用于对地下地层进行加热的温度受限加热器的制作方法

文档序号:5398993阅读:270来源:国知局
专利名称:用于对地下地层进行加热的温度受限加热器的制作方法
技术领域
本发明总体上涉及用于对地下地层进行加热的方法和系统。某些实施例涉及利用具有高功率因子的温度受限加热器来加热地下地层例如含烃地层的方法和系统。
背景技术
从地下地层获得的烃通常被用作能源、工业原材料、消费产品。由于人们担心可获得的烃类资源的损耗和开采出的烃类物质总体质量的降低,从而促使人们研发了一些方法,以便对可获得的烃类资源进行更有效率地开采、加工和/或使用。现场处理方法可以被用于从地下地层中开采烃类物质。地下地层中的烃类物质的化学和/或物理特性可能需要改变,以便允许能更容易地从地下地层中开采烃类物质。化学和物理变化可包括产生可开采流体的现场反应、地层中烃类物质的组分变化、熔解度变化、密度变化、相位变化和/或粘度变化。流体可以是气体、液体、乳状液、浆液和/或具有与液体流动相似的流动特性的固体颗粒流,但不限于此。
在现场处理方法期间,加热器可以被放置在井筒中,以便对地层进行加热。在以下的美国专利文件中描述了这种现场处理方法的一些例子,这些美国专利为Ljungstrom的US2634961;Ljungstrom的US2732195;Ljungstrom的US2780450;Ljungstrom的US2789805;Ljungstrom的US2923535;Van Meurs等人的US4886118。
可以利用热源对地下地层进行加热。电加热器可以被用于通过辐射和/或传导来加热地下地层。电加热器可以以电阻方式对元件进行加热。在Germain的美国专利US2548360中,描述了一种被放置在井筒内的粘性油中的电加热元件。该加热元件对油进行加热,使油的粘度减小,以便使得这些油能从井筒中被泵送出来。在Eastlund等人的美国专利US4716960中,描述了石油井的电加热管,在管道中通过相当低的电压电流,以防止固体的形成。在Van Egmond的美国专利US5065818中,描述了一种电加热元件,这种电加热元件被固定至井筒内,在加热元件周围没有套管。
在Van Meurs等人的美国专利US4570715中,描述了电加热元件。该电加热元件具有导电芯;由绝缘材料制成的环绕层;环绕金属护套。导电芯在高温时可具有相当低的电阻。绝缘材料在高温时可具有相当高的电阻、耐压强度和热导特性。绝缘层可阻止从导电芯至金属护套发生电弧。金属护套在高温时可具有相当高的抗张强度和抗蠕变特性。
在Van Egmond的美国专利US5060287中,描述了一种电加热元件,该电加热元件具有铜-镍合金芯。
有些加热器可能会因地层中的热点而损坏或失效。如果沿着加热器的任何一个点的温度超过或即将超过该加热器的最大工作温度,那么就需要减小整个加热器的供电量,以避免加热器发生故障和/或在地层中的热点或热点附近发生地层过热。有些加热器直到加热器达到特定温度极限,才能沿着加热器长度均匀加热。有些加热器不能对地下地层进行有效地加热。因此,有利的是,具有这样一种加热器,这种加热器能沿着加热器长度进行均匀加热;能对地下地层进行有效地加热;当加热器的一部分接近选定温度时能自动调节温度;和/或在低于所选温度时具有基本上线性的磁性和高功率因子。

发明内容
本发明提供一种加热器,包括铁磁元件;电导体,该电导体与铁磁元件电连接,其中,电导体被构造成在低于铁磁元件的居里温度时能提供热输出,电导体被构造成在25℃能传导所述加热器的大部分电流;并且大约在铁磁元件的居里温度和该温度之上,该加热器能自动地减小热量。
与上述发明进行组合,本发明还提供了(a)铁磁元件和电导体电连接,从而使得在加热器使用期间,加热器的功率因子保持在0.85之上,0.9之上,或0.95之上;(b)加热器具有的调节比至少为1.1,至少为2,至少为3,或至少为4;(c)铁磁元件被电连接至电导体上,以便在低于铁磁元件的居里温度时,由铁磁元件所产生的磁场把电流的大部分流动限制到电导体上;以及(d)在高达铁磁元件的居里温度或其附近时,电导体提供加热器的大部分热输出。
与前面的一个或多个发明相结合,本发明还提供了(a)加热器还包括第二电导体,该第二电导体与铁磁元件电连接;以及(b)第二电导体由这样电导体组成,该电导体比铁磁元件和所述的电导体的电导率大,和/或第二电导体提供机械强度,以便在铁磁元件的居里温度或其附近时支撑着铁磁元件。
与前面的一个或多个发明相结合,本发明还提供了(a)所述的电导体和铁磁元件是同心的;(b)电导体至少部分地环绕铁磁元件。
与前面的一个或多个发明相结合,本发明还提供了(a)在铁磁元件的居里温度或其附近时,电导体提供机械强度来支撑着铁磁元件;以及(b)电导体是抗腐材料。
与前面的一个或多个发明相结合,本发明还提供了(a)当热负荷接近时,在选定的工作温度之上或附近,加热器的工作温度增加至多1.5℃,加热器就每米减小1瓦特;以及(b)大约在铁磁元件的居里温度和该温度之上时,加热器就减小热量,在所述居里温度之下50℃时,减小的热量至多为热输出的10%。
与前面的一个或多个发明相结合,本发明还提供了当电流被施加至加热器部分时,加热器部分提供(a)第一热输出,当加热器部分在100℃之上,200℃之上,400℃之上,或500℃之上,或600℃之上并在所选定温度之下时,以及(b)低于第一热输出的第二热输出,当加热器部分在所选定温度和在该温度之上时。
与前面的一个或多个发明相结合,本发明还提供(a)加热器被用于一系统中,该系统被构造成能向地下地层提供热量;以及(b)加热器被用于一方法中,该方法用于对地下地层进行加热,该方法包括(1)把电流施加到加热器上,以便提供热输出;以及(2)允许热量从加热器传递到地下地层的一部分。


通过下面的详细描述,并参照附图,本领域技术人员就可更好地理解本发明的优点,在这些附图中图1是地层中烃类物质的一些加热阶段的示意图;图2是用于对地层中烃类物质进行处理的现场转换系统的一部分的实施例的示意图;图3、4、5是根据一实施例的温度受限加热器的剖面图,该加热器具有外部导体,该外部导体具有铁磁部分和非铁磁部分;图6、7、8、9是根据一实施例的温度受限加热器的剖面图,该加热器具有外部导体,该外部导体具有放置在护套内的铁磁部分和非铁磁部分;图10、11、12是根据一实施例的温度受限加热器的剖面图,该加热器具有铁磁外部导体;图13、14、15是根据一实施例的温度受限加热器的剖面图,该加热器具有外部导体;图16A、16B是根据一实施例的温度受限加热器的剖面图,该温度受限加热器具有铁磁内部导体;图17A、17B是根据一实施例的温度受限加热器的剖面图,该温度受限加热器具有一铁磁内部导体和非铁磁芯;图18A、18B是根据一实施例的温度受限加热器的剖面图,该温度受限加热器具有铁磁外部导体;图19A、19B是根据一实施例的温度受限加热器的剖面图,该温度受限加热器具有铁磁外部导体,该铁磁外部导体被镀有耐腐合金;图20A、20B是根据一实施例的温度受限加热器的剖面图,该温度受限加热器具有铁磁外部导体;
图21是根据一实施例的复合导体的剖面图,该复合导体具有支撑元件;图22是根据一实施例的复合导体的剖面图,该复合导体具有支撑元件,该支撑元件把导体间隔开;图23是根据一实施例的复合导体的剖面图,该复合导体环绕着支撑元件;图24是根据一实施例的复合导体的剖面图,该复合导体环绕着管道支撑元件;图25是根据一实施例的导体位于管道中的加热器的剖面图;图26A、26B是绝缘的导体加热器的一实施例;图27A、27B是绝缘的导体加热器的一实施例,该加热器具有护套,该护套位于外部导体的外面;图28是位于管道内部的绝缘的导体的一实施例;图29表示一温度受限加热器的一实施例,其中,在铁磁导体的居里温度之下,支撑元件提供大部分热输出;图30、31表示温度受限加热器的实施例,其中,在铁磁导体的居里温度之下,护套提供大部分热输出;图32表示对于具有铜芯、碳钢铁磁导体、不锈钢347H不锈钢支撑元件的温度受限加热器,在若干个电流,通过实验所测得的电阻与温度之间的关系;图33表示对于具有铜芯、钴-碳钢铁磁导体、不锈钢347H不锈钢支撑元件的温度受限加热器,在若干个电流,通过实验所测得的电阻与温度之间的关系;图34表示对于具有铜芯、碳钢铁磁导体、347H不锈钢支撑元件的温度受限加热器,在两个交流电电流,通过实验所测得的功率因子与温度之间的关系;图35表示对于具有铜芯、碳钢铁磁导体、347H不锈钢支撑元件的温度受限加热器,通过实验所测得的调节比与最大输送功率之间的关系;
图36表示温度受限加热器的温度与时间之间的关系;图37表示出了2.5cm实心410不锈钢杆和2.5cm实心304不锈钢杆的温度与测量时间数据之间的关系;图38表示出了一种导体位于管道中的加热器的中心导体的温度是调节比为2∶1的温度受限加热器的地层深度的一个函数;图39表示出了沿着油页岩丰富轮廓对于调节比为2∶1而言通过地层的加热器热流量;图40表示出了对于调节比为3∶1而言,加热器温度与地层深度之间的函数关系;图41表示出了沿着油页岩丰富轮廓对于调节比为3∶1而言通过地层的加热器热流量;图42表示出了对于调节比为4∶1而言,加热器温度与地层深度之间的函数关系;图43表示出了对于在模拟中用于对油页岩进行加热的加热器而言,加热器温度与深度之间的函数关系;图44表示出了对于在模拟中用于对油页岩进行加热的加热器而言,加热器热流量与时间的函数关系;图45表示出了在对油页岩进行加热的模拟中,累积的热输出与时间之间的函数关系。
尽管本发明可以具有各种变型,可采用其它的一些形式,但图中通过举例的方式给出了本发明的一些具体实施例,这些具体实施例在这里将被详细描述,附图并不是按比例绘制的。然而,应当知道,附图和所作的详细描述并不是要把本发明局限于所公开的具体形式,相反,本发明应包括落入本发明构思和范围之内的所有的变型、等同方案和替代方案,本发明的范围是由所附的权利要求来限定的。
具体实施例方式
利用这里所描述的系统、方法和加热器就可以解决上述问题。例如,加热器包括铁磁元件和电导体,该电导体与所述铁磁元件电连接。电导体被构造成能在铁磁元件的居里温度之下提供热输出。电导体还被构造成能在25℃传导所述加热器的大部分电流。该加热器大约在铁磁元件的居里温度和该温度之上能自动地减小热量。
在这里更详细描述的本发明的一些实施例涉及用于对地层中的烃类物质进行加热的系统和方法。这些地层可以被处理,以便生产出烃类产品、氢气或其它产品。在这里所使用的术语被定义如下“烃类物质”总体上被定义为主要由碳和氢原子构成的分子。烃类物质也可包括其它一些元素,例如卤族元素、金属元素、氮、氧和/或硫,但并不局限于这些元素。烃类物质可以是油母岩、沥青、焦沥青、油、天然矿物蜡、沥青岩,但不局限于这些。烃类物质可以位于地层的矿石中或其附近,矿石可包括沉积岩、砂岩、硅酸岩、碳酸岩、硅藻土和其它多孔介质,但并不局限于这些。“烃类流体”是指包含烃类物质的流体。烃类流体可包括、夹杂或可被夹杂在非烃类流体(例如氢、氮、一氧化碳、二氧化碳、硫化氢、水、氨)中。
“地层”包括一个或多个含烃类物质的层、一个或多个非烃类物质层、覆盖层和/或下底层。覆盖层和/或下底层可包括岩石、页岩、泥岩或湿的/紧密的碳酸岩。在现场转换方法的一些实施例中,覆盖层和/或下底层可包括含烃类物质的层或者一些含烃类物质的层,在现场转换处理期间,这些含烃类物质的层是相对不渗透的并且不受温度影响,所述的现场转换处理导致覆盖层和/或下底层的这些含烃类物质的层的特性发生相当大的改变。例如,覆盖层可包含页岩或泥岩,但在现场转换处理期间,下底层不允许被加热至热解温度。在某些情况下,覆盖层和/或下底层可以有点渗透性。
“地层流体”和“产出流体”指的是从地层中开采出的流体,可包括热解流体,合成气体,动化的烃类物质和水(蒸汽)。地层流体可包括烃类流体和非烃类流体。
“热导流体”包括这样的流体,在加热器中的温度和101kPa条件下,该流体与空气相比具有更高的热导率。
“加热器”是用于在井筒或在井筒区域附近产生热量的任何系统。加热器可以是电加热器、循环换热流体或蒸汽、炉、与地层中的材料或与从地层中生产出的材料进行反应的燃烧室、和/或它们的组合,但并局限于这些。
“温度受限加热器”总体上是指这样的加热器,它无需利用外部控制例如温度控制器、功率调节器、调整器或其它装置,就能在规定温度范围以上调节热量输出(例如,减小热量输出)。温度受限加热器可以是交流电(AC)供电的或调制(例如“突变”)直流电(DC)供电的电阻加热器。
“居里温度”是指这样的温度,即,在该温度以上,铁磁材料就失去其全部的铁磁特性。铁磁材料除了在居里温度以上失去其全部的铁磁特性以外,在增大的电流通过该铁磁材料时也开始失去其铁磁特性。
“调制直流电(DC)”是指在铁磁导体中允许集肤效应电流流动的任何随时间变化的电流。
温度受限加热器的“调节比”是指在居里温度以下最高交流电或调制直流电电阻与在居里温度以上最低交流电或调制直流电电阻的比值。
术语“井筒”是指通过钻进或把管道插入到地层内所形成的地层中的孔眼。在本文中,术语“井眼”和“井孔”,当指地层中的孔眼时,它们与术语“井筒”是可互换使用的。
“绝缘导体”是指这样的细长材料,即,它能导电,并且全部或部分地被绝缘材料包裹着。术语“自控制”是指采取无需任何形式的外部控制的方式来控制加热器的输出。
在减小热量输出的加热系统、装置和方法中的上下文中,术语“自动”的意思是这些系统、装置和方法以特定方式起作用,无需采用外部控制(例如外部控制器,如具有温度传感器和反馈回路的控制器,PID控制器或预测控制器)。
地层中的烃类物质可以以各种方式被处理,以便生产出许多不同的产品。在某些实施例中,这些地层被分阶段处理。图1表示出了对含有烃类物质的一部分地层进行加热的若干阶段。图1还表示出了(y轴)地层的每吨的以桶计的油当量的产量(Y)与(x轴)加热地层以摄氏度计的温度(T)之间的关系。
在阶段1加热期间,发生甲烷解吸附和水的蒸发。通过阶段1对地层进行加热可以被尽快地进行。当地层被开始加热时,地层中的烃类物质就把吸附的甲烷释放出来。被解吸附的甲烷可以从地层中被开采出来。如果地层被进一步加热,那么,地层中的水就被蒸发。在地层中,水通常在160℃和285℃之间和在600kPa绝对压力至7000kPa绝对压力之间被蒸发。在某些实施例中,蒸发的水在地层中产生可湿性改变和/或使地层压力增大。可湿性改变和/或压力增大会影响地层中的热解反应或其它反应。在某些实施例中,蒸发的水从地层被开采出来。在其它一些实施例中,蒸发的水在地层中或地层外被用于蒸汽提取和/或蒸馏。通过把水从地层中去除,并增大地层中的孔容积,就可以增大孔容积中存储烃类物质的存储空间。
在某些实施例中,在阶段1加热之后,部分地层被进一步加热,从而使得部分地层中的温度(至少)达到开始热解温度(例如,如阶段2所示的温度范围的下端点的温度)。在整个阶段2,地层中的烃类物质可以被热解。热解温度范围随着地层中的烃的种类的不同而改变。热解温度范围可包括位于250℃至900℃之间的温度。用于开采期望产品的热解温度范围只可通过整个热解温度范围的一部分延伸。在某些实施例中,用于开采期望产品的热解温度范围可包括250℃至400℃之间的温度、250℃至350℃之间的温度、或325℃至400℃之间的温度。如果地层中的烃类物质的温度通过从250℃至400℃的温度范围缓慢升高,那么,当温度到达400℃时,热解产品的开采就可以基本完成。利用许多加热器对地层进行加热,可以使那些通过热解温度范围使地层中的烃类物质的温度缓慢升高的热量进行叠加。
在某些现场转变实施例中,一部分地层被加热至期望温度,而不是通过热解温度范围来缓慢地加热。在某些实施例中,期望温度为300℃。在某些实施例中,期望温度为325℃。在某些实施例中,期望温度为350℃。其它的温度也可以被选择作为期望温度。来自多个加热器的热量的叠加,使得在地层中可以相对快速和有效地达到期望温度。从加热器向地层中输出的能量可以被调节,以便使地层中的温度保持在期望温度。地层的被加热部分基本上被保持在期望温度,直到热解衰减而使从地层中开采期望地层流体变得不经济为止。产生热解的部分地层可包括这样一些区域,这些区域只通过一个加热器的热传递来使其温度处于热解温度范围内。
在某些实施例中,包括热解流体的地层流体从地层中被开采出来。随着地层温度的升高,开采地层流体中可凝缩的烃类物质的量会降低。在非常高的温度下,地层主要产生甲烷和/或氢。如果地层在整个热解范围内被加热,那么,朝着热解范围的上限,地层就可只产生少量的氢。在大部分可获得的氢采完之后,就将从地层中开采少量的流体。
在烃类物质热解之后,在加热部分的地层中仍然存在大量的碳和一些氢。保留在加热部分的地层中的一部分碳可以以合成气体的形式从地层中被开采出来。合成气体的产生可发生在图1所示的阶段3加热期间。阶段3可包括把经加热部分的地层加热到一个足以允许产生合成气体的温度。可以在400℃至1200℃,500℃至1100℃,或550℃至1000℃的温度范围中开采合成气体。当合成气体产生流体被引入到地层时,加热部分的地层的温度决定了从该地层中所开采出的合成气体的组分。可以通过一个或多个开采井眼来开采所产生的合成气体。
图2表示出了用于对含有烃类物质的地层进行处理的现场转变系统中的一部分的实施例的示意图。加热器100被放置在至少一部分地层中。加热器100向至少一部分地层提供热量,以便对地层中的烃类物质进行加热。能量可以通过供给管线102被供给到加热器100。供给管线102的结构可以根据加热地层所用的加热器类型的不同而不同。加热器的供给管线102可以为电加热器传送电,可以为燃烧器传送燃料,或者可以传送在地层中循环流动的热交换流体。
生产井104被用于从地层中开采地层流体。从生产井104中开采出的地层流体可以通过收集管道106被传送至处理设备108。地层流体也可从加热器100被开采出来。例如,流体可以从加热器100被开采出来,以便控制邻近加热器的地层中的压力。从加热器100开采的流体可以通过管系或管道被输送至收集管道106,或者是,开采出的流体可以通过管系或管道直接被输送至处理设备108。处理设备108可包括分离单元、反应单元、浓缩单元、从气体中去除硫的单元、燃料室、透平机、存储容器、和/或用于对开采出的地层流体进行加工处理的其它系统和单元。
用于对烃类物质进行处理的现场转变系统可包括一些隔离井110。这些隔离井110被用于在一处理区域周围形成隔离。该隔离阻止流体流入和/或流出处理区域。隔离井包括脱水井、真空井、捕获井、注射井、灌浆井、冻井、或它们的组合,但并不局限于这些。在某些实施例中,隔离井110是一些脱水井。脱水井可以去除液态水和/或阻止液态水进入要被加热的一部分地层或正在被加热的地层。在图2所示实施例中,表示出了脱水井只沿着加热器100的一侧延伸,但是,脱水井通常环绕在被用于或将被用于对地层进行加热的全部加热器100周围。
如图2所示,除了加热器100以外,在地层中还可以设置一个或多个生产井104。可以通过生产井104来开采地层流体。在某些实施例中,生产井104包括加热器。生产井中的加热器可以对生产井处及其附近的地层的一个或多个部分进行加热,并且允许地层流体的气相去除。对从生产井进行液体的高温泵送的需要被减少或消除。避免或限制高温液体泵送可以显著减小生产成本。在生产井或通过生产井提供热量,可以(1)当开采流体正在覆盖层附近的生产井中移动时,阻止这种开采流体的冷凝和/或回流,(2)增大向地层内的热量输入,和/或(3)在生产井处或其附近增大地层的可渗透性。在某些现场转变处理实施例中,从一生产井的每米生产井供给到地层的热量要小于从对地层进行加热的加热器的每米加热器供给到地层的热量。
某些实施例的加热器包括开关(例如,熔丝和/或恒温件),当加热器中到达特定条件时,开关就关闭加热器的电源或部分加热器。在某些实施例中,利用温度受限加热器来向地层中的烃类物质提供热量。
温度受限加热器可以有多种结构,和/或包括这样一些材料,这些材料在特定温度为加热器提供自动的温度限制特性。在某些实施例中,铁磁材料被用在温度受限加热器中。铁磁材料在该材料的居里温度或其附近可以自限制温度,以便当向该材料施加交流电时,在居里温度或其附近能提供减小的热量。在某些实施例中,铁磁材料与其他材料(例如高导材料、高强度材料、耐腐材料或它们的组合)相接合,以便提供各种电特性和/或机械特性。温度受限加热器的某些部分所具有的电阻比温度受限加热器的其它部分要低(这是由不同的几何形状和/或利用不同的铁磁和/或非铁磁材料造成的)。通过使温度受限加热器的各个部分具有不同的材料和/或尺寸大小,就可以使加热器的每个部分适应所期望的热量输出。在温度受限加热器中利用铁磁材料通常比在温度受限加热器中利用开关或其它控制装置要便宜且可靠些。
温度受限加热器可以比其它加热器更可靠些。温度受限加热器较不易因地层中的热点而破损或发生故障。在某些实施例中,温度受限加热器可以基本均匀地对地层进行加热。在某些实施例中,温度受限加热器通过沿加热器的整个长度以更高的平均热量输出运作,从而能够更有效地对地层进行加热。温度受限加热器沿着加热器的整个长度以较高的平均热量输出进行运作,这是因为如果沿着加热器任何点的温度超过或将超过加热器的最大工作温度,那么针对整个加热器而言,供向加热器的功率无需减小,而对于典型的恒定瓦特数的加热器却是必须减小供向加热器的功率。从达到加热器的居里温度的温度受限加热器的各部分的热量输出会自动减小,而无需对施加到加热器的交流电进行受控调节。由于温度受限加热器各部分的电学特性(例如电阻)发生改变,因此,热量输出会自动减小。这样,在较大部分热处理期间,温度受限加热器能提供更大的功率。
在一实施例中,具有温度受限加热器的系统当通过交流电或调制直流电对温度受限加热器激励时,在加热器的电阻部分的居里温度或该温度附近或之上,起初提供第一热量输出,然后提供减小的热量。温度受限加热器可由在井头(wellhead)提供的交流电或调制直流电来激励。井头可包括电源和其它用于向温度受限加热器供电的部件(例如调制部件、转换器和/或电容)。该温度受限加热器可以是用于对一部分地层进行加热的许多加热器中的一个。
在某些实施例中,温度受限加热器包括导体,当向该导体施加交流电或调制直流电时,该导体就作为一种集肤效应或邻近效应加热器进行工作。集肤效应限制电流渗透到该导体内的深度。对于铁磁材料而言,集肤效应由导体的导磁率决定。铁磁材料的相对导磁率通常在10至1000之间(例如,铁磁材料的相对导磁率通常至少为10,至少为50,100,500,1000或更大)。随着铁磁材料的温度升高到居里温度和/或随着所施加的电流的增大,铁磁材料的导磁率显著减小,从而集肤深度迅速增大(例如,集肤深度以导磁率的反平方根进行增大)。导磁率的减小,导致在居里温度或该温度附近或之上和/或随着所施加电流的增大,所述导体的交流电或调制直流电电阻减小。当温度受限加热器由基本上恒定电流的电源供电时,加热器的那些接近、达到或高于居里温度的部分可以减小散热。温度受限加热器的那些不位于居里温度或其附近的部分由集肤效应加热支配,从而允许加热器具有高散热,这是由于较高电阻负荷的缘故。
居里温度加热器已被应用在焊接设备、医疗应用加热器和烤炉加热元件中。这些应用中一部分应用在Lamome等人的美国专利US5579575,Henschen等人的US5065501,Yagnik等人的US5512732中被公开了。在Whitney等人的US4849611中描述了许多离散的间隔开的一些加热单元,这些加热单元包括反应部件、电阻加热部件和温度响应部件。
利用温度受限加热器对地层中的烃类物质进行加热的一个优点在于导体被选择成具有在一期望的工作温度范围内的居里温度。在期望工作温度范围内的操作允许大量的热被注入至地层内,同时把温度受限加热器和其它设备的温度保持在设计极限温度之下。设计极限温度是这样的一些温度,即,在这些温度,一些特性例如腐蚀性能、蠕变性能和/或变形性能会受到不利的影响。温度受限加热器的这些温度限制特性可阻止位于地层中的低热导率“热点”附近的加热器过热或烧毁。在某些实施例中,温度受限加热器能降低或控制热量输出和/或承受在25℃,37℃,100℃,250℃,500℃,700℃,800℃,900℃之上或高达1131℃的热量,这取决于加热器中所用的材料。
温度受限加热器允许向地层内输入的热量要比恒定瓦特数的加热器所输入的热量多,这是由于输入到温度受限加热器内的能量无需被限制以适应加热器附近的低热导区域的缘故。例如,在格林河(GreenRiver)油页岩中,在最低富的油页岩层和最高富的油页岩层的热导率具有至少系数为3的差别。当加热这种地层时,与利用传统加热器相比,利用温度受限加热器时有较多的热量被传递到地层,而传统加热器被温度限制在低热导层。沿着传统加热器整个长度的热量输出需要适应低热导层,以便使加热器在低热导层不会过热和烧毁。对于温度受限加热器而言,位于处于高温的低热导层附近的热量输出将减小,但温度受限加热器的不处于高温状态的剩余部分仍然会提供高的热量输出。由于用于对含烃类物质的地层进行加热的加热器的长度通常较长(例如,至少10米,100米,300米,至少500米,1千米或长达10千米),因而,温度受限加热器的大部分长度可在居里温度以下工作,而只有一小部分在受限加热器的居里温度或该温度附近。
温度受限加热器的使用使得能够高效地向地层传递热量。通过高效的热量传递,就可以减小把地层加热至期望温度所需要的时间。例如,当传统恒定瓦特数的加热器采用12米加热井间距时,在格林河油页岩中,热解通常需要9.5年至10年的加热。对于相同的加热器间距,温度受限加热器可具有较大的平均热量输出,同时把加热器设备温度保持在低于设备设计极限温度以下。由于温度受限加热器所提供的平均热量输出要比恒定瓦特数的加热器所提供的平均热量输出大,因此,采用温度受限加热器,就可使地层中的热解在更早的时间发生。例如,在格林河油页岩中,利用温度受限加热器,加热井间距12米,就可以在5年中产生热解。由于井间距不精确,或者钻井时使加热井相互靠得太近,温度受限加热器可抵消热点。在某些实施例中,对于间隔太远的加热井而言,温度受限加热器允许长时间地增大功率输出,或者是,对于相距太近的加热井而言,允许限制功率输出。温度受限加热器还在覆盖层和下底层附近的区域提供更大的功率,以便补偿这些区域中的温度损失。
有利地是,温度受限加热器可以被用于许多类型的地层中。例如,在沥青沙地层或渗透性相当大的含有重烃类物质的地层中,温度受限加热器可以被用于提供可控制的低温输出,以便减小流体的粘度,促使流体流动和/或在井筒或其附近或在地层中提高流体的径向流量。温度受限加热器可以被用于阻止地层的井筒区域附近因过热而形成过多的焦炭。
在某些实施例中,通过使用温度受限加热器,就可以消除或减小对昂贵的温度控制回路的需要。例如,通过使用温度受限加热器,就可以消除或减小对执行温度测量的需要和/或在加热器上利用固定热偶以便监测在热点处的潜在过热的需要。
在某些实施例中,温度受限加热器比标准的加热器制造起来更经济。典型的铁磁材料包括铁、碳钢或铁素体不锈钢。与绝缘导体(矿物绝缘缆)加热器中常用的镍基加热合金(例如,镍铬合金,商标为KanthalTM(Bulten-Kanthal AB,瑞典)和/或商标为LOHMTM(Driver-Harris公司,Harrison,NJ))相比,这些材料是便宜的。在温度受限加热器的一个实施例中,温度受限加热器以连续长度的方式被制造成绝缘导体加热器,以便降低成本和提高可靠性。
温度受限加热器中所用的一种铁磁合金或多种铁磁合金决定了该加热器的居里温度。在McGraw-Hill第二版的“美国物理学院手册”中在5-170页至5-176页列出了各种金属的居里温度。铁磁导体可包括一种或多种铁磁元素(铁、钴和镍)和/或这些元素的合金。在某些实施例中,铁磁导体包括铁-铬(Fe-Cr)合金,该合金含有钨(W)(例如,HCM12A和SAVE12(Sumitomo Metals公司,日本));和/或铁合金,该铁合金含有铬(例如,Fe-Cr合金,Fe-Cr-W合金,Fe-Cr-V(钒)合金,Fe-Cr-Nb(铌)合金)。在这三种主要的铁磁元素中,铁具有的居里温度约为770℃;钴具有的居里温度约为1131℃;镍具有的居里温度约为358℃。铁-钴合金具有的居里温度要高于铁的居里温度。例如,钴的重量比为2%的铁-钴合金的居里温度约为800℃;钴的重量比为12%的铁-钴合金的居里温度约为900℃。钴的重量比为20%的铁-钴合金的居里温度约为950℃。铁-镍合金的居里温度低于铁的居里温度。例如,镍的重量比为20%的铁-镍合金的居里温度约为720℃。镍的重量比为60%的铁-镍合金的居里温度约为560℃。
用作合金的某些非铁磁元素可使铁的居里温度升高。例如,钒的重量比为5.9%的铁-钒合金的居里温度约为815℃。其它的非铁磁元素(例如碳、铝、铜、硅和/或铬)可以与铁或其它铁磁材料构成合金,以便降低居里温度。用于升高居里温度的非铁磁材料可以与用于降低居里温度的非铁磁材料结合,并且与铁或其它铁磁材料构成合金,以便制造出这样一种材料,即,这种材料具有期望的居里温度和其它期望的物理和/或化学特性。在某些实施例中,居里温度材料是铁素体,例如NiFe2O4。在其它一些实施例中,居里温度材料是二元化合物,例如FeNi3或Fe3Al。
磁性通常随着接近居里温度而衰减。由C.James Erickson所著的“工业电加热手册”(IEEE出版社,1995)表示出了对于1%碳钢(碳的重量比为1%的钢)的典型曲线。在650℃以上的温度,磁渗透性开始损失,并且当温度超过730℃时趋于结束。这样,自限制温度可以稍微低于铁磁导体的实际居里温度。在1%碳钢中,在室温时,电流流动的集肤深度为0.132cm(厘米),并且在720℃时该集肤深度增大到0.445cm。从720℃至730℃,集肤深度剧增至2.5cm以上。因此,利用1%碳钢的温度受限加热器实施例把温度自限制在650℃至730℃之间。
集肤深度通常限定渗入传导材料内的交流电或调制直流电的有效深度。通常,电流密度与沿着导体半径从外表面至中心的距离呈指数关系减小。这样的一个深度,即在该深度,电流密度约为表面电流密度的1/e,则这个深度就被称作集肤深度。对于其直径比渗透深度大得多的实心圆柱杆而言,或对壁厚超过渗透深度的空心圆筒而言,集肤深度δ为(1)δ=1981.5*(ρ/(μ*f))1/2;其中,δ=集肤深度,单位为英寸;ρ=在操作温度的电阻系数(欧姆-厘米);μ=相对导磁率;f=频率(Hz)。
方程1可从C.James Erickson(IEEE出版社,1995)所著的“工业电加热手册”中获得。对于大多数金属而言,电阻系数(ρ)随着温度而增大。相对导磁率通常随着温度和电流的变化而变化。可以利用其它的一些方程来估算关于温度和/或电流的集肤深度和/或导磁率的变化。μ对电流的依赖产生于μ对磁场的依赖。
在温度受限加热器中所用的材料可以被选择成能提供一期望的调节比。对温度受限加热器,可以选择的调节比为至少1.1∶1,2∶1,3∶1,4∶1,5∶1,10∶1,30∶1,或50∶1。也可以利用更大的调节比。所选择的调节比取决于许多因素,这些因素包括但不限于温度受限加热器所处的地层类型和/或井筒中所用的材料的温度限制。在一些实施例中,通过把附加的铜或另外的良好的电导体耦合到铁磁材料(例如,增加铜以便在居里温度之上降低电阻)上,来增大调节比。
温度受限加热器在该加热器的居里温度以下可提供最小热输出(功率输出)。在某些实施例中,最小热输出至少为400W/m(瓦特每米),600W/m,700W/m,800W/m,或高达2000W/m。当温度受限加热器一部分的温度接近或超过居里温度时,通过温度受限加热器的这部分来减小热量输出。所减小的热量可以基本上小于居里温度以下的热输出。在某些实施例中,减小的热量至多为400W/m,200W/m,100W/m,或可接近于0W/m。
在某些实施例中,在特定的操作温度范围内,温度受限加热器可以基本上独立于该加热器上的热负荷进行操作。“热负荷”是指热量从一加热系统传递至其周围的速度。应当知道,热负荷可以随着周围温度和/或周围的热导率的变化而变化。在一实施例中,温度受限加热器在温度受限加热器的居里温度或在该温度之上进行操作,从而,在加热器一部分附近,对于热负荷减小1W/m,加热器的操作温度升高至多1.5℃,1℃,或0.5℃。
在居里温度之上,由于居里效应,交流电和调制直流电电阻和/或温度受限加热器的热输出可以骤减。在一些实施例中,在居里温度以上或附近,电阻或热输出的值至多是在居里温度以下某特定点的电阻或热输出值的一半。在一些实施例中,在居里温度以上或附近,热输出至多是在居里温度以下的一特定点(例如,居里温度以下30℃,居里温度以下40℃,居里温度以下50℃,或居里温度以下100℃)的热输出的40%,30%,20%,10%或更小(小至1%)。在一些实施例中,在居里温度以上或附近,电阻减小至在居里温度以下的一特定点(例如,居里温度以下30℃,居里温度以下40℃,居里温度以下50℃,或居里温度以下100℃)的电阻的80%,70%,60%,50%或更小(小至1%)。
在某些实施例中,交流电频率被调节,以改变铁磁材料的集肤深度。例如,在室温时,1%碳钢的集肤深度在60Hz时为0.132cm;在180Hz时,集肤深度为0.0762cm;在440Hz时,集肤深度为0.046cm。由于加热器直径通常大于两倍的集肤深度,因此,利用较高频率(从而可利用较小直径的加热器)就可以减小加热器成本。对于固定的几何形状,频率越高,就会导致调节比越高。通过把较低频率的调节比乘以较高频率除以较低频率的平方根,就可以计算出在较高频率的调节比。在一些实施例中,采用100Hz至1000Hz之间,140Hz至200Hz之间,或400Hz至600Hz之间的频率(例如,180Hz,540Hz,或720Hz)。在一些实施例中,可以采用高频率。频率可以大于1000Hz。
为了在达到温度受限加热器的居里温度之前保持基本恒定的集肤深度,当加热器是冷的时候,加热器可以以较低的频率操作,当加热器是热的时候,加热器可以以较高频率操作。然而,行频(linefrequency)加热通常是有利的,因为这样就可减少对昂贵部件例如电源、转换器、或用于改变频率的电流调制器的需求。行频是一常用电源的频率。行频通常是60Hz,也可以是50Hz或其它频率,这取决于电流供给的来源。利用市场上可获得的设备例如固态可变频率的电源,来产生较高频率。把三相电源转变成具有三倍频率的单相电源的转换器可以在市场上获得。例如,60Hz高压三相电源可以被转换成180Hz低压单相电源。与固态可变频率电源相比,这种转换器更便宜一些,并且具有更大的能量效率。在一些实施例中,利用把三相转换成单相电源的转换器来增大供向温度受限加热器的电源频率。
在一些实施例中,调制直流电(例如,突变直流电,波形调制直流电,或循环直流电)可以被用于向温度受限加热器提供电力。直流电调制器或直流电突变器可以与直流电源相耦合,以便提供调制直流电的输出。在一些实施例中,直流电电源可包括用于调制直流电的装置。直流电调制器的一个例子是直流电-直流电转换系统。直流电-直流电转换系统在本领域中是公知的。直流电通常被调制或突变成一期望的波形。用于直流电调制的波形包括但不限于正方形波形、正弦曲线波形、变形的正弦曲线波形、变形的正方形波形、三角波形和其他的规则或不规则波形。
调制直流电波形通常限定该调制直流电的频率。因此,调制直流电波形可以被选择成能提供一期望的调制直流电频率。调制直流电的调制波形或调制速度(例如突变速度)可以被改变,以便改变调制直流电的频率。直流电可以被调制在高于通常可获得的交流电频率的频率。例如,可以提供至少为1000Hz的调制直流电。通过把供给电流的频率增大至更高数值,就能有利地增大温度受限加热器的调节比。
在一些实施例中,调制直流电波形被调节或改变,以便改变调制直流电频率。在使用温度受限加热器和高电流或电压期间的任何时候,直流电调制器都能够调节或改变调制直流电波形。因此,提供到温度受限加热器的调制直流电不局限于单相频率或甚至一小组频率值。利用直流电调制器进行的波形选择允许一宽范围的调制直流电频率且允许对调制直流电频率进行离散控制。因此,调制直流电频率更易于被设定在一不同的数值,而交流电频率通常被局限于行频增大的数值。调制直流电频率的离散控制允许对温度受限加热器的调节比进行更多的选择性控制。由于能够选择性地控制温度受限加热器的调节比,从而允许在设计和制造温度受限加热器时可使用的材料范围更宽。
在一些实施例中,调制直流电频率或交流电频率被调节,以便在使用期间补偿温度受限加热器的性能(例如,诸如温度或压力的地下条件)的变化。提供给温度受限加热器的调制直流电频率或交流电频率根据估算的井下条件或状况的变化而变化。例如,随着井筒中的温度受限加热器的温度的升高,可以有利地增大提供给该加热器的电流频率,从而增大加热器的调节比。在一实施例中,对井筒中的温度受限加热器的井温度进行估算。
在一些实施例中,调制直流电频率,或交流电频率被改变,以便调节温度受限加热器的调节比。调节比可以被调节,以便补偿沿着温度受限加热器长度产生的一些热点。例如,由于温度受限加热器在某些地方变得太热,从而使调节比增大。在一些实施例中,调制直流电频率,或交流电频率被改变,以便对调节比进行调节,而无需估算地下条件。
温度受限加热器可以产生电感负荷。该电感负荷是由于所施加的电流被铁磁材料利用,除了产生电阻热输出以外,还产生磁场的缘故造成的。随着温度受限加热器中的井下温度的改变,加热器的电感负荷发生改变,这是由于加热器中的铁磁材料的磁性随着温度的变化而变化的缘故。温度受限加热器的电感负荷可在供给到加热器的电流和电压之间造成相位偏移。
电流波形的时滞(例如,由于电感负荷的缘故,电流相对于电源具有相位偏移)和/或电流波形的变形(例如,由于非线性负荷的缘故,由引入的谐波造成的电流波形的变形)可以造成施加至温度受限加热器上的实际功率的减小。这样,由于相位偏移或波形变形,从而需要用更多的电流来施加选定量的功率。实际施加的功率和在相同电流处于相位和未变形情况下应被传递的视在功率(apparent power)的比值为功率因子。该功率因子总是小于或等于1。当没有相位偏移或没有波形变形时,功率因子为1。
因发生相位偏移而施加至加热器上的实际功率由方程2表示(2)P=I×V×cos(θ);其中,P是施加到温度受限加热器上的实际功率;I是所施加的电流;V是所施加的电压;θ是电压和电流之间的相位角差。如果没有波形变形,则cos(θ)等于功率因子。频率越高(例如,调制直流电频率至少1000Hz,1500Hz,或2000Hz),相位偏移和/或变形的问题就越显著。
在一些实施例中,电压和/或电流被调节,以便改变铁磁材料的集肤深度。通过增大电压和/或减小电流,就可以减小铁磁材料的集肤深度。集肤深度越小,则允许温度受限加热器具有越小的直径,从而也就减小了设备成本。在一些实施例中,所施加的电流至少为1安培,10安培,70安培,100安培,200安培,500安培,或高达2000安培。在一些实施例中,施加电压在200伏以上,480伏以上,650伏以上,1000伏以上,1500伏以上,或高达10000伏的交流电。
在一实施例中,温度受限加热器包括位于外部导体内的内部导体。内部导体和外部导体沿径向被设置在一中轴周围。内部导体和外部导体可以被一绝缘层分隔开。在一些实施例中,内部导体和外部导体在温度受限加热器的底部相耦合。电流可以通过内部导体流入温度受限加热器,然后通过外部导体返回。一个导体或两个导体都包括铁磁材料。
绝缘层可包括具有高热导率的电绝缘陶瓷,例如氧化镁、氧化铝、二氧化硅、氧化铍、氮化硼、氮化硅、或它们的组合。绝缘层可以是压实的粉末(例如,压实的陶瓷粉末)。压实可以改善热导率,并且可以提供更好的绝缘电阻。对于较低温度的应用场合,可以采用聚合物绝缘层,例如,该聚合物绝缘层由含氟聚合物、聚酰亚胺、聚酰胺、和/或聚乙烯制成。在一些实施例中,聚合物绝缘层由全氟烷氧基(PFA)或聚醚酮(注册商标为PEEKTM(Victrex有限公司,英国))制成。绝缘层可以被选择成基本上红外透明的,以便有助于热量从内部导体向外部导体的传递。在一实施例中,绝缘层由透明的石英沙构成。绝缘层可以是空气或非反应气体,例如氦、氮、或六氟化硫。如果绝缘层是空气或非反应气体,那么,可以设有一些绝缘间隔件,以便阻止内部导体和外部导体之间的电接触。例如,这些绝缘间隔件可由高纯度的氧化铝或其它热导的电绝缘的材料例如氮化硅制成。这些绝缘间隔件可以由含纤维的陶瓷材料制成,这些含纤维的材料例如为注册商标为NextelTM312(3M公司,圣保罗,明尼苏达州)的材料、云母带、或玻璃纤维。陶瓷材料可由氧化铝、水合硅酸铝、硼硅酸铝、氮化硅、氮化硼、或其它材料构成。
在一些实施例中,外部导体被选择成能够抗腐和/或抗蠕变。在一个实施例中,在外部导体中可以采用奥斯丁帝克(austentitic)(非铁磁)不锈钢,例如,304H,347H,347HH,316H,310H,347HP,NF709(日本钢铁公司)不锈钢,或它们的组合。外部导体也可包括复合导体。例如,诸如800H或347H不锈钢的抗腐合金被包覆在铁磁碳钢管上,以便抗腐。如果无需高温度强度,那么,外部导体可以由具有良好抗腐性能的铁磁金属例如其中一种铁素体不锈钢制成。在一个实施例中,由重量含量为82.3%的铁和重量含量为17.7%的铬组成的铁素体合金(居里温度为678℃)提供所期望的抗腐性能。
《金属手册》第8卷第291页(美国材料协会(ASM))中有着铁-铬合金的居里温度与该合金中铬含量之间相互关系的图表。在一些温度受限加热器实施例中,分开的(由347H不锈钢制成的)支撑杆或管被连接到由铁-铬合金制成的温度受限加热器,以便提供强度和/或抗蠕变力。支撑材料和/或铁磁材料可以被选择,以便至少在20.7MPa和650℃提供100000小时的蠕变破裂强度。在一些实施例中,100000小时蠕变破裂强度为至少13.8MPa,650℃,或至少6.9MPa,650℃。例如,在650℃或在该温度以上,347H钢具有有利的蠕变破裂强度。在一些实施例中,100000小时蠕变破裂强度在6.9MPa到41.3MPa范围,或者,对于较长的加热器和/或较高泥土或流体压力而言,蠕变破裂强度就更大。
在具有内部铁磁导体和外部铁磁导体的温度受限加热器实施例中,集肤效应电流路径发生在内部导体的外侧和外部导体的内侧。因此,外部导体的外侧可以被包覆有抗腐合金,例如不锈钢,而且不会影响外部导体内侧的集肤电流路径。
厚度至少为在居里温度的集肤深度的铁磁导体允许铁磁材料的交流电电阻随着在居里温度附近集肤深度的骤减而显著减小。在一些实施例中,当铁磁导体未被包覆有高传导材料例如铜时,导体的厚度可以是居里温度附近的集肤深度的1.5倍,可以是在居里温度附近的集肤深度的3倍,甚至是在居里温度附近的集肤深度的10倍或更多倍。如果铁磁导体被包覆有铜,那么,铁磁导体的厚度可以与居里温度附近的集肤深度基本相同。在一些实施例中,被包覆有铜的铁磁导体所具有的厚度至少为在居里温度附近的集肤深度的四分之三。
在一些实施例中,温度受限加热器包括复合导体,该复合导体具有铁磁管和非铁磁的高电导芯。非铁磁的高电导芯减小了导体所需的直径。例如,导体可以是合成的1.19cm直径的导体,它的芯为0.575cm直径的铜,该铜被包覆有环绕着所述芯的0.298cm厚的铁素体不锈钢或碳钢。复合导体允许温度受限加热器的电阻在居里温度附近减小得更迅速。随着在居里温度附近的集肤深度增大至包括铜芯,电阻就非常迅速地减小。
复合导体可增大温度受限加热器的传导率和/或允许加热器在较低电压进行操作。在一实施例中,在复合导体的铁磁导体的居里温度附近区域以下的温度,复合导体显示出相对平的电阻与温度关系曲线。在一些实施例中,在100℃和750℃之间,或在300℃和600℃之间,温度受限加热器显示出相对平的电阻与温度关系曲线。例如通过调节温度受限加热器中的材料和/或材料的构成,在其它温度范围,也可以显示出相对平的电阻与温度关系曲线。在一些实施例中,复合导体中的各种材料下相对厚度被选择,以便为温度受限加热器形成所期望的电阻与温度关系曲线。
图3-31表示出了温度受限加热器的各种实施例。在这些附图中的任意附图中所描述的一实施例中的温度受限加热器的一个或多个特征可以与这些附图中所描述的其它一些实施例中的一个或多个特征进行结合。在这里所描述的一些实施例中,温度受限加热器的尺寸大小被做成能在60Hz的交流电频率进行操作。应当知道,可以对这里所描述的温度受限加热器的尺寸大小进行调节,以便温度受限加热器在其它交流电频率以类似的方式进行操作,或者利用调制直流电进行操作。
图3表示出了根据一实施例的温度受限加热器的剖面图,该温度受限加热器具有外部导体,该外部导体具有铁磁部分和非铁磁部分。图4和图5表示出了图3所示实施例的横向剖面图。在一个实施例中,铁磁部分140被用于向地层中的烃类物质层提供热量。非铁磁部分142被用在地层的覆盖层中。非铁磁部分142向覆盖层提供很少热量或不提供热量,从而阻止覆盖层中的热量损失,并且提高加热器的效率。铁磁部分140包括铁磁材料例如409不锈钢或410不锈钢。铁磁部分140具有0.3厘米的厚度。非铁磁部分142是铜,其厚度为0.3厘米。内部导体144是铜。内部导体144的直径为0.9厘米。电绝缘件146是氮化硅、氮化硼、氧化镁粉末、或其它适合的绝缘材料。电绝缘件146的厚度为0.1厘米至0.3厘米。
图6是根据一实施例的温度受限加热器的剖面图,该加热器具有一外部导体,该外部导体具有放置在护套内的铁磁部分和非铁磁部分。图7、8、9是图6所示实施例的横向剖面图。铁磁部分140是410不锈钢,其厚度为0.6厘米。非铁磁部分142是铜,其厚度为0.6厘米。内部导体144是铜,其直径为0.9厘米。外部导体148包括铁磁材料。外部导体148在加热器的覆盖层部分中提供一些热量。通过在覆盖层中提供一些热量,来阻止覆盖层中流体的冷凝或逆流。外部导体148是409、410、或446不锈钢,其外部直径为3.0厘米,厚度为0.6厘米。电绝缘件146是氧化镁粉末,其厚度为0.3厘米。在一些实施例中,电绝缘件146是氮化硅、氮化硼或六方晶系型氮化硼。传导部分150可以把内部导体144和铁磁部分140和/或外部导体148耦合起来。
图10是根据一实施例的温度受限加热器的剖面图,该加热器具有铁磁外部导体。该加热器被放置在防腐护套中。传导层被放置在外部导体和所述护套之间。图11和12是图10所示实施例的横向剖面图。外部导体148是3/4”表(Schedule)80 446不锈钢管。在一个实施例中,传导层152被放置在外部导体148和护套154之间。传导层152是铜层。外部导体148被包覆有传导层152。在一些实施例中,传导层152包括一个或多个部分(例如,传导层152包括一个或多个铜管部分)。护套154是1-1/4”表80 347不锈钢管或1-1/2”表160 347H不锈钢管。在一个实施例中,内部导体144是4/0MGT-1000炉缆,该炉缆具有绞合的包有镍的铜线,具有云母带和玻璃纤维绝缘层。4/0MGT-1000炉缆是UL型5107(可从联合线缆公司(Phoenixville,宾夕法尼亚州)获得)。传导部分150把内部导体144和护套154耦合起来。在一实施例中,传导部分150是铜。
图13是根据一实施例的温度受限加热器的剖面图,该加热器具有外部导体。外部导体包括铁磁部分和非铁磁部分。加热器被放置在防腐护套中。一传导层被放置在外部导体和护套之间。图14和15表示出了图13所示实施例的横向剖面图。铁磁部分140是409、410或446不锈钢,其厚度为0.9厘米。非铁磁部分142是铜,其厚度为0.9厘米。铁磁部分140和非铁磁部分142被放置在护套154中。护套154是304不锈钢,其厚度为0.1厘米。传导层152是铜层。电绝缘件146是氮化硅、氮化硼、或氧化镁,其厚度为0.1厘米至0.3厘米。内部导体144是铜,其直径为1.0厘米。
在一实施例中,铁磁部分140是446不锈钢,其厚度为0.9厘米。护套154是410不锈钢,其厚度为0.6厘米。410不锈钢比446不锈钢具有更高的居里温度。这种温度受限加热器可“包含”电流,从而使得电流不会轻易地从加热器流向周围地层和/或流向周围的水(例如盐水、地下水、或地层水)。在这个实施例中,在达到铁磁部分的居里温度之前,大部分电流流经铁磁部分140。在达到铁磁部分140的居里温度之后,大部分电流流经传导层152。护套154(410不锈钢)的铁磁特性阻止电流流到护套外部,从而“包含”了电流。护套154还可具有这样的厚度,即该厚度能向温度受限加热器提供强度。
图16A和图16B是根据一实施例的温度受限加热器的剖面图,该加热器具有铁磁内部导体。内部导体144是1”表XXS 446不锈钢管。在一些实施例中,内部导体144包括409不锈钢,410不锈钢,不胀钢36,合金42-6,合金52,或其它铁磁材料。内部导体144具有2.5厘米的直径。电绝缘件146是氮化硅、氮化硼、氧化镁、聚合物、纳克斯泰尔(Nextel)陶瓷纤维、云母、或玻璃纤维。外部导体148是铜或其它任何非铁磁材料例如铝。外部导体148被耦合至护套154上。护套154是304H,316H或347H不锈钢。在这个实施例中,大部分热量是在内部导体144中产生的。
图17A和图17B是根据一实施例的温度受限加热器的剖面图,该加热器具有铁磁内部导体和非铁磁芯。内部导体144包括446不锈钢,409不锈钢,410不锈钢或其它铁磁材料。芯168被紧紧地结合在内部导体144的内侧。芯168是铜杆或其它非铁磁材料。在拉拔操作之前,芯168以紧密配合方式被插在内部导体144内部。在一些实施例中,芯168和内部导体144是被混合挤压结合的。外部导体148是347H不锈钢。为了压实电绝缘件146而进行的拉拔或轧制操作可确保内部导体144和芯168之间良好的电接触。在这个实施例中,在达到居里温度之前,热量主要是在内部导体144中产生的。然后,随着交流电渗透到芯168,电阻就迅速减小。
图18A和图18B是根据一实施例的温度受限加热器的剖面图,该加热器具有铁磁外部导体。内部导体144是包覆有镍的铜。电绝缘件146是氮化硅、氮化硼、或氧化镁。外部导体148是1”表XXS碳钢管。在这个实施例中,热量主要在外部导体148中产生,从而导致横过电绝缘件146的温差小。
图19A和图19B是根据一实施例的温度受限加热器的剖面图,该加热器具有一铁磁外部导体,该铁磁外部导体被包覆有防腐合金。内部导体144是铜。外部导体148是1”表XXS 446不锈钢管。外部导体148与护套154相接合。护套154由防腐材料(例如347H不锈钢)制成。护套154用于提供保护,以免受井筒中的腐蚀性流体(例如,硫化和渗碳气体)的影响。热量主要在外部导体148中产生,从而导致横过电绝缘件146的温差小。
图20A和图20B是根据一实施例的温度受限加热器的剖面图,该加热器具有铁磁外部导体。该外部导体被包覆有传导层和防腐合金。内部导体144是铜。电绝缘件146是氮化硅、氮化硼、或氧化镁。外部导体148是1”表80 446不锈钢管。外部导体148与护套154相接合。护套154由防腐材料制成。在一实施例中,传导层152被放置在外部导体148和护套154之间。传导层152是铜层。热量主要在外部导体148中产生,从而导致横过电绝缘件146的温差小。传导层152允许外部导体148的电阻当外部导体达到居里温度时而迅速减小。护套154用于提供保护,以免受井筒中腐蚀性流体的侵蚀。
在一些实施例中,导体(例如内部导体、外部导体、或铁磁导体)是具有两种或更多种不同材料的复合导体。在一些实施例中,该复合导体包括两种或更多种铁磁材料。在一些实施例中,复合铁磁导体包括两种或更多种径向布置的材料。在一些实施例中,复合导体包括铁磁导体和非铁磁导体。在一些实施例中,复合导体包括放置在非铁磁芯上的铁磁导体。可以利用两种或更多种材料来获得在居里温度以下的温度区域中相对平的电阻率与温度之间的关系曲线图和/或在居里温度或该温度附近电阻率迅速减小(高调节比)。在某些情况中,利用两种或更多种材料来为温度受限加热器提供多个居里温度。
复合电导体可以被用在这里所描述的任何温度受限加热器实施例中。例如,复合导体可以被用作导体位于管道中的加热器或绝缘导体加热器中的导体。在一些实施例中,复合导体可以被连接至支撑元件例如支撑导体上。支撑元件可以被用于为复合导体提供支撑,从而在居里温度或其附近,强度无需依赖复合导体。对于长度至少100米的加热器而言,这种支撑元件是很有用的。支撑元件可以是非铁磁元件,它具有良好的抗高温蠕变强度。例如,用于支撑元件的材料包括注册商标为Haynes的625合金和注册商标为Haynes的HR120合金(Haynes国际,Kokomo,IN),NF709,注册商标为Incoloy的800H合金和347H合金(Allegheny Ludlum公司,匹兹堡,PA),但并不局限于这些。在一些实施例中,复合导体中的材料被直接相互接合(例如,用黄铜焊接,以冶金方式粘结,或被模锻)和/或与支撑元件相接合。通过利用支撑元件,就可以把铁磁元件分离开,无需它为温度受限加热器提供支撑,尤其是在居里温度或其附近。因此,在设计温度受限加热器时,在选择铁磁材料方面就更灵活。
图21是根据一实施例的具有支撑元件的复合导体的剖面图。芯168被铁磁导体166和支撑元件172环绕着。在一些实施例中,芯168、铁磁导体166和支撑元件172被直接接合(例如,用黄铜焊接在一起或以治金方式结合在一起)。在一个实施例中,芯168是铜,铁磁导体166是446不锈钢,支撑元件172是347H合金。在某些实施例中,支撑元件172是表80管。支撑元件172环绕着具有铁磁导体166和芯168的复合导体。铁磁导体166和芯168被接合起来,以便通过例如混合挤压过程来形成复合导体。例如,复合导体是环绕着直径为0.95厘米的铜芯的外部直径为1.9厘米的446不锈钢铁磁导体。这种位于1.9厘米表80支撑元件内侧的复合导体产生的调节比为1.7。
在某些实施例中,相对于铁磁导体166的恒定外部直径,来调节芯168的直径,以便调节温度受限加热器的调节比。例如,芯168的直径可以被增大至1.14厘米,同时保持铁磁导体166的外部直径为1.9厘米,以便使加热器的调节比增大至2.2。
在一些实施例中,复合导体中的导体(例如,芯168和铁磁导体166)被支撑元件172分离开。图22是根据一实施例的复合导体的剖面图,该复合导体具有支撑元件172,该支撑元件172把所述导体分离开。在一个实施例中,芯168是铜,其直径为0.95厘米;支撑元件172是347H合金,其外部直径为1.9厘米;铁磁导体166是446不锈钢,其外部直径为2.7厘米。这种导体产生至少为3的调节比。与图21、23、24中所示的其它支撑元件相比,图22中所表示的支撑元件具有更高的抗蠕变强度。
在某些实施例中,支撑元件172被设置在复合导体的内侧。图23表示出了根据一实施例的环绕着支撑元件172的复合导体的剖面图。支撑元件172是由347H合金制成。内部导体144是铜。铁磁导体166是446不锈钢。在一个实施例中,支撑元件172是直径为1.25厘米的347H合金,内部导体144是外部直径为1.9厘米的铜,铁磁导体166是外部直径为2.7厘米的446不锈钢。这种导体产生大于3的调节比,该调节比要高于图21、22、24所描述实施例的具有相同外部直径的导体的调节比。
在某些实施例中,内部导体144是铜,该内部导体的厚度被减小,以便减小调节比。例如,支撑元件172的直径被增大至1.6厘米,同时保持内部导体144的外部直径为1.9厘米,以便减小管道的厚度。内部导体144的这种厚度减小造成相对于较厚的内部导体实施例其调节比减小。然而,调节比保持为至少为3。
在一个实施例中,支撑元件172是管道(或管),该管道位于内部导体144和铁磁导体166内。图24表示出了根据一实施例的环绕着支撑元件172的复合导体的剖面图。在一个实施例中,支撑元件172是347H合金,其中央有一直径为0.63厘米的孔。在某些实施例中,支撑元件172是预制管道。在某些实施例中,在复合导体成形期间,通过把一可溶解材料(例如,能被硝酸溶解的铜)设置在支撑元件内侧来形成支撑元件172。在导体被组装之后,该可溶解材料被溶解,从而形成所述的孔。在一实施例中,支撑元件172是347H合金,其内部直径为0.63厘米,外部直径为1.6厘米,内部导体144是铜,其外部直径为1.8厘米,铁磁导体166是446不锈钢,其外部直径为2.7厘米。
在某些实施例中,复合电导体被用作导体位于管道中的加热器中的导体。例如,复合电导体可以被用作图25中的导体174。
图25是根据一实施例的导体位于管道中这种类型的加热器的剖面图。导体174被设置在管道176中。导体174是由导电材料制成的杆或管道。在导体174两端具有低电阻部分178,以便在这些部分中产生较少的热量。通过使这些部分具有较大的导体174的横断面积,或者这些部分由具有低电阻的材料制成,从而形成所述的低电阻部分178。在某些实施例中,低电阻部分178包括低电阻导体,该低电阻导体与导体174相耦合。
管道176由导电材料制成。管道176被设置在烃类物质层182的井孔180中。井孔180具有能够容纳管道176的直径。
可以利用定中件184来把导体174定位在管道176的中心。定中件184把导体174与管道176电绝缘开。定中件184阻止移动,并且把导体174正确地定位在管道176中。定中件184由陶瓷材料或陶瓷与金属材料的组合制成。定中件184可阻止管道176中的导体174变形。定中件184是接触的(touching)或沿着导体174以约0.1米至3米或更长的间隔被间隔开。
如图25所示,导体174的第二低电阻部分178可以把导体174连接至井头112。电流可以从电缆186通过导体174的低电阻部分178被施加至导体174上。电流从导体174流经滑动接头188流到管道176。管道176可以与覆盖层套管190以及与井头112电绝缘,以便使电流返回到电缆186。热量可以在导体174和管道176中产生。所产生的热量可以在管道176和井孔180中辐射,以便对烃类物质层182的至少一部分进行加热。
覆盖层套管190可以被设置在覆盖层192中。在一些实施例中,覆盖层套管190被阻止覆盖层192变热的一些材料(例如,增强材料和/或水泥)环绕着。导体174的低电阻部分178可以被放置在覆盖层套管190中。导体174的低电阻部分178由例如碳钢制成。可以利用定中件184来把导体174的低电阻部分178定位在覆盖层套管190的中心。定中件184沿着导体174的低电阻部分178以约6米至12米或例如约9米的间隔被间隔开。在加热器实施例中,通过一处或多处焊接,把导体174的低电阻部分178连接到导体174。在其他加热器实施例中,低电阻部分被以螺纹拧入、旋拧入和焊接、或以其它方式连接到导体。低电阻部分178在覆盖层套管190中产生很少的热量和/或不产生热量。密封圈(packing)194可以被放置在覆盖层套管190和井孔180之间。密封圈194可以被用作在覆盖层192和烃类物质层182交界处的封闭盖,从而允许把材料填充在覆盖层套管190和井孔180之间的环状空间中。在一些实施例中,密封圈194阻止流体从井孔180流至表层196。
在某些实施例中,复合电导体可以被用作绝缘导体加热器中的导体。图26A和图26B表示出了绝缘导体加热器的一实施例。绝缘导体200包括芯168和内部导体144。芯168和内部导体144是复合电导体。芯168和内部导体144被设置在绝缘件146内。芯168、内部导体144以及绝缘件146被设置在外部导体148的内部。绝缘件146是氮化硅、氮化硼、氧化镁、或别的适合的电绝缘材料。外部导体148是铜、钢、或其它任何的电导体。
在某些实施例中,如图27A和图27B所示,护套154被设置在外部导体148的外面。在某些实施例中,护套154是304不透钢,外部导体148是铜。护套154向绝缘导体加热器提供抗腐蚀性。在某些实施例中,护套154和外部导体148是预制条带,这些预制条带被牵拉过绝缘件146,以便形成绝缘导体200。
在某些实施例中,绝缘导体200被设置在管道中,该管道为绝缘导体提供保护(例如,腐蚀和侵蚀保护)。在图28中,绝缘导体200以间隙202被设置在管道176的内部,从而使绝缘导体与管道相分离。
对于温度受限加热器而言,其中,铁磁导体在居里温度之下提供大部分电阻热输出,大部分电流流过材料(铁磁材料),该材料具有磁场(H)与磁感应(B)之间的高的非线性函数。这些非线性函数可以造成强的感应效应和变形,从而在居里温度之下的温度状态下,导致温度受限加热器中的功率因子的损耗。这些效应可以致使温度受限加热器难以控制,并且可以导致另外的电流通过表层和/或覆盖层的供电导体。昂贵的和/或难以执行的控制系统例如可变电容器或调制电源可以被用于试图补偿这些效应,并且试图控制温度受限加热器,其中,大部分电阻热输出由通过铁磁材料的电流来提供。
在某些温度受限加热器的实施例中,铁磁导体把大部分电流限制于流到外部电导体(例如,外套、护套、支撑元件、抗腐蚀元件、或其它电阻元件),该外部电导体在铁磁导体的居里温度附近或之下的温度状态下,被耦合到铁磁导体。在一些实施例中,铁磁导体把大部分电流限制于流到另一电导体(例如,内部导体或中间导体(层之间的电导体))。铁磁导体位于温度受限加热器的横断面中,以致于在铁磁导体的居里温度或之下的铁磁导体的磁性把大部分电流限制于流到外部电导体。由于铁磁导体的集肤效应,大部分电流被限制于流到外部电导体。因此,在加热器的最大操作范围中,大部分电流流经具有基本上线性的电阻特性的材料(例如,外部电导体)。在居里温度之上,铁磁导体的铁磁特性消失,从而显著地减少或消除感应效应和/或变形。铁磁导体和外部电导体位于温度受限加热器的横断面中,因而,铁磁材料的集肤效应对在铁磁导体的居里温度之下的温度状态下的铁磁导体和外部电导体中的电流渗透深度进行限制。因此,在高达铁磁导体的居里温度或接近于该温度的温度状态下,外部电导体提供温度受限加热器的大部分电阻热输出。
由于在居里温度之下,大部分电流通过外部电导体流动,因而,温度受限加热器具有电阻与温度的关系曲线,该曲线至少部分地反应出了在外部电导体中所述材料的电阻与温度的关系。从而,如果外部电导体中的材料具有线性的电阻与温度关系曲线,那么,在铁磁导体的居里温度以下,温度受限加热器的电阻与温度关系曲线基本上是线性的。在某些实施例中,对外部电导体中的材料进行选择,以便在铁磁导体的居里温度以下,温度受限加热器具有期望的电阻与温度关系曲线。
当温度受限加热器的温度达到或超过铁磁导体的居里温度时,由于铁磁导体的铁磁特性降低,从而允许电流流经温度受限加热器的导电断面的较大部分。因此,温度受限加热器的电阻被减小,并且在铁磁导体的居里温度或该温度附近,温度受限加热器自动提供减小了的热输出。在某些实施例中,高导电元件(例如,内部导体,芯,或其它诸如铜或铝的导电元件)被耦合到铁磁导体和外部电导体上,以便在铁磁导体的居里温度或该温度之上,减小温度受限加热器的电阻。
与利用铁磁导体的温度受限加热器中的铁磁导体相比,在居里温度以下的温度状态下,把大部分电流限制成流向外部电导体的铁磁导体具有相对小的横断面,以便提供大部分的电阻热输出,高达居里温度或接近居里温度。采用外部导体以便在居里温度以下提供大部分电阻热输出的温度受限加热器在居里温度以下的温度具有低磁感应,这是由于与在居里温度受限加热以下大部分电阻热输出由铁磁材料提供的温度受限加热器相比,流经铁磁导体的电流较少。在半径(r)处的磁场(H)与流经铁磁导体和芯的电流除以铁磁导体的半径(r)所得值成正比。
(3)H∝I/r.
由于对于利用外部导体以便在居里温度以下提供大部分电阻热输出的温度受限加热器而言,只有一部分电流流经铁磁导体,因此,温度受限加热器的磁场可以比大部分电流流经铁磁材料的温度受限加热器的磁场小很多。磁场越低,相对导磁率(μ)就越大。
铁磁导体的集肤深度(δ)与相对导磁率(μ)的平方根成反比(4)δ∝(1/μ)1/2通过增大相对导磁率,就能减小铁磁导体的集肤深度。然而,由于对于在居里温度以下的温度而言,只有一部分电流流经铁磁导体,因此,对于具有大的相对导磁率的铁磁材料而言,铁磁导体的半径(厚度)可以被减小,以便补偿减小的集肤深度,同时在铁磁导体的居里温度以下的温度,仍允许集肤效应限制流向外部导体的电流的渗透深度。铁磁导体的半径(厚度)可以在0.3mm和8mm之间,0.3mm和2mm之间,2mm和4mm之间,这取决于铁磁导体的相对导磁率。通过增大铁磁导体的相对导磁率,在铁磁导体的居里温度或其附近,提供温度受限加热器的更高调节比和更迅速的电阻减小。
具有高的相对导磁率(例如,至少200,至少1000,至少1×104,或至少1×105)和/或高的居里温度(例如,至少600℃,至少700℃,或至少800℃)的铁磁材料(例如,铁,铁-钴合金,或低纯度的碳钢),在高温时,通常具有低的抗腐能力和/或小的机械强度。对于温度受限加热器而言,外部电导体可在高温下提供抗腐能力和/或较高的机械强度。
在铁磁导体居里温度以下,把大部分电流限制成流向外部电导体,就可以减小功率因子的变化。由于在居里温度以下,只有一部分电流流经铁磁导体,因此,除了在居里温度或该温度附近以外,铁磁导体的非线性铁磁特性对温度受限加热器的功率因子的影响很小或没有影响。甚至在居里温度或该温度附近,与那些在居里温度以下铁磁导体提供大部分电阻热输出的温度受限加热器相比,这种对功率因子的影响也被减小了。因此,很少需要或无需外部补偿(例如,可变电容或波形改变)来调节温度受限加热器的电感负载的变化以便保持相当高的功率因子。
在某些实施例中,在铁磁导体的居里温度以下把大部分电流限制成流向外部电导体的温度受限加热器,在该加热器的使用期间,把功率因子保持在0.85以上,0.9以上,或0.95以上。任何的功率因子的减小都只发生在接近于居里温度的温度状态下的温度受限加热器的一些部分中。在使用期间,温度受限加热器的大部分通常不处于居里温度或该温度附近,并且这些部分具有高达1.0的高功率因子。因此,在加热器的使用期间,即使加热器的某些部分的功率因子低于0.85,整个温度受限加热器的功率因子也能被保持在0.85以上,0.9以上,或0.95以上。
高导电元件,或内部导体,增大了温度受限加热器的调节比。在某些实施例中,高导电元件的厚度被增大,以便增大温度受限加热器的调节比。在某些实施例中,外部电导体的外部直径被减小,以便增大温度受限加热器的调节比。在某些实施例中,温度受限加热器的调节比在2和10之间,在3和8之间,或在4和6之间(例如,调节比至少为2,至少为3,或至少为4)。
图29表示出了温度受限加热器的一实施例,其中,在铁磁导体的居里温度以下,支撑元件提供了大部分的热输出。芯168是温度受限加热器的内部导体。在某些实施例中,芯168是高导电材料例如铜或铝。铁磁导体166是位于支撑元件172和芯168之间的薄薄的一层铁磁材料。在某些实施例中,铁磁导体166是铁或铁合金。在某些实施例中,铁磁导体166包括具有高的相对导磁率的铁磁材料。例如,铁磁导体166可以是纯化铁,例如阿姆克工业纯铁(Armco,巴西)。具有一定纯度的铁通常具有相对导磁率,该相对导磁率在400数量级。通过在氢气(H2)中在1450℃对铁进行退火以使该铁纯化,从而把铁的相对导磁率增大到处于1×105数量级的值。通过增大铁磁导体166的相对导磁率,就允许铁磁导体的厚度被减小。例如,未纯化的铁的厚度可以约为4.5mm,而纯化的铁的厚度约为0.76mm。
在某些实施例中,支撑元件172为铁磁导体166和温度受限加热器提供支撑。支撑元件172可由这样的材料制成,即,在铁磁导体166的居里温度附近或之上的温度状态下,这种材料具有良好的机械强度。在某些实施例中,支撑元件172是抗腐元件。支撑元件172为铁磁导体166提供支撑,并且也是抗腐的。支撑元件172是由这样的材料制成的,即,在高达铁磁导体166的居里温度和/或该温度之上的温度状态下,这种材料能提供电阻热输出。
在一实施例中,支撑元件172是347H不锈钢。在某些实施例中,支撑元件172是另外的导电的、具有良好机械强度的抗腐材料。例如,支撑元件172可以是304H,316H,347HH,NF709,注册商标为Incoloy的800H合金,(Inco国际合金,Huntington,西维吉尼亚),注册商标为Haynes的HR120合金,注册商标为Inconel的617合金。在某些实施例中,在温度受限加热器的一些部分中,支撑元件172包括不同的合金。例如,支撑元件172的下部可以是347H不锈钢,支撑元件的上部是NF709。在某些实施例中,在支撑元件的不同部分采用不同的合金,以便增大支撑元件的机械强度,同时保持温度受限加热器的期望的加热性能。
在图29所示实施例中,铁磁导体166、支撑元件172和芯168的尺寸被制造成当温度低于铁磁导体的居里温度时,铁磁导体的集肤深度限制流到支撑元件的大部分电流的渗透深度。因此,在高达铁磁导体166的居里温度或接近于该温度的温度状态下,支撑元件172提供温度受限加热器的大部分电阻热输出。在某些实施例中,图29所示的温度受限加热器要比其它不采用支撑元件172的温度受限加热器小(例如,外部直径为3厘米,2.9厘米,2.5厘米或更小),以便提供大部分电阻热输出。图29中所示的温度受限加热器可以较小,这是由于与大部分电阻热输出由铁磁导体提供的温度受限加热器所需的铁磁导体的尺寸大小相比,铁磁导体166较薄的缘故。
在某些实施例中,支撑元件和抗腐元件是温度受限加热器中不同的元件。图30和图31表示出了温度受限加热器的一些实施例,其中,在铁磁导体的居里温度以下,护套提供大部分的热输出。护套154是抗腐元件。护套154、铁磁导体166、支撑元件172和芯168(在图30中)或内部导体144(在图31中)的尺寸大小被做成使得铁磁导体的集肤深度限制大部分电流流向护套厚度的渗透深度。在某些实施例中,护套154是一种抗腐材料,并且在铁磁导体166的居里温度以下,该护套提供电阻热输出。例如,护套154是825不锈钢,446不锈钢,或347H不锈钢。在某些实施例中,护套154具有小的厚度(例如,在0.5mm数量级)。
在图30中,芯168是高导电材料,例如铜或铝。支撑元件172是347H不锈钢或其它在铁磁导体166的居里温度或其附近具有良好机械强度的材料。
在图31中,支撑元件172是温度受限加热器的芯,并且是347H不锈钢或其它在铁磁导体166的居里温度或其附近具有良好机械强度的材料。内部导体144是高导电材料例如铜或铝。
在某些实施例中,温度受限加热器被用于实现低温加热(例如,在生产井中加热流体,加热地表管道,或减小井筒或井筒区域附近的流体粘度)。通过改变温度受限加热器的铁磁材料,就允许进行低温加热。在某些实施例中,铁磁导体是由这样的材料制成的,即,这种材料的居里温度低于446不锈钢的居里温度。例如,铁磁导体可以是铁和镍的合金。该合金具有30%至42%重量比的镍,其余的为铁。在一个实施列中,合金是不胀钢36(Invar 36),不胀钢36是在铁中含有重量比为36%的镍,并且具有277℃的居里温度。在某些实施例中,合金是三组分合金,例如,铬、镍和铁合金。例如,合金可具有6%重量比的铬,42%重量比的镍,52%重量比的铁。由这些类型的合金制成的铁磁导体可提供250瓦特/米至350瓦特/米之间的热输出。由不胀钢36制成的直径为2.5厘米的杆,在居里温度具有约2比1的调节比。通过把不胀钢36合金放置在铜芯上,就可以使杆的直径更小一些。采用铜芯可以导致高的调节比。
对于具有铜芯或铜覆层的温度受限加热器而言,铜可以被相对抗扩散的层例如镍保护着。在某些实施例中,合成的内部导体包括铁,该铁被包覆在镍上,该镍被包覆在铜芯上。这种相对抗扩散的层阻止铜进入具有例如绝缘层的加热器的其它层内。在某些实施例中,这种相对不可渗透的层,在把加热器安装至井筒内期间,可阻止铜在井筒中沉积。
温度受限加热器可以是单相加热器,也可以是三相加热器。在三相加热器的实施例中,温度受限加热器具有三角形或Y形结构。三相加热器中的三个铁磁导体中的每个铁磁导体可以位于分离的外套内。可以在加热器底部的接合部分内形成这些导体之间的耦合。这三个导体可以与接合部分内的外套保持绝缘。
在某些三相加热器实施例中,三个铁磁导体被一公共的外部金属外套内的绝缘件分离开。这三个导体可以与外套绝缘,或者是,这三个导体可以在加热器组件的底部与该外套相接合。在另外的实施例中,一单一的外套或三个外套是铁磁导体,内部导体可以是非铁磁的导体(例如,铝,铜,或高导电合金)。可选地是,三个非铁磁导体中的每一个都位于分离的铁磁外套的内部,在加热器的底部,在接合部分内形成这些导体之间的连接。这三个导体可以在接合部分内与外套保持绝缘。
在某些实施例中,三相加热器包括三条支腿,这些支腿位于分离的井筒内。这些支腿可以被连接在公共的接触部中(例如,中央井筒,连接井筒,或充有溶液的接触部)。
在一实施例中,温度受限加热器包括中空芯或中空内部导体。形成这种加热器的一些层可以被穿孔,以便允许流体从井筒(例如,地层流体或水)流入该中空芯。中空芯中的流体可以通过中空芯被输送(例如,泵送,或气体提升)到地表。在某些实施例中,具有中空芯或中空内部导体的温度受限加热器被用作加热/生产井或生产井。诸如蒸汽的流体可以通过中空内部导体被注入到地层中。
示例下面将描述温度受限加热器的一些非限制性的例子以及温度受限加热器的一些特性。
把一个6英尺的温度受限加热元件放置在一个6英尺的347H不锈钢的筒内。加热元件与筒串联连接。加热元件和筒被放置在一炉内。炉被用于使加热元件和筒的温度升高。在可变温度状态下,使一系列电流通过加热元件并通过所述的筒返回。在电流通过期间,根据测量来确定加热元件的电阻和加热元件的功率因子。
图32表示出了与对于具有筒芯、碳钢铁磁导体和347H不锈钢支撑元件的温度受限加热器而言在若干个电流时的实验测得的电阻与温度的关系。铁磁导体是居里温度为770℃的低碳钢。铁磁导体被夹在铜芯和347H支撑元件之间。铜芯的直径为0.5”。铁磁导体的外部直径为0.765”。支撑元件的外部直径为1.05”。筒是3”表160347H不锈钢的筒。
数据204表示对于施加300A、60Hz的交流电电流时的电阻与温度的关系。数据206表示对于施加400A、60Hz的交流电电流时的电阻与温度的关系。数据208表示对于施加500A、60Hz的交流电电流时的电阻与温度的关系。曲线210表示对于施加10A直流电电流时的电阻与温度的关系。电阻与温度的关系曲线表明温度受限加热器的交流电电阻呈线性增大至铁磁材料的居里温度附近的温度。在居里温度附近,交流电电阻迅速减小,直到交流电电阻等于居里温度以上的直流电电阻为止。在居里温度以下交流电电阻的线性依赖关系至少部分反映出了在这些温度时347H的交流电阻的线性依赖关系。因此,在居里温度以下的交流电电阻的线性依赖关系表明在这些温度时大部分电流流经347H支撑元件。
图33表示出了对于具有铜芯、钴-碳钢铁磁导体和347H不锈钢支撑元件的温度受限加热器而言在若干电流时的实验测得的电阻与温度的关系。钴-碳钢铁磁导体是含有重量比为6%的钴的碳钢导体,它的居里温度为843℃。铁磁导体被夹在铜芯和347H支撑元件之间。铜芯的直径为0.465”。铁磁导体的外部直径为0.765”。支撑元件的外部直径为1.05”。筒是3”表160 347H不锈钢筒。
数据212表示对于施加100A、60Hz的交流电电流时的电阻与温度的关系。数据214表示对于施加400A、60Hz的交流电电流时的电阻与温度的关系。曲线216表示对于施加10A的直流电电流时的电阻与温度的关系。这个温度受限加热器的交流电电阻在比先前的温度受限加热器更高的温度处向下转折。这是由于增加了钴使得铁磁导体的居里温度升高的缘故。交流电电阻基本上与具有支撑元件尺寸的347H钢管的交流电电阻相同。这表明在这些温度,大部分电流流经347H支撑元件。图33中的电阻曲线基本上与图32中的电阻曲线具有相同的形状。
图34表示出了对于具有铜芯、钴-碳钢铁磁导体和347H不锈钢支撑元件的温度受限加热器而言在两个交流电电流时的实验测得的电阻与温度的关系。曲线218表示对于施加100A、60Hz的交流电电流时的功率因子与温度之间的关系。曲线220表示对施加400A、60Hz的交流电电流时的功率因子与温度之间的关系。除了在居里温度附近的区域外,该功率因子接近一致(1)。在居里温度附近的区域,非线性磁性和流经铁磁导体的较大部分电流在加热器中产生电感效应和变形,并降低功率因子。图34表示在该实验中,在全部温度状态下,该加热器的功率因子的最小值保持在0.85以上。由于用于加热地下地层的温度受限加热器只有一些部分可以在任何给定的时间点处于居里温度,并且在使用期间这些部分的功率因子不会低于0.85,因此,在使用期间,整个温度受限加热器的功率因子会保持在0.85以上(例如,在0.9以上,或在0.95以上)。
对于具有铜芯、钴-碳钢铁磁导体和347H不锈钢支撑元件的温度受限加热器而言,从这些实验数据中可以计算出调节比,该调节比是温度受限加热器所输送的最大功率的函数。图35中表示出了这些计算结果。图35中的曲线表示对于高达约2000瓦特/米的加热器功率而言,调节比保持在2以上。这条曲线被用于确定加热器以可持续方式有效地提供热输出的能力。具有与图35中的曲线相类似的曲线的温度受限加热器能够提供足够的热输出,同时保持阻止该加热器发生过热或误操作的温度限制特性。
图36表示出了温度受限加热器的温度(℃)与时间(小时)之间的关系。该温度受限加热器长度为1.83米,并且包括铜杆,该铜杆的直径为1.3cm,该铜杆位于2.5cm表XXH410不锈钢管内,并且具有0.325cm的铜护套。该加热器被放置在加热炉内。当加热器位于炉内时,向加热器施加交流电电流。电流被增大二个小时以上,且在其余的时间,电流达到400安培这一相对恒定的数值。沿着加热器的长度,以0.46米为间隔,在三个点测量不锈钢管的温度。曲线240表示在炉内并最靠近加热器的引入部分的在0.46米的点处所述管的温度。曲线242表示从管的端部并且最远离加热器的引入部分的在0.46米的点处所述管的温度。曲线244表示在加热器的大致中点的管的温度。加热器中央的点被进一步包裹在2.5cm厚的注册商标为Fiberfrax(Unifrax公司,Niagara Falls,纽约)的绝缘件的0.3米段中。该绝缘件被用于在加热器上产生低热导率段(在该段中,向周围的热传递被减慢或被阻止(一“热点”))。加热器的温度随着时间而增大,如图中曲线244、242、240所示。曲线244、242、240表示对于沿着加热器的长度的所有三个点而言,加热器的温度增大至约相同的数值。结果温度基本上独立于所增加的注册商标为Fiberfrax的绝缘件。因此,尽管在沿着加热器的长度的三个点中的每个点的热负荷不同(由于绝缘件的缘故),但温度受限加热器的操作温度基本上相同。从而,在具有低热导率段的情况下,温度受限加热器不会超过选定的温度极限。
图37表示出了2.5cm实心的410不锈钢杆和2.5cm实心的304不锈钢杆的温度(℃)与测量时间(小时)之间的关系。在恒定的所施加的交流电电流下,每根杆的温度随着时间而增大。曲线246表示热电偶的数据,该热电偶被放置在304不锈钢杆的外表面上,并且位于绝缘层下面。曲线248表示放置在没有绝缘层的304不锈钢杆的外表面上的热电偶的数据。曲线250表示放置在410不锈钢杆的外表面上并且位于绝缘层下面的热电偶的数据。曲线252表示放置在没有绝缘层的410不锈钢杆的外表面上的热电偶的数据。通过这些曲线的对比,表明304不锈钢杆的温度(曲线246和248)比410不锈钢杆的温度(曲线250和252)增大得更快。304不锈钢杆的温度(曲线246和248)也达到比410不锈钢杆的温度(曲线250和252)更高的数值。410不锈钢杆的非绝缘段(曲线252)和410不锈钢杆的绝缘段(曲线250)之间的温差小于304不锈钢杆的非绝缘段(曲线248)与304不锈钢杆的绝缘段(曲线246)之间的温差。在实验终止(曲线246和248)时,304不锈钢杆的温度在增大,而410不锈钢杆的温度曲线变平(曲线250和252)。因此,在具有变化的热负荷(由于绝缘层)的情况下,410不锈钢杆(温度受限加热器)比304不锈钢杆(非温度受限加热器)能提供更好的温度控制。
利用数字模拟(FLUENT,可从Fluent美国,Lebanon NH获得)来比较具有三个调节比的温度受限加热器的操作。对于油页岩(GreenRiver油页岩)地层中的加热器进行这种模拟。模拟条件为-61米长的导体位于管道中的居里加热器(中央导体(2.54cm直径),管道外部直径7.3cm)
-对于油页岩地层而言的井下加热器测试区富足关系图-16.5cm(6.5英寸)直径的一些井筒,在三角形间距上,井筒之间的间距为9.14米-200小时功率升高时间至820瓦特/米初始热注入率-在升高之后,以恒定电流来操作-加热器的居里温度为720.6℃-对于油页岩富足至少为0.14L/kg(35加仑/吨)而言,地层会膨胀并且接触加热筒图38表示出了对于调节比为2∶1的温度受限加热器而言,导体位于管道中的加热器的中央导体的温度(℃)是地层深度(米)的一个函数。曲线254-276表示在从开始加热之后8天至开始加热后675天的不同时间(2548天,25650天,25891天,260133天,262216天,264300天,266383天,268466天,270550天,272591天,274633天,276675天)在地层中的温度曲线。在调节比为2∶1,在最富足的油页岩层中,在466天之后,720.6℃的居里温度被超过。图39表示出了沿着油页岩富足(l/kg)的对于2∶1调节比,通过地层的对应的加热器的热通量曲线(瓦特/米)(曲线278)。曲线280-312表示从开始加热后8天至开始加热后633天在不同的时间(2808天;28250天;28491天;286133天;288175天;290216天;292258天294300天;296341天;298383天;300425天302466天;304508天;306550天;308591天;310633天;312675天)的热通量曲线。在2∶1的调节比时,在最富足油页岩层中,中央导体温度超过居里温度。
图40表示出了对于3∶1的调节比而言,加热器温度(℃)是地层深度(米)的函数。曲线314-336表示出了在开始加热后12天至开始加热后703天的不同时间(31412天;31633天;31862天;320102天;322146天;324205天;326271天;328354天;330467天;332605天;334662天;336703天)通过地层的温度曲线。在3∶1的调节比,在703天后,达到居里温度。图41表示出了对于3∶1的调节比而言,沿着油页岩富足(l/kg)的通过地层的对应的加热器热通量(瓦特/米)的曲线(曲线338)。曲线340-360表示出了从开始加热后12天至开始加热后605天的不同时间(34012天,34232天,34462天,346102天,348146天,350205天,352271天,354354天,356467天,358605天,360749天)的热通量曲线。对于3∶1的调节比,中央导体温度从未超过居里温度。中央导体温度还表示出了对于3∶1的调节比的相对平的温度曲线。
图42表示对于调节比为4∶1而言加热器温度(℃)是地层深度(米)的一个函数。曲线362-382表示在从开始加热后12天至开始加热后467天的各个时间(36212天;36433天;36662天;368102天;370147天;372205天;374272天;376354天;378467天;380606天;382678天)通过地层的温度曲线。在调节比为4∶1,甚至在678天后,居里温度也未被超过。对于调节比为4∶1而言,中央导体温度从未超过居里温度。中央导体表示出了对于4∶1调节比的温度曲线,该曲线要比对于3∶1调节比的温度曲线要更平一些。这些模拟表明,调节比越高,加热器温度在居里温度或该居里温度以下停留的时间越长。对于油页岩富足曲线,理想的是,调节比至少为3∶1。
已经进行过模拟,以便比较温度受限加热器和非温度受限加热器在油页岩地层中的使用情况。把一些导体位于管道中的加热器放置在16.5厘米(6.5英寸)直径的井筒内,在地层模拟件(例如,STARS,可从计算机模拟集团有限公司(Computer Modelling Group,LTD.),Houston,TX获得)加热器和近井筒模拟件(例如,ABAQUS,可从ABAQUS公司,Providence RI获得)加热器之间的间距为12.2米(40英尺)。标准的导体位于管道中的加热器包括304不锈钢导体和管道。温度受限的导体位于管道中的加热器包括金属,该金属对于导体和管道而言具有760℃的居里温度。图43-45表示出了模拟结果。
图43表示出了对于在操作20000小时后的模拟,在导体位于管道中的加热器的导体处的加热器温度(℃)与加热器在地层中的深度(米)之间的关系。在达到760℃之前,加热器功率被设置在820瓦特/米,然后,该功率被减小,以便阻止过热。曲线384表示标准的导体位于管道中的加热器的导体温度。曲线384表示出了导体温度的巨大变化以及沿着导体长度形成的大量的热点。导体的温度最小值为490℃。曲线386表示对于温度受限的导体位于管道中的加热器而言的导体温度。如图43所示,对于温度受限加热器,沿着导体长度的温度分布被更多地控制。此外,对于温度受限加热器,导体的操作温度为730℃。因此,对于采用温度受限加热器的类似加热器而言,可向地层提供更多的热输入。
图44表示出了对于模拟所用的加热器用于加热油页岩而言加热器热通量(瓦特/米)与时间(年)之间的关系。曲线388表示标准的导体位于管道中的加热器的热通量。曲线390表示温度受限的导体位于管道中的加热器的热通量。如图44所示,与标准加热器的热通量相比,温度受限加热器的热通量被保持在更高的值达更长的时间。更高的热通量可以实现对地层更均匀更快速地加热。
图45表示出了在模拟中所用的对油页岩进行加热的加热器的累积热输入(kJ/m)(千焦/米)与时间(年)之间的关系。曲线392表示标准的导体位于管道中的加热器的累积热输入。曲线394表示温度受限的导体位于管道中的加热器的累积热输入。如图45所示,温度受限加热器的累积热输入比标准加热器的累积热输入增大得更快。通过温度受限加热器在地层中实现更快的热积累,就可以减少加热地层所需的时间。对油页岩开始加热可以在平均累积热输入约为1.1×108kJ/米开始。对于温度受限加热器而言约5年到达这个累积热输入,对于标准加热器而言在9至10年间达到这个累积热输入。
鉴于这里所作的描述,对本发明的各个方面作出进一步的修改以及采用其它可选的实施方式,这对于本领域技术员来说是很显然的。因此,这里所作的描述只是解释性的,它只是为了教导本领域技术人员实施本发明的一些总的方式。应当知道,在这里所描述的和所图示的本发明的形式应被认为是目前的优选实施例。可以对这里所图示和所描述的元件和材料进行替换,部分和过程可以被倒过来,本发明的某些特征可以被独立使用,所有这些对于本领域技术人员来说,在阅读这里的描述之后将会是很显然的。在不脱离本发明的构思和范围的情况下,可以对本发明作出一些变型,本发明的范围是由权利要求限定的。此外,应当知道,这里所独立描述的特征在一些实施例可以被结合起来。
权利要求
1.一种加热器,包括铁磁元件;电导体,该电导体与所述铁磁元件电耦合,其中,该电导体被构造成能在铁磁元件的居里温度以下提供热输出,并且该电导体被构造成能在25℃传导该加热器的大部分电流;其中,大约在铁磁元件的居里温度和该居里温度以上,加热器自动地提供减小的热量。
2.根据权利要求1所述的加热器,其特征在于,铁磁元件和电导体被电耦合,以便在加热器使用期间,加热器的功率因子保持在0.85以上、0.9以上或0.95以上。
3.根据权利要求1或2之一所述的加热器,其特征在于,加热器还包括第二电导体,该第二电导体与铁磁元件电耦合。
4.根据权利要求3所述的加热器,其特征在于,第二电导体由比铁磁元件和所述电导体具有更高导电率的电导体构成,和/或在铁磁元件的居里温度或其附近第二电导体提供机械强度以便支撑铁磁元件。
5.根据权利要求1-4之一所述的加热器,其特征在于,所述电导体和铁磁元件是同心的。
6.根据权利要求1-5之一所述的加热器,其特征在于,所述电导体至少部分地包围着铁磁元件。
7.根据权利要求1-6之一所述的加热器,其特征在于,加热器所具有的调节比至少为1.1、至少为2、至少为3或至少为4。
8.根据权利要求1-7之一所述的加热器,其特征在于,所述铁磁元件与所述电导体电耦合,从而在铁磁元件的居里温度以下的温度状态下,由铁磁元件产生的磁场来把大部分电流限制成流向电导体。
9.根据权利要求1-8之一所述的加热器,其特征在于,在25℃,所述电导体提供加热器的大部分热输出。
10.根据权利要求1-9之一所述的加热器,其特征在于,当电流被施加到加热器上时(a)当加热器在100℃以上、200℃以上、400℃以上或500℃以上或600℃以上且在选定的温度以下时,该加热器提供第一热输出;(b)当加热器处于铁磁元件的居里温度和该居里温度以上时,加热器提供第二热输出,该第二热输出小于第一热输出。
11.根据权利要求1-10之一所述的加热器,其特征在于,在铁磁元件的居里温度或该居里温度附近,所述电导体提供机械强度,以便支撑铁磁元件。
12.根据权利要求1-11之一所述的加热器,其特征在于,所述电导体是抗腐材料。
13.根据权利要求1-12之一所述的加热器,其特征在于,当加热器附近的热负载约减小1瓦特/米时,在选定的操作温度以上或附近,加热器的操作温度至多升高1.5℃。
14.根据权利要求1-13之一所述的加热器,其特征在于,在选定的温度以上或附近,加热器提供减小的热量,该减小的热量至多为在选定温度以下50℃的热输出的10%或更小。
15.根据权利要求1-14之一所述的加热器,其特征在于,加热器的长度为至少100米、至少300米、至少500米或至少1千米。
16.根据权利要求1-15之一所述的加热器,其特征在于,加热器被构造成能被放置在地下地层中的井孔内。
17.根据权利要求1-15之一所述的加热器,其特征在于,加热器被用在向地下地层提供热量的系统中。
18.根据权利要求1-15之一所述的加热器,其特征在于,加热器被用在对地下地层进行加热的方法中,所述方法包括向加热器施加电流,以便提供热输出;以及允许热量从加热器传递到地下地层的一部分。
全文摘要
本发明提供一种加热器,该加热器包括铁磁元件;电导体,该电导体与铁磁元件电连接,其中,电导体被构造成能在铁磁元件的居里温度以下提供热输出。电导体被构造成在25℃能传导加热器的大部分电流。该加热器约在铁磁元件的居里温度和该居里温度以上能自动提供减小的热量。
文档编号E21B36/04GK1957158SQ200580016609
公开日2007年5月2日 申请日期2005年4月22日 优先权日2004年4月23日
发明者C·K·哈里斯, C·L·桑德贝里, H·J·维内加 申请人:国际壳牌研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1