷却器的进液口用于接入冷却剂补充装置,所述氢侧冷却器的出液口用于接入冷却剂收集装置,所述氢侧冷却器用于对自进气口流入的氢气液体混合物进行冷却处理后,输送至所述氢气处理装置。
16.可选地,所述多级换热装置还包括:
17.氧侧冷却管路,所述氧侧冷却管路的进液口与所述氧侧冷却器的进液口连通,所述氧侧冷却管路的出液口与所述氧侧冷却器的出液口;
18.氧侧温控阀组,所述氧侧温控阀组设置于所述氧侧冷却管路上,所述氧侧温控阀组用于控制所述氧侧冷却管路的导通/关断;
19.氢侧冷却管路,所述氢侧冷却管路的进液口与所述氢侧冷却器的进液口连通,所述氢侧冷却管路的出液口与所述氢侧冷却器的出液口;
20.氢侧温控阀组,所述氢侧温控阀组设置于所述氢侧冷却管路上,所述氢侧温控阀组用于控制所述氢侧冷却管路的导通/关断。
21.可选地,所述氧侧温控阀组还用于检测所述氧侧冷却器与所述电解装置之间的氧侧管路温度,并根据所述氧侧管路温度,控制所述氧侧冷却管路的导通/关断,以控制流经所述氧侧冷却器的冷却剂流量;
22.所述氢侧温控阀组还用于检测所述氢侧冷却器与所述电解装置之间的氢侧管路温度,并根据所述氢侧管路温度,控制所述氢侧冷却管路的导通/关断,以控制流经所述氢侧冷却器的冷却剂流量。
23.可选地,所述电解制氢的处理分离系统还包括:
24.氢氧控制阀组,所述氢氧控制阀组具有氧侧压控端及氢侧压控端,所述氢氧控制阀组的氧侧压控端设置于所述氧气处理装置的出气口与所述氧气收集装置之间,所述氢氧控制阀组的氢侧压控端设置于所述氢气处理装置的出气口与所述氢气收集装置之间;
25.所述氢氧控制阀组用于控制所述氧气处理装置与所述氧气收集装置之间的管路导通/关断,或者控制所述氢气处理装置与所述氢气收集装置之间的管路导通/关断,以使所述氧气处理装置内的压力与所述氢气处理装置内的压力的差值小于预设压力差值。
26.可选地,所述电解制氢的处理分离系统还包括:
27.氧侧液体泵,所述氧侧液体泵的进液口与所述氧气处理装置的出液口连通,所述氧侧液体泵的出液口与所述电解装置的第一进液口连通,所述氧侧液体泵用于将所述氧气
处理装置进行气液分离后的液体送至所述电解装置。
28.和/或,所述电解制氢的处理分离系统还包括:
29.氢侧液体泵,所述氢侧液体泵的进液口与所述氢气处理装置的出液口连通,所述氢侧液体泵的出液口与所述电解装置的第二进液口连通,所述氢侧液体泵用于将所述氢气处理装置进行气液分离后的液体送至所述电解装置。
30.可选地,所述电解制氢的处理分离系统还包括:
31.氧侧流控阀组,所述氧侧流控阀组设置于所述氧气处理装置的出液口与所述电解装置的第一进液口之间,所述氧侧流控阀组用于控制所述氧气处理装置的出液口与所述电解装置的第一进液口之间的管路导通/关断,并在导通时将所述氧气处理装置气液分离后的液体送至所述电解装置;
32.和/或,所述电解制氢的处理分离系统还包括:
33.氢侧流控阀组,所述氢侧流控阀组设置于所述氢气处理装置的出液口与所述电解装置的第二进液口之间,所述氢侧流控阀组用于控制所述氢气处理装置的出液口与所述电解装置的第二进液口之间的管路导通/关断,并在导通时将所述氢气处理装置气液分离后的液体送至所述电解装置。
34.可选地,在所述电解制氢的处理分离系统包括所述氧侧流控阀组时,所述氧侧流控阀组的检测端与所述氧气处理装置连接,所述氧侧流控阀组还用于检测所述氧气处理装置内液面的高度,并根据所述氧气处理装置内液面的高度,控制所述氧气处理装置的出液口与所述电解装置的第一进液口之间的管路导通/关断,以控制所述氧气处理装置内液面的高度低于第一预设高度;
35.在所述电解制氢的处理分离系统包括所述氢侧流控阀组时,所述氢侧流控阀组的检测端与所述氢气处理装置连接,所述氢侧流控阀组还用于检测所述氢气处理装置内液面的高度,并根据所述氢气处理装置内液面的高度,控制所述氢气处理装置的出液口与所述电解装置的第一进液口之间的管路导通/关断,以控制所述氢气处理装置内液面的高度低于第二预设高度。
36.可选地,所述氧气处理装置与所述氢气处理装置均具有补液口;
37.所述电解制氢的处理分离系统还包括:
38.纯水罐,所述纯水罐的进液口用于接入纯水补充装置,所述纯水罐用于存储纯水;
39.纯水泵,所述纯水泵的进液口与所述纯水罐的出液口连接,所述纯水泵的出液口分别与所述氧气处理装置的补液口及所述氢气处理装置的补液口连通,所述纯水泵用于将所述纯水罐内存储的纯水送至所述氧气处理装置及氢气处理装置。
40.本实用新型还提出一种电解制氢系统,包括电解装置及如上述的电解制氢的处理分离系统;其中,
41.所述电解装置具有产氧室及产氢室,所述产氧室具有氧气出气口及第一进液口,所述产氢室具有氢气出气口及第二进液口,所述电解装置用于对产氧室及产氢室内的液体进行电解,以在所述产氧室内产生氧气,并在所述产氢室内产生氢气。
42.本实用新型技术方案通过设置多级换热装置,以对电解装置输出的氧气液体混合物及氢气液体混合物进行多级换热处理后,再输出至氧气处理装置及氢气处理装置进行分离处理,实现了对气液混合物的多级换热,能够降低气液混合物对处理装置的腐蚀,并提高
对气液混合物的分离效果,解决了现有工艺流程的系统安全性低的问题。
附图说明
43.为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
44.图1为本实用新型电解制氢的处理分离系统一实施例的功能模块示意图;
45.图2为本实用新型电解制氢的处理分离系统另一实施例的功能模块示意图;
46.图3为本实用新型电解制氢的处理分离系统一实施例的结构示意图。
47.附图标号说明:
[0048][0049][0050]
本实用新型目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
[0051]
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
[0052]
需要说明,若本实用新型实施例中有涉及方向性指示(诸如上、下、左、右、前、后
……
),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
[0053]
另外,若本实用新型实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本实用新型要求的保护范围之内。
[0054]
本实用新型提出一种电解制氢的处理分离系统,应用于电解制氢系统中,所述电
解制氢系统包括电解装置,所述电解装置具有产氧室及产氢室,所述产氧室具有氧气出气口及第一进液口,所述产氢室具有氢气出气口及第二进液口。
[0055]
目前,现有的后处理单元通常是对电解产生的氢气、氧气、碱液直接进行分离,或者仅仅是进行简单的冷却处理后就进行分离,在长时间的处理流程下,很容导致气液混合物温度较高而对后处理单元的分离效率造成影响,甚至会对后处理单元造成严重的腐蚀,从而导致严重的系统安全性问题。
[0056]
为解决上述问题,参照图1至图3,在一实施例中,所述电解制氢的处理分离系统包括:
[0057]
多级换热装置10,包括换热器及冷却器,所述换热器的进气口与所述电解装置连通,所述换热器的出气口与所述冷却器的进气口连通,所述换热器用于对电解装置输出的气液混合物进行换热处理后输出,所述冷却器用于对所述换热器输出的气液混合物进行冷却处理后输出。
[0058]
可以理解的是,在电解的过程中,由于电流的做工,电解装置中会产生大量的热量,因此,氧气处理装置11及氢气处理装置12在对气液混合物进行气液分离前,本实施例中还设有多级换热装置10对气液混合物进行多级换热,多级换热装置10可以选用冷却器、换热器等冷却设备来组成,能够充分对气液混合物进行降温,能够降低气液混合物对处理装置的腐蚀,并提高对气液混合物的分离效果。多级换热设备可以选用冷却器与换热器的组合实现,换热器可以利用气液分离后的液体与气液混合物进行热量交换,不仅能够降低冷却器的冷却剂用量,还能够对分离后的液体进行加热后再送至电解装置,避免冷热差距过大对电解装置造成损坏,实现了节能环保,提高了电解制氢的处理分离系统的稳定性和安全性。
[0059]
本实用新型通过设置多级换热装置10,实现了对气液混合物的多级换热,能够降低气液混合物对处理装置的腐蚀,并提高对气液混合物的分离效果。同时,多级换热装置10可以充分利用气液分离后的液体,不仅能够降低冷却器的冷却剂用量,还能够对分离后的液体进行加热后再送至电解装置,避免冷热差距过大对电解装置造成损坏,实现了节能环保,提高了电解制氢的处理分离系统的稳定性和安全性。
[0060]
参照图1至图3,在一实施例中,所述电解装置具有氧气出气口、氢气出气口、第一进液口及第二进液口;
[0061]
所述电解制氢的处理分离系统还包括:
[0062]
氧气处理装置11,所述氧气处理装置11的进气口与所述多级换热装置10的氧气出气口连通,所述氧气处理装置11的出气口用于接入氧气收集装置,所述氧气处理装置11的出液口与所述电解装置的第一进液口连通,所述氧气处理装置11用于对所述多级换热装置10输出的氧气液体混合物进行气液分离,并将气液分离后的氧气自出气口送至氧气收集装置;
[0063]
氢气处理装置12,所述氢气处理装置12的进气口与所述多级换热装置10的氢气出气口连通,所述氢气处理装置12的出气口用于接入氢气收集装置,所述氢气处理装置12的出液口与所述电解装置的第二进液口连通,所述氢气处理装置12用于对所述多级换热装置10输出的氢气液体混合物进行气液分离,并将气液分离后的氢气自出气口送至氢气收集装置。
[0064]
可以理解的是,电解制氢通常会采用碱性液体来进行电解,并在阳极产生氧气,以及在负极产生氢气,由于是在碱性液体中电解所产生的气体,因此电解槽中电解生成的气体通常会携带有碱性液体,也即气液混合物,因此在实际生产过程中还需要对气液混合物进行处理后才能收集到纯净的氧气和氢气,但现有的工艺流程操作下极有可能造成氢氧分离系统互串的现象,具有严重的系统安全问题。
[0065]
因此,在本实施例中,电解制氢的处理分离系统设置了相互分离的氧气处理装置11及氢气处理装置12,其中,氧气处理装置11通过密闭的输送管路与电解装置的产氧室连通,而氢气处理装置12则通过密闭的输送管路与电解装置的产氢室连通,使得处理分离系统具有相互独立且分离的氧气处理通道及氢气处理通道,从电解装置开始就将产氢室产生的气液混合物与产氧室产生的气液混合物分离开来,避免其出现氢氧互串的现象,再在氧气处理装置11中对产氧室产生的气液混合物进行分离处理,以及在氢气处理装置12中对产氢室产生的气液混合物进行处理,相互分离、相互独立地对气液混合物进行分离处理,以分别获取纯净的氧气和氢气。如此设置,由两个独立的处理装置分别进行分离处理,降低了氢氧互串的可能性,提高了处理分离系统的稳定性和安全性。
[0066]
电解装置具有正负极两个独立的腔室,将所需的液体注入电解槽的两个腔室内,再将电解槽的电解电极通上电即可对液体进行电解,当电解的液体为水或碱性液体时,能够在正极腔室产生氧气,即在产氧室内产生氧气,并通过密闭的输送管路送至氧气处理装置11进行分离处理。同时,在在负极腔室内产生氢气,即在产氢室内产生氢气,并通过密闭的输送管路送至氢气处理装置12进行分离处理。氧气处理装置11及氢气处理装置12均可以选用气液分离塔或其他气液分离装置来实现,气液分离塔能够利用重力、吸附、洗涤等手段将气液混合物中的气体及液体分离开来,从而获取纯净的氧气及氢气,同时还能够获得分离后的液体。如此,还可以在氧气处理装置11及氢气处理装置12与电解装置之间设置液体循环管路,以将气液分离后的液体送回至电解装置,以提高液体的利用率。
[0067]
本实用新型通过设置氧气处理装置11及氢气处理装置12,从电解装置开始就将产氢室产生的氢气与产氧室产生的氧气分离开来,由氧气处理装置11及氢气处理装置12分别独立地进行分离处理,以分别获取纯净的氧气和氢气。并且,氧气处理装置11与氢气处理装置12之间互不连通,氧气处理装置11与氢气处理装置12完全隔离开来,降低了氢氧互串的可能性,提高了处理分离系统的稳定性和安全性。
[0068]
参照图1至图3,在一实施例中,所述多级换热装置10包括:
[0069]
氧侧换热器71,所述氧侧换热器71的进气口与所述电解装置的氧气出气口连通,所述氧侧换热器71的进液口与所述氧气处理装置的出液口连通,所述氧侧换热器71的出液口与所述电解装置的第一进液口连通,所述氧侧换热器71用于使自进气口进入的氧气液体混合物与自进液口进入的液体进行热量交换;
[0070]
氧侧冷却器51,所述氧侧冷却器51的进气口与所述氧侧换热器71的出气口连通,所述氧侧冷却器51的出气口与所述氧气处理装置的进气口连通,所述氧侧冷却器51的进液口用于接入冷却剂补充装置,所述氧侧冷却器51的出液口用于接入冷却剂收集装置,所述氧侧冷却器51用于对自进气口流入的氧气液体混合物进行冷却处理后,输送至所述氧气处理装置;
[0071]
氢侧换热器72,所述氢侧换热器72的进气口与所述电解装置的氢气出气口连通,
所述氢侧换热器72的进液口与所述氢气处理装置的出液口连通,所述氢侧换热器72的出液口与所述电解装置的第一进液口连通,所述氢侧换热器72用于使自进气口进入的氢气液体混合物与自进液口进入的液体进行热量交换;
[0072]
氢侧冷却器52,所述氢侧冷却器52的进气口与所述氢侧换热器72的出气口连通,所述氢侧冷却器52的出气口与所述氢气处理装置的进气口连通,所述氢侧冷却器52的进液口用于接入冷却剂补充装置,所述氢侧冷却器52的出液口用于接入冷却剂收集装置,所述氢侧冷却器52用于对自进气口流入的氢气液体混合物进行冷却处理后,输送至所述氢气处理装置。
[0073]
可以理解的是,电解装置在电解的过程中,由于电流的做工,电解装置在电解的过程中会产生大量的热量,产氧室及产氢室所产生的气液混合物也会携带大量的热量,因此,在一实施例中,处理分离系统还设有氧侧冷却器51及氢侧冷却器52先对产氧室及产氢室送出的气液混合物进行冷却降温处理,再将气液混合物送至氧气处理装置11及氢气处理装置12。氧侧冷却器51及氢侧冷却器52可以选用换热器来实现,参照图3,图3为本实用新型电解制氢的处理分离系统一实施例的结构示意图,氧侧冷却器51及氢侧冷却器52均选用换热器来实现,氧侧冷却器51及氢侧冷却器52中均具有两条通道,一条通道用于输送气液混合物,一条通道用于输送冷却剂,从而使热流体的部分热量传递给冷流体,也即冷却剂吸收气液混合物中的温度,进而达到对气液混合物进行冷却降温的效果,避免了因气液混合物温度过高而对氧气处理装置11及氢气处理装置12造成损坏,提高了电解制氢的处理分离系统的稳定性和安全性。
[0074]
进一步地,在冷却器与电解装置之间的管路上还设有换热器,参照图3,图3为本实用新型电解制氢的处理分离系统一实施例的结构示意图,氧侧换热器71及氢侧换热器72中均具有两条通道,一条通道用于输送气液混合物,另一条通道用于输送气液分离后的液体,可以理解的是,分离处理后液体的温度是大幅低于气液混合物的温度的,因此,换热器能够使热流体的部分热量传递给冷流体,也即使气液分离后的液体吸收气液混合物的温度。本实用新型通过设置换热器及冷却器,实现了二级换热,能够充分对气液混合物进行降温,能够降低气液混合物对处理装置的腐蚀,并提高对气液混合物的分离效果,不仅能够降低冷却器的冷却剂用量,还能够对分离后的液体进行加热后再送至电解装置,避免冷热差距过大对电解装置造成损坏,实现了节能环保,提高了电解制氢的处理分离系统的稳定性和安全性。
[0075]
可选地,所述多级换热装置10还包括:
[0076]
氧侧冷却管路,所述氧侧冷却管路的进液口与所述氧侧冷却器51的进液口连通,所述氧侧冷却管路的出液口与所述氧侧冷却器51的出液口;
[0077]
氧侧温控阀组61,所述氧侧温控阀组61设置于所述氧侧冷却管路上,所述氧侧温控阀组61用于控制所述氧侧冷却管路的导通/关断;
[0078]
氢侧冷却管路,所述氢侧冷却管路的进液口与所述氢侧冷却器52的进液口连通,所述氢侧冷却管路的出液口与所述氢侧冷却器52的出液口;
[0079]
氢侧温控阀组62,所述氢侧温控阀组62设置于所述氢侧冷却管路上,所述氢侧温控阀组62用于控制所述氢侧冷却管路的导通/关断。
[0080]
参照图3,图3为本实用新型电解制氢的处理分离系统一实施例的结构示意图,电
解制氢的处理分离系统中还设有氧侧冷却器51及氢侧冷却器52的冷却旁路,用于控制流经氧侧冷却器51及氢侧冷却器52的冷却剂流量。可以理解的是,当氧侧温控阀组61控制氧侧冷却管路关断时,冷却剂只能从氧侧冷却器51中通过,而当氧侧温控阀组61控制氧侧冷却管路导通时,冷却剂能够从氧侧冷却器51与氧侧冷却管路中通过,由于冷却剂补充装置输送冷却剂的流量是一定的,此时流经氧侧冷却器51中的冷却剂流量就会对应减少。因此,通过控制氢侧冷却管路的导通/关断,能够控制流经氧侧冷却器51的冷却剂流量,从而改变氧侧冷却器51的降温效果。同理,氢侧温控阀组62能够控制流经氢侧冷却器52的冷却剂流量。
[0081]
可选地,所述氧侧温控阀组61还用于检测所述氧侧冷却器51与所述电解装置之间的氧侧管路温度,并根据所述氧侧管路温度,控制所述氧侧冷却管路的导通/关断,以控制流经所述氧侧冷却器51的冷却剂流量;
[0082]
所述氢侧温控阀组62还用于检测所述氢侧冷却器52与所述电解装置之间的氢侧管路温度,并根据所述氢侧管路温度,控制所述氢侧冷却管路的导通/关断,以控制流经所述氢侧冷却器52的冷却剂流量。
[0083]
在一实施例中,氧侧温控阀组61的检测端,也即检测信号线设置于氧侧冷却器51与产氧室之间的氧侧管路上,如此,氧侧温控阀组61能够检测产氧室出口处的温度,并根据产氧室出口处的温度调节流经氧侧冷却器51的冷却剂流量,从而改变氧侧冷却器51的降温效果。例如,当测得产氧室出口处的温度较高时,则控制管路关断,使得流经氧侧冷却器51的冷却剂流量增大,以提高氧侧冷却器51的降温效果。反之,当产氧室出口处的温度较低时,则能够控制管路导通,使得流经氧侧冷却器51的冷却剂流量减少,以降低氧侧冷却器51的降温效果,从而节省冷却剂的用量。同理,氢侧温控阀组62能够检测产氢室出口处的温度,并根据产氢室出口处的温度控制流经氢侧冷却器52的冷却剂流量。本实用新型通过设置氧侧温控阀组61及氢侧温控阀组62,使得处理分离系统能够根据电解槽产生的热量控制冷却剂的冷量,能够根据需要进行匹配,进一步的降低了能耗,同时降低了进入氧气处理装置11及氢气处理装置12的温度。
[0084]
参照图1至图3,在一实施例中,所述电解制氢的处理分离系统还包括:
[0085]
氢氧控制阀组20,所述氢氧控制阀组20具有氧侧压控端及氢侧压控端,所述氢氧控制阀组20的氧侧压控端设置于所述氧气处理装置11的出气口与所述氧气收集装置之间,所述氢氧控制阀组20的氢侧压控端设置于所述氢气处理装置12的出气口与所述氢气收集装置之间;
[0086]
所述氢氧控制阀组20用于控制所述氧气处理装置11与所述氧气收集装置之间的管路导通/关断,或者控制所述氢气处理装置12与所述氢气收集装置之间的管路导通/关断,以使所述氧气处理装置11内的压力与所述氢气处理装置12内的压力的差值小于预设压力差值。
[0087]
可以理解的是,氧气处理装置11及氢气处理装置12内的压力大小对其分离能力有一定的影响,因此,在本实施例中,还设有氢氧控制阀组20用于控制氧气处理装置11及氢气处理装置12内的压力大小。氢氧控制阀组20可以选用两个压控阀组来实现,参照图3,图3为本实用新型电解制氢的处理分离系统一实施例的结构示意图,一个压控阀组设置于氧气处理装置11与氧气收集装置之间的管路上,另一个压控阀组设置于氢气处理装置12与氢气收集装置之间的管路上,分别用于控制对应的管路导通/关断,从而控制氧气处理装置11与氢
气处理装置12内的压力大小。
[0088]
进一步地,由于电解所产生的氢气与氧气的比例是固定得,因此,我们还能够通过控制氢氧控制阀组20,使得氧气处理装置11内的压力与所述氢气处理装置12内的压力的差值处于一个预设的范围之内,从而避免因两边的处理装置压差过大或过小而产生的倒灌、串流等现象。氢氧控制阀组20中的两个压控阀组可以通过信号线连接起来,如此,氧侧的压块阀组就能够获取到氢气处理装置12内的压力大小,并根据氢气处理装置12内的压力大小,控制氧气处理装置11与氧气收集装置之间的管路导通/关断,从而控制氧气处理装置11内的压力大小,进而使得氧气处理装置11内的压力与所述氢气处理装置12内的压力的差值小于预设压力差值。同理,氢侧的压块阀组也能够使氧气处理装置11内的压力与所述氢气处理装置12内的压力的差值小于预设压力差值,进而维持整个处理分离系统的稳定性。
[0089]
参照图1至图3,在一实施例中,所述电解制氢的处理分离系统还包括:
[0090]
氧侧液体泵31,所述氧侧液体泵31的进液口与所述氧气处理装置11的出液口连通,所述氧侧液体泵31的出液口与所述电解装置的第一进液口连通,所述氧侧液体泵31用于将所述氧气处理装置11进行气液分离后的液体送至所述产氧室。
[0091]
和/或,所述电解制氢的处理分离系统还包括:
[0092]
氢侧液体泵32,所述氢侧液体泵32的进液口与所述氢气处理装置12的出液口连通,所述氢侧液体泵32的出液口与所述电解装置的第二进液口连通,所述氢侧液体泵32用于将所述氢气处理装置12进行气液分离后的液体送至所述产氢室。
[0093]
可以理解的是,氧气处理装置11及氢气处理装置12均能够将气液混合物中的气体及液体分离开来,从而获取纯净的氧气及氢气,同时还能够获得分离后的液体。因此,在本实施例中,在氧气处理装置11及氢气处理装置12与电解装置之间分别设置有氧侧液体泵31及氢侧液体泵32,以将气液分离后的液体送回至电解装置中,以提高液体的利用率。参照图3,图3为本实用新型电解制氢的处理分离系统一实施例的结构示意图,氧侧液体泵31设置于氧气处理装置11与电解槽之间,用于将氧气处理装置11气液分离后的液体送回至电解槽进行二次利用,氢侧液体泵32则用于将氢气处理装置12气液分离后的液体送回至电解槽进行二次利用。如此设置,使得电解槽与氧气处理装置11及氧侧液体泵31形成了一个独立的循环,电解槽与氢气处理装置12及氢侧液体泵32形成了另一个独立的循环,在防止氢氧互相串扰的同时,提高了电解液体的利用率,实现了节能环保,提高了电解制氢的处理分离系统的稳定性和安全性。
[0094]
参照图1至图3,在一实施例中,所述电解制氢的处理分离系统还包括:
[0095]
氧侧流控阀组41,所述氧侧流控阀组41设置于所述氧气处理装置11的出液口与所述电解装置的第一进液口之间,所述氧侧流控阀组41用于控制所述氧气处理装置11的出液口与所述电解装置的第一进液口之间的管路导通/关断,并在导通时将所述氧气处理装置11气液分离后的液体送至所述电解装置;
[0096]
和/或,所述电解制氢的处理分离系统还包括:
[0097]
氢侧流控阀组42,所述氢侧流控阀组42设置于所述氢气处理装置12的出液口与所述电解装置的第二进液口之间,所述氢侧流控阀组42用于控制所述氢气处理装置12的出液口与所述电解装置的第二进液口之间的管路导通/关断,并在导通时将所述氢气处理装置12气液分离后的液体送至所述电解装置。
[0098]
参照图3,图3为本实用新型电解制氢的处理分离系统一实施例的结构示意图,在本实施例中,在氧气处理装置11及氢气处理装置12与电解槽之间还设有氧侧流控阀组41及氢侧流控阀组42,能够控制氧气处理装置11及氢气处理装置12与电解槽之间的管路导通/关断。本实用新型通过设置氧侧流控阀组41及氢侧流控阀组42,一方面能够将气液分离后的液体送至电解槽进行二次利用,提高了电解液体的利用率,实现了节能环保。另一方面,在管路上设置流控阀,能够灵活控制氧气处理装置11及氢气处理装置12与电解装置之间的管路导通/关断,使得气液混合物不会直接从氧气处理装置11及氢气处理装置12回到电解装置,而是充分分离后再将分离后的液体送回至电解装置。
[0099]
可选地,在所述电解制氢的处理分离系统包括所述氧侧流控阀组41时,所述氧侧流控阀组41的检测端与所述氧气处理装置11连接,所述氧侧流控阀组41还用于检测所述氧气处理装置11内液面的高度,并根据所述氧气处理装置11内液面的高度,控制所述氧气处理装置11的出液口与所述电解装置的第一进液口之间的管路导通/关断,以控制所述氧气处理装置11内液面的高度低于第一预设高度;
[0100]
在所述电解制氢的处理分离系统包括所述氢侧流控阀组42时,所述氢侧流控阀组42的检测端与所述氢气处理装置12连接,所述氢侧流控阀组42还用于检测所述氢气处理装置12内液面的高度,并根据所述氢气处理装置12内液面的高度,控制所述氢气处理装置12的出液口与所述电解装置的第一进液口之间的管路导通/关断,以控制所述氢气处理装置12内液面的高度低于第二预设高度。
[0101]
在一实施例中,氧侧流控阀组41的检测端,也即检测信号线还与氧气处理装置11连接,使得氧侧流控阀组41能够检测到氧气处理装置11内的液面高度,并当氧气处理装置11内的液面高度大于第一预设高度时,控制管路导通,以将氧气处理装置11分离处理后的液体送回至电解装置进行二次利用,并使得氧气处理装置11内的液面高度始终低于第一预设高度。同理,氢侧流控阀组42能够使得氢气处理装置12内的液面高度始终低于第二预设高度。本实用新型通过设置氧侧流控阀组41及氢侧流控阀组42,使得氧气处理装置11及氢气处理装置12内的液面高度能够保持在一定的范围内,使得气液分离能够充分进行,提高了电解液体的利用率,实现了节能环保,提高了电解制氢的处理分离系统的稳定性和安全性。
[0102]
参照图1至图3,在一实施例中,所述氧气处理装置11与所述氢气处理装置12均具有补液口;
[0103]
所述电解制氢的处理分离系统还包括:
[0104]
纯水罐80,所述纯水罐80的进液口用于接入纯水补充装置,所述纯水罐80用于存储纯水;
[0105]
纯水泵90,所述纯水泵90的进液口与所述纯水罐80的出液口连接,所述纯水泵90的出液口分别与所述氧气处理装置11的补液口及所述氢气处理装置12的补液口连通,所述纯水泵90用于将所述纯水罐80内存储的纯水送至所述氧气处理装置11及氢气处理装置12。
[0106]
参照图3,图3为本实用新型电解制氢的处理分离系统一实施例的结构示意图,其中,氧气处理装置11及氢气处理装置12选用气液分离塔来实现气液混合物的分离,具体地,气液混合物进入气液分离塔下部进行气液分离,分离后的气体在塔内上升,上升到塔中上部后采用喷头喷淋纯水对气体进行进一步的喷淋进化将携带的微量的液体喷淋洗涤下去,
气体继续上升到塔顶的出气口。因此,在一实施例中,处理分离系统还设有纯水罐80及纯水泵90,用于为氧气处理装置11及氢气处理装置12补充纯水,使得氧气处理装置11及氢气处理装置12能够稳定地对气液混合物进行气液分离,提高了电解制氢的处理分离系统的稳定性和安全性。此外,如图3所示,还可以在电解装置的第一进液口及第二进液口处设置废液收集装置,用于收集电解后或气液分离后的废液,在防止废液干扰分解的同时,还能够实现节能环保。
[0107]
本实用新型还提出一种电解制氢系统,该电解制氢系统包括电解装置及上述的电解水制氢的处理分离系统;其中,
[0108]
所述电解装置具有产氧室及产氢室,所述产氧室具有氧气出气口及第一进液口,所述产氢室具有氢气出气口及第二进液口,所述电解装置用于对产氧室及产氢室内的液体进行电解,以在所述产氧室内产生氧气,并在所述产氢室内产生氢气。
[0109]
在本实施中,该电解水制氢的处理分离系统的具体结构参照上述实施例,由于本光伏逆变器采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
[0110]
以上所述仅为本实用新型的优选实施例,并非因此限制本实用新型的专利范围,凡是在本实用新型的发明构思下,利用本实用新型说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本实用新型的专利保护范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1