压裂致密储层中岩石的系统和方法

文档序号:5345783阅读:228来源:国知局
专利名称:压裂致密储层中岩石的系统和方法
技术领域
本技术的示例性实施方式涉及使用炸药(explosive charge)改进岩石压裂的系统和方法。
背景技术
低渗透性地层逐渐成为重要的烃源。尽管这些地层可包含大量的烃,但是地层中岩石的性质经常限制开采速度和累积体积至商业上不可行的限度。例如,致密页岩可包含 大量的天然气。但是,页岩的低渗透性可能阻碍提取,除非在页岩中形成广泛的压裂网络。增加地层渗透性的技术已经使用正压力脉冲以在潜在生产井筒周围的地层中产生压裂。炸药是用于产生正压力脉冲并引起地下地层压裂的第一种方法。这通过将甘油炸药降落进入地层,接着引爆甘油炸药进行。该方法成功形成了高密度压裂网络,但是该网络距离井筒爆炸点的空间范围有限。该方法的确增加了初始开采速度,但由于有限的空间范围,该技术未产生显著的累积采收量。水压是目前用于导致地下地层压裂的主要方法。地面泵送装备用于驱动多种流体(气体、泡沫、凝胶、水和油等)进入井筒并增加地层中的压力。当井下压力达到压裂深度处压力与岩石抗拉强度的和时,形成压裂并随着流体进入压裂蔓延至地层中,并造成相关压力增加。称为支撑剂的各种固体材料可随着压裂流体被泵入压裂。这些材料在地面泵送装备关闭和压裂中的流体压力减少时帮助将压裂支撑开。该方法可产生具有明显横向范围,但具有相对较低密度的压裂网络。通过沿着井筒进行多个水力压裂处理,水力压裂地层的现行实施解决了密度问题。这可导致初始开采速度和累积采收量的大大提高。上面讨论的形成地下压裂的方法有多个已知的与适用性、几何学、持续性和流体输送相关的局限性。爆炸和水压都由于克服压缩性地应力和岩石的抗拉强度以产生压裂而诱发故障。压裂通常沿着由局部应力决定的最小阻力的路径并可绕过大量的储层。这些方法在易碎材料比如二氧化硅或碳酸盐粘固的地层中发挥良好,但是在延展性材料、弱粘固的地层或富含粘土矿物质的地层中不那么有效。对具体地质力学性质值和局部应力方向的强烈依赖性通常在数种可能烃源中降低了这些采收增强选项的有效性。压裂方法应当在地层岩石中产生渗透性的、各向同性的渗透性增加的空间广阔区域。但是,爆炸和水压往往实现一个或另一个。爆炸产生瞬间的高幅度压力增加,这种增加随着与爆炸点的距离往往快速消散。结果,该方法可产生渗透性的、各向同性的渗透性增力口,但是效果具有受限的空间范围。增加炸药体积,甚至达到使用核设备,往往增加局部损坏强度,而不明显延伸空间分布。由于压裂地层之外的变形现象,近井筒损坏的增加可减小渗透性。
在水力压裂中,用足够的泵送容量可保持水压并传入压裂,允许持续的压裂生长和发展覆盖大空间范围的压裂带的能力。但是,沿具有原位应力状态确定的优选方向的有限数量压裂集中的变形趋势意味着该方法不产生渗透性的、各向同性的渗透性增加。已经开发和实施了水压方法的改进型,其包括许多处理、复合泵送顺序和同时的多个井处理。这些改进的方法可改善渗透性并减少所产生渗透性增加的各向异性。它们通常以强力方式实施,这种方式不允许控制压裂密度或指定密度增加的位置。爆炸和水压都是通过由于应力局部增加而在裂缝面的法向位移,引起压裂形成。随着改变的原位应力朝着它们初始条件缓和(例如,来自水力压裂的流体泄漏),产生的压裂因为将它们支撑开的力减小而将关闭。在缺少物理位移(例如,剪切诱导的偏离)或引入刚性材料作为支撑剂的情况下,这些压裂可由于渗透性的最小伴随增加而完全关闭。与爆炸相关的破碎和物理旋转可起保持打开压裂的作用。对于水压方法,刚性固体,比如过筛的砂,经常通过压裂流体运输并沉积在压裂内。选择这些材料以能够支撑并保持打开的压裂。经验证据表明,最终支撑的压裂体积可显著小于初始产生的体积。对于水力方法,这种差异与压裂流体不能在压裂中均匀分布支撑材料有关,而对于爆炸这与变形 机制的空间分布有关。在两种方法中,为产生压裂网络所做的大量功未保存在最终的打开压裂网络中。即使在压裂处理结束时支撑开的压裂可随时间关闭。例如,支撑材料可被地层应力碾碎或嵌入地层。原位应力状态和地质力学性质限制了人工支撑的压裂在其中是可行的长期渗透性增强选项的地层类型和地下状态。除了形成打开的、连接的压裂网络,开采速度和积累量的潜在增加还受烃从地层跨过裂缝面并流入压裂的能力影响。压裂方法应当避免抑制这种传质。用于水力压裂地层的流体可对经过裂缝面的烃流具有明显的负面影响。对于含油和气地层,水性压裂流体的使用可导致在裂缝面的自吸以及油和气相对渗透性的显著降低。在具有极低的初始渗透性的地层中这可产生对烃流的有效阻碍,其可抵消与压裂产生相关的流动势的潜在增加。在含气地层的情况下,油基或水基压裂流体的使用可导致自吸并减小气体流动势。即使在压裂流体未吸入裂缝面的情况下,压裂中较高密度流体的存在可减小烃流流出地层的压力驱动(例如,相对渗透性受损)。此外,极低的初始渗透性将限制烃流出地层并使压裂流体冲出压裂的能力。因此,炸药的更有效使用可允许增加压裂和生产,而没有因为压裂流体存在造成的问题。可通过在地层中位置适当布置炸药,增强爆炸的使用。这可通过使用高级钻井技术比如盘绕喷管钻井等钻出复合井结构进行。例如,美国专利号5,291,956描述使用配备非旋转喷射钻井工具的盘管。作为另一个例子,美国专利号5,735,350描述形成多边井(multilateral well)和改进的多边井结构的方法和系统。存在在深地层中使用炸药形成延伸的断裂带的各种技术。例如,美国专利号3,674, 089描述了一种增产地层的方法,其使用布置在策略性定位的未完成井中的炸药使大部分地层断裂并形成井间连通。未完成的井然后可被堵塞,并且完成的生产井可钻入压裂网络以从地层生产油。该方法设计用于具有高油含量和多孔性但具有低渗透性并因此具有差的一次采油量的地层。美国专利号3,902,422描述通过顺序引爆在独立洞穴中的炸药在深层岩石中产生压裂网络。每次爆炸发生在液体已经进入由之前相邻的爆炸产生的断裂带之后。因此,每次爆炸清除之前爆炸产生的粉尘。压裂网络然后可被浙滤以从断裂带去除矿物。美国专利号6,460, 462描述在地面和地下采矿操作中爆破岩石或类似材料的方法。在该描述的方法中,将相邻的井眼装入炸药并将其涂粘上引信。根据引爆模式和矿物学/地质学环境以及形成的地震速度以各自的延迟间隔,对引信编程。美国专利号5,295,545描述在井中布置推进剂。点燃推进剂以迅速产生燃烧气体,从而产生超过周围地层压裂延伸压力的压力。以大于可被吸入任何单个压裂的速度产生燃烧气体,因而造成在周围地层中产生多个压裂。存在使用炸药在压裂中布置支撑剂的技术。例如,美国专利号4,714,114描述使用受控的脉冲压裂(CPF)方法,借此炸药产生压裂并将支撑剂注入压裂,因而提高油生产。美国专利号3,713,487描述爆炸压裂邻近井的石油地层的方法,其在支撑剂比如玻璃珠、砂粒或铝颗粒的存在下进行。将支撑剂注入由爆炸形成的压裂中,并因此避免了对使用液体进行压裂或支撑的需要。根据该观点,美国专利号4,391,337描述整合的喷射穿孔和受控的推进剂压裂设备。压裂设备用各种横截面和壁厚度的圆柱形罩构造,该罩用围绕特定·方向和间隔的成形炸药的易燃推进剂气体产生材料填充。将研磨材料沿着设备长度分布在推进剂填充的体积中以产生穿孔。将设备放置在地层中并引燃,其中高速喷射穿透井筒的生产层,引起压裂。接着同时点燃高压推进剂材料,其扩大并传播喷射引起的压裂。尽管这些参考文件描述在地层中爆炸安置支撑剂,但未描述在致密储层中产生延伸的压裂网络。

发明内容
本技术的一个示例性实施方式提供爆炸压裂储层的系统。该系统可包括碎甲弹炸药(squash head charge)和框架,该框架配置来使碎甲弹炸药朝向储层中井筒的岩石面。系统也可包括与碎甲弹炸药连接的内部电总线,其中内部电总线配置来携带点火信号至点火药以引爆碎甲弹炸药。控制器可与内部电总线连接,连接控制器的电缆穿过井筒至地面,其中电缆配置来携带信号至控制器以触发点火信号。在示例性实施方式中,系统包括与内部电总线连接的控制器和与控制器连接的接收器,其中接收器配置来探测信号脉冲以触发来自控制器的点火信号。便携式电源可与控制器和脉冲探测器连接。系统可包括推进剂炸药,其将支撑剂推入通过碎甲弹炸药爆炸在岩石面中导致的压裂。支撑剂可包括砂、玻璃珠、陶瓷颗粒或其任何组合。在示例性实施方式中,支撑剂包括配置为在压裂中引爆的高能材料。框架可包括箱体(case),其配置来允许碎甲弹炸药通过流体流动输送至井筒。井筒可以是从主井筒钻出的横向井筒。本技术的另一示例性实施方式提供在储层中压裂岩石的方法。该方法可包括钻一个或多个进入储层的井,其中至少一个井包括主井筒,两个或更多个横向井筒从主井筒钻出。在与主井筒相对的每个横向井筒末端的中心线可在与主井筒垂直的约30°的锥形之内。一个或多个炸药可布置在两个或更多个横向井筒的每一个中。炸药可被引爆以产生压力脉冲,压力脉冲至少部分压裂两个或更多个横向井筒之间的岩石,其中爆炸被定时,使得发射自不同横向井筒的一个或多个压力脉冲相互作用。可钻出从至少一个井分支的多个主井筒。该多个主井筒基本上彼此平行,并且多个主井筒的每一个可与多个横向井筒连接。在一种示例性实施方式中,使用机械钻头从主井筒钻出横向井筒。在实施方式中,横向井筒可使用喷水器钻出。炸药可被基本上同时引爆。支撑剂可放入通过使用水力压裂技术的压力脉冲导致的压裂。在一种不例性实施方式中,主井筒基本上与岩层中最低水平应力的方向平行。主井筒可基本上与岩层中最低水平应力的方向垂直。横向井筒可钻出主井筒,使得三个或更多个井筒分支基本上形成平面。在一种示例性实施方式中,平面可以是近似水平的。在另一实施方式中,平面可以是近似垂直的。炸药可以是碎甲弹炸药。炸药可按顺序引爆,所述顺序已经基于压力脉冲的计算机模拟和最大相长干涉的强度和节点分布优化。在一种示例性实施方式中,可通过使携带炸药的流体流入横向井筒,将炸药放置在横向井筒中。本技术的另一示例性实施方式提供从地下岩层中收获产出液的方法。该方法可包括钻井入地层,其中井包括主井筒。可从主井筒钻两个或更多个横向井筒,其中每个横向井 筒与主井筒基本上垂直。携带碎甲弹炸药的工具可放入每个横向井筒中。碎甲弹炸药可按定时顺序引爆,该定时顺序配置来使得来自碎甲弹炸药的冲击波与来自另一碎甲弹炸药爆炸的第二冲击波相互作用。可从地下岩层提取产出液。在一种示例性实施方式中,推进剂炸药可被引爆以推动支撑剂进入由碎甲弹炸药爆炸产生的压裂。附图描述通过参考下列详细说明和附图可更好地理解本技术的优势,其中图I是按照本技术的示例性实施方式的储层图;图2是按照本技术示例性实施方式的储层的俯视图,显示从主井筒的每个邻近段钻出的多个横向井筒;图3是按照本技术示例性实施方式的具有许多横向井筒的一个主井筒的俯视图,显示横向井筒中炸药的顺序引爆;图4是按照本技术示例性实施方式的图3的侧视图,显示从横向井筒中爆炸发出的多个冲击波;图5是按照本技术的示例性实施方式在储层中压裂岩石的方法;图6是可用在本技术示例性实施方式中的合适的碎甲弹炸药的示意图;图7是显示来自井筒中爆炸的能量分布的图;图8A是常规炸药在坚硬岩石层中引爆的能量分布的图;图8B是常规炸药在软岩石层中引爆的能量分布的图;图9是软岩石层中扁平炸药层的能量分布的图;

图10是按照本技术示例性实施方式的容纳许多碎甲弹炸药用于插入横向井筒的工具的图;图11是按照本技术示例性实施方式的图10工具的正视图;和图12是按照本技术示例性实施方式的可用于将炸药放置在横向井筒中的另一工具的图。发明详述在下列详细说明部分,描述了本技术的具体实施方式
。但是,就下列描述具体到本技术的具体实施方式
或具体应用而言,这意欲仅仅是为了示例性的目的并且仅仅提供示例性实施方式的描述。因此,该技术不限于下面具体描述的实施方式,而是包括落入所附权利要求真正精神和范围内的所有的备选型、改型和等同方式。首先,为了便于引用,阐释在本申请中使用的某些术语以及它们在本文使用的含义。就下面未定义的本文中使用的术语而言,应当给予它相关领域技术人员已经给予该术语的最宽定义,如在至少一篇打印的出版物或公开的专利中反应的。进一步,本技术不为下面显示的术语的使用所限制,因为所有的等同物、同义词、新出现词以及用作相同或类似目的的术语或技术被认为落在本权利要求的范围内。如本文所使用,“边界”指地下岩石中性质改变的位置,其通常发生在地质地层之间。例如,这与地层的厚度相关。如本文所使用,井的“完井”包括在井筒中或周围的设计、选择和安装设备和材料,用于输送、泵送、增产或控制流体的生产或注入。完井之后,可开始生产地层流体。如本文所使用,“完井活动”可包括但不限于固井(比如将套管胶结在合适的位置 用于层位封隔和井完整性)、井筒钻孔、增产措施(包括但不限于基岩酸化、压裂酸化、水力压裂和爆炸压裂)、钻水平井筒、钻横向井筒和喷射。进一步的完井活动包括安装生产设备进入井筒,以及砂管理和水管理。完井活动可包括本文讨论的爆炸压裂技术。如本文所使用挠性管喷射钻井(coil tubing jet drilling) ”是用于井构建的技术,其包括使用连续非旋转管索和旋转的自动钻井水龙头或水力喷射器以在岩层中形成孔。如本文所使用,“定向钻井”是井筒有意偏离其自然采取的路径。换句话说,定向钻井是操纵钻柱以便在期望的方向上行进。如本文所使用,“示例性”在本文排他性地表示“作为实例、例子或图解”。本文描述的作为“示例性”的任何实施方式不应解释为优于或好于其他实施方式。如本文所使用,“设施”指通过其烃流体从储层中采出或注入储层的一件有形物理设备,或可用于控制生产或完井操作的设备。以其最宽的含义,术语设施应用于沿着储层和其输出口之间的流动路径可存在的任何设备,所述输出口是烃流体离开模型(采出液)或进入模型(注入液)的位置。设施可包含生产井、注入井、油管、井口装置、集油管线、歧管、泵、压缩机、分离器、地面流动管线和输出口。在一些情况,术语“地面设施”用于区分除了井的那些设施。“设施网络”是在模型中存在的设施的全部集合,其包括井口装置和输出口之间的所有井设施和地面设施。如本文所使用,“地层”是任何有限的地下区域。地层可包含包括烃的一个或多个岩石层、上覆岩层或下伏岩层。“上覆岩层”或“下伏岩层”是感兴趣地层上面或下面的地质学材料。例如,上覆岩层或下伏岩层可包括岩石、页岩、泥岩或其他类型沉积岩、火成岩或变质岩。地层也包括用于产生地热能的干热岩石层。如本文所使用,“压裂”是与沿着其具有最小移动的变质岩石中的叶理或裂缝无关的岩石中的裂纹或断裂面。沿着其具有横向位移的压裂可被称为断层。当压裂的壁仅仅彼此正交移动时,压裂可称为接缝。压裂可通过将孔连接在一起大大增强岩石的渗透性,并且由于该原因,为了增加流体流动,可在一些储层中机械地诱导接缝和断层。如本文所使用,“岩石静压力”(有时称为“岩石静应力”)是地层中等于每单位面积上覆岩石量(“上覆岩层”)重量的压力。每英尺深度的垂直地层应力增加可为约lpsi。因此,在与上覆地层上升相关的机械故障出现之前100英尺深的地层的流体压力可高达IOOpsig0如本文所使用,“地质学层”或“层”指位于地质地层顶部之间的地下(例如,地球地下)的层。地质学层可包括干热岩层或可表示干热岩石层上方的地下层。如本文所使用,“干热岩石”层是与地面具有显著温差例如50°C、100°C或甚至更大的岩石层。干热岩石层可以是在地球地面下方约2-20Km或甚至更深的花岗岩基底岩石。可收获干热岩石层的热用于产生能量。不论名字如何,“干热岩石”不一定不含水。而是,这种岩石层在没有泵或流体注入的帮助下将不自然地产生大量的水或蒸气流至地面。如本文所使用,“水平井筒”指在地下区域中完井的基本上水平的或与水平成约0°至约15°范围的角度的井筒部分。如本文所使用,“水力压裂”用于产生或打开从井筒延伸进入地层的压裂。通常粘 性的压裂流体可用足够的水压(例如,以大于地层岩石静压力的压力)注入地层以产生和延伸压裂,打开之前存在的天然压裂,或造成断层滑动。在本文讨论的地层中,天然压裂和断层可被压力打开。支撑剂可用于在水压释放之后“支撑”开或保持打开压裂。压裂可用于使流体例如流过致密页岩地层,或地热能源比如干热岩石层,等等。如本文所使用,“自吸”指通过毛细管作用压裂流体并入裂缝面。自吸可导致地层流体在裂缝面上的渗透减少。例如,如果压裂流体是水性流体,自吸可导致裂缝面上较少的烃运输,导致回收降低。烃运输的减少可超过压裂表面积的任何增加,导致压裂后回收没有净增加或甚至回收减少。如本文所使用,“横向井筒”指从主井筒钻入地层的井段。横向井筒未下套管,因此,插入横向井筒的任何物件潜在地与地层的岩石直接接触。如本文所使用,“上覆岩层”指上覆在包含一个或多个含烃区的地层上的沉积物或泥土材料。术语“上覆岩层应力”指来自上覆沉积物和流体重量的上覆在地层感兴趣区域或点上的每单位面积负荷或应力。“上覆岩层应力”是上覆在根据描述的实施方式调整(condition)和/或生产的含烃区域上的每单位面积负荷或应力。上面就岩石静压力详细讨论了压力。如本文所使用,“渗透性”指岩石将流体输送经过岩石相互连接的孔空间的能力;惯用的测量单位是豪达西。术语“相对可渗透的”相对于地层或其部分定义为10豪达西或更多(例如,10或100豪达西)的平均渗透性。术语“相对低的渗透性”相对于地层或其部分定义为小于约10豪达西的平均渗透性。如本文所使用,“压力”和“总压力”是可以互换的并具有相同的含义,其中在封闭容积中的压力是由气体对容积的壁每单位面积施加的力。压力可表示为磅每平方英寸(psi)。“大气压”指空气的局部压力。局部大气压假设为14.7psia—海平面处的标准大气压。“绝对压力”(psia)指大气压加上表压(psig)的和。“表压”(psig)指由表测量的压力,其仅指示超过局部大气压的压力(即,Opsig的表压对应14. 7psia的绝对压力)。如本文所使用,“产出液”包括从储层或地下岩层收获的任何材料。产出液可包括烃,比如从烃地层收获的油或气。产出液也可包括热流体,比如从干热岩层收获的蒸气或水。如本文所使用,“储层”指可从中收获产出液的地下岩层。岩层可包括花岗岩、二氧化硅、碳酸盐、粘土和有机物质,比如油、气、或煤等。储层的厚度变化可从小于I英尺(O. 3048m)至数百英尺(数百m)。储层的渗透性提供生产的可能。如本文所使用,储层也可包括用于地热能生产的干热岩石层。如本文所使用,“增产措施操作”指对地层中的井进行的活动,以增加来自地层的(例如烃的)生产速度或能力等。增产措施操作也可在注入井中进行。增产措施操作的一个实例是压裂操作,其通常包括以足够在其中形成或增强至少一个压裂的速度和压力将压裂流体注入经过井筒进入地下地层,因而产生或增大通过地层的生产通道。压裂流体可将支撑剂引入这些通道。增产措施操作的其他例子包括但不限于爆炸压裂、声刺激、注酸操作、压裂酸化操作和化学品注入操作。在爆炸压裂增产措施操作中,爆炸化合物或推进剂化合物放置在地层中并点燃。爆炸化合物通过从爆炸产生冲击波压裂地层。推进剂化合物刺激地层产生大量非常高压的气体。如本文所使用,当提及材料的量或数量,或其具体特性使用时,“基本上”指足够提供期望提供的材料或特性的效果的量。允许的偏差精确程度在某些情况下可取决于具体的背景。类似地,“基本上不含”等指在组合物中缺乏所指的因素或试剂。尤其,被指定为“基 本上不含”的因素在组合物中完全缺乏,或仅仅包括足够小的量以至于对组合物没有可测
量效果。如本文所使用,层的“厚度”指层横截面上边界和下边界之间的距离,其中与横截面的平均斜度垂直测量距离。如本文所使用,“井”指通向地下地层的孔,通常用于从地层中生产流体或气体。井可包括单井筒,或可具有分叉的多个井筒。如本文所使用,多边井是具有许多从一个或多个主井筒钻出的横向井筒的井。井可是任何类型的,包括但不限于生产井、实验井、勘探井等。如本文所使用,“井筒”指在地下通过钻井或将管道插入地下形成的孔。井筒可组成井的一部分或全部。井筒可具有基本上圆形的横截面,或其他横截面形状(例如,环形、椭圆形、正方形、矩形、三角形、切口形或其他规则或不规则形状)。井筒可以是下套管井筒、下套管胶结井筒、或裸眼井筒。井筒可以是垂直的、水平的或在垂直和水平之间的任何角度(偏斜井筒),例如垂直井筒可包含非垂直部分。如本文所使用,“井口装置”指安装在井开口处的设备件,例如用于调整和监测来自地下地层的产出液。其也防止产出液从井中渗出,和防止由于高压流体地层引起的井喷。产生在高压下的高温流体比如过热水或蒸气的地层通常需要可承受来自溢出气体和液体的巨大向上压力的井口装置。这些井口装置可通常设计为承受高达20,OOOpsi (磅每平方英寸)的压力。井口装置由三个组件组成套管头、油管头和‘采油树’。套管头由重配件组成,其提供套管和地面之间的密封。套管头也用于支撑沿井筒向下的套管。该件设备通常包含夹持机构,其确保头和套管本身之间的紧密密封。综述本技术的示例性实施方式提供使用炸药增强从地下地层生产烃的方法。炸药策略上放置在许多从一个或多个主井筒中钻出的横向井筒中,以便爆炸效果在横向井筒之间被放大并加强,因而压裂大岩石块。可通过各种技术从主井筒钻出横向井筒,比如挠性管喷射钻井。炸药可以为基于高爆炸性碎甲弹(high explosive squash head(HESH))军火的炸药形式。碎甲弹炸药可将来自爆炸的更多能量集中至储层岩石,产生更大的压裂。
碎甲弹炸药也可配置用于爆炸输送支撑剂进入爆炸形成的压裂中,减少或甚至消除水力流体的使用。水力流体的减少可减少由于流体自吸引起的渗透性降低的可能性。但是,技术不限于消除水力压裂,因为爆炸压裂可结合二次水力压裂以进一步压裂岩石并运输支撑剂进入压裂。该技术可用于打开需要增产的低渗透性含气地层(例如,致密砂、页岩)O图I是按照本技术的示例性实施方式的储层的图。图100显示经过上覆岩层106向下钻至储层104的井102。在地面108,井口装置110可连接设施112,其用于处理采出液,例如,在通过管道114输送气体之前干燥和压缩天然气。本技术不限于单井102或烃生产,因为它们可用于其他构造和应用。例如,在一种示例性实施方式中,本文公开的爆炸压裂技术可用于增强从热岩层中生产地热加热的流体。在地热能生产中,可使用多个井,部分井注入流体以被地层加热并且部分井收获地热加热的流体。因此,注入井和生产井之间密集的压裂网络可提高效率并增加储层的寿命。
井102可具有多个主井筒116,其从井102分叉以排出储层104的其他部分。一般而言,如果使用水力压裂,由于在分支点118使用的配件成本,多个分支增加了完井102的成本。例如,配件必须具有足够的强度以耐受用于在岩石中通过水力压裂产生压裂网络的压力。因此,如果使用水力压裂,钻许多没有分支的单个井比将高压力配件放置在分支井中可能更经济。因此,如本文描述的用于形成密集的压裂网络的技术可允许从单井102中钻多个主井筒116,而不需要昂贵的接头,并因此,允许用单井消耗更大部分的储层。多个横向井筒的顺序引爆图2是按照本技术示例性实施方式的储层的俯视图,显示从主井筒的每个邻近段钻出的多个横向井筒。俯视图200图解许多横向井筒202,其可从每个主井筒116钻出。横向井筒202可以平行阵列布置或以不同的角度错列。进一步,横向井筒202可与主井筒116垂直。在其他实施方式中,主井筒116可以是垂直的,并且在基本上水平位置钻出横向井筒202。对于具体储层的主井筒116和横向井筒202的排列可通过高级地质力学模拟或实验确定。在本技术的示例性实施方式中,当从主井筒116中钻井出现任何弯曲时,横向井筒202与主井筒116基本上垂直。换句话说,在与主井筒116相对的横向井筒202末端的横向井筒202的中心线可基本上与主井筒116垂直。在本技术的示例性实施方式中,基本上垂直指在与主井筒116相对的横向井筒202末端的横向井筒202的中心线在围绕从主井筒116中画出的垂线约30°的锥体内。取决于用于形成横向井筒202的钻井技术,越靠近主井筒116,横向井筒202的角度越小。可使用可从主井筒116中向外钻井的诸多技术进行横向井筒202的钻井,包括,例如挠性管喷射钻井或机械钻井。在横向井筒202从主井筒116钻井之后,炸药可放入横向井筒202。在炸药在适当的地方之后,它们可被同时或按照为局部地质优化的指定顺序引爆。同时或按顺序的引爆可产生横向井筒202之间压裂204的密集网络。连接横向井筒202或横跨多个横向井筒202的压裂204可允许烃(或其他采出液)流至横向井筒202并进入主井筒116,以在井口装置110处生产。图3是按照本技术示例性实施方式的具有许多横向井筒202的一个主井筒116的俯视图300,显示按顺序引爆横向井筒202中的炸药。在该视图300中,从主井筒116延伸许多横向井筒202,其每一个具有两个炸药302。如在该视图300中所显示,所有的炸药可同时引爆。但是,技术不限于该构造,因为许多其他构造可通过模拟或实验识别。例如,尽管每侧显示2个炸药,但是可使用许多炸药。在一些实施方式中,在每侧可具有5、10、20、50或更多的炸药。如对于图4进一步讨论的,同时引爆可造成压力波的相长和相消干涉。压力波的干涉相对于在每个横向井筒202中引爆单个炸药可增加炸药的压裂岩石的效力。图4是按照本技术示例性实施方式的图3的侧视图400,显示横向井筒202中从爆炸发射的多个冲击波402。由于相长和相消干涉,冲击波402可在交叉点404 (例如,横向井筒202之间)具有累积效果。因此,多个冲击波402可比在单个横向井筒202中的单个爆炸以距横向井筒202更大的距离促进压裂。作为例子,在井筒中单个点使用甘油炸药,IOcm直径井眼可产生在爆炸之外飞米的压裂。如下面就图6-9所讨论,由于从横向井筒202向外的爆炸能的聚集,碎甲弹炸药可产生更大的压裂距离。碎甲弹炸药的爆炸可产生从爆炸向外Γ30米的压裂。横向井筒202之间的同时或定时引爆的使用可增加有效的断裂带,因为来自单个横向井筒202的震动前 沿波彼此增强。例如,冲击波402的干涉可使由碎甲弹炸药爆炸产生的断裂带从每个横向井筒202延伸至〉 50米。图5是按照本技术的示例性实施方式在储层中压裂岩石的方法500。方法开始于方框502,钻出至少一个主井筒。在一种示例性实施方式中,主井筒包括许多相邻的从主井筒分支的井筒,例如形成水平部分。在方框504,从主井筒钻出多个横向井筒,例如,使用挠性管喷射钻井。在方框506,将炸药弹(explosive shell)放置在横向井筒中。炸药可配置为碎甲弹炸药以增加输入岩石层的能量,如本文所讨论。在方框508,在横向井筒中的所有炸药可被同时引爆或炸药可被以限定的顺序引爆以建立增强的冲击波,在岩石中产生压裂。在方框510,支撑剂可通过在推进剂炸药爆炸期间形成的进入爆炸形成的压裂的高速气体携带进入压裂。碎甲弹炸药井筒中炸药的爆炸以短时间推动力输送大量的能量。短时间的推动力往往支配井眼壁中裂缝的开始,其可克服地层中残留构造应力的影响。换句话说,压裂可从爆炸点在随机方向上发散,而不是初始压裂方向由原位应力控制,如可在水力压裂中出现的。但是,使用大的常规或成形炸药可超过紧邻的井眼壁地层的应力,形成大量的碎石。结果是过多的能量消耗在井筒附近而没有有用的结果。所得压裂不深入延伸至井眼周围的地层中。将高爆炸性碎甲弹军火用于岩石压裂可减轻这种不足。图6是可用在本技术示例性实施方式中的合适的碎甲弹炸药600的示意图。碎甲弹炸药600可组装在筒602中。筒602可由具有足够的强度以限制并将爆炸引入岩层的材料构成,比如钢、其他金属,或高性能塑料,比如聚苯硫(PPS)。筒602可具有盖子604以将内容物保留在合适的位置并防止其在放置期间受损。盖子604的材料不必与筒602的相同,但可为较弱的材料,比如聚乙烯或其他塑料、薄金属层或其他合适的材料,以允许当推进炸药606爆炸时以低能量破坏。在爆炸期间,推进炸药606由电触发的导火器608引燃,所述电触发的导火器608与引信610通过例如电线611电连接。电线611可连接至引信610内的一个爆炸电路,而其他炸药(比如推进剂炸药)可与其他爆炸电路连接。推进炸药606的爆炸以低速度(约200至400英尺/秒)推动大量的塑料炸药612。塑料炸药612被推动经过盖子604,变形为紧靠例如横向井筒内岩层表面的盘状物。嵌入塑料炸药612中的导火器614随着塑料炸药612向着岩层压平或挤压被冲击波点燃,触发塑料炸药612的爆炸。因为压平的塑料炸药612的大表面积和与岩层的直接接触,高强度的冲击波有效地传入岩层。如果不被支撑开,从储层岩石刺激产生的压裂可能关闭。由爆炸造成的岩层中岩石的破碎和物理旋转可起到支撑开压裂的作用。但是,压裂可通过注入刚性固体比如在水力压裂中使用的那些可更有效地支撑开。合适的碎甲弹炸药600可具有位于推进炸药606后面的支撑剂616包和二次炸药618。在塑料炸药612的爆炸之后,二次炸药618可被二次点火器620触发,例如,通过推进剂引爆线621,以爆炸驱动支撑剂616进入由来自碎甲弹爆炸的冲击波形成的压裂。推进剂引爆线621可连接与电线611不同的爆炸电路。支撑剂616可以是任何惰性材料,其具有足够的强度以承受地层压力而不被压碎,比如砂、玻璃珠、陶瓷颗粒或许多其他材料。进一步,支撑剂616可包括高能材料622以进一步诱导压裂。高能材料622可例如通过由二次炸药618点燃的定时燃烧导火索触发。包含配置来在嵌入之后爆炸的高能材 料622的支撑剂616的使用可进一步压裂储层岩石。高能材料622可能不侵入压裂很远,但可在井筒附近提供结构空白以延迟压裂的关闭。从炸药层的能量转移如上讨论,碎甲弹炸药设计为使一定量塑料炸药紧靠目标如地层中的岩石壁压平。由于该原因,碎甲弹炸药赋予Misznay - Schardin效应或浅盘效应(platter effect)。虽然来自常规圆形炸药的爆炸通常在所有方向上扩张,但是浅盘效应造成来自炸药层的炸药爆炸从炸药表面(或与炸药表面垂直)扩张开。如果一侧被重的或固定的物体比如筒602支撑,爆炸的力(即,大部分快速膨胀的气体和相关的动能)将直接从其离开并进入岩层。通过在爆炸之前,使塑料炸药压扁在岩石壁面上,与常规爆炸相比,总爆炸能的更大部分转变成从井筒传播开的冲击波。沿着横向井筒的长度产生的冲击波将彼此交叉和加强,形成涵盖大量目标岩石块的压裂网络。扁平炸药比常规炸药可在地层中产生更高的地震效应,在岩石中形成更复杂和结构化的断裂带。见 Adushkin, V.,Budkov, A.和 Kocharyan, G.,“Features of formingan explosive fracture zone in a hard rock mass,,,Journal of Mining Science43, 273-283 (2007);也见 Saharan, M. R.,Mitri, H. S.,Jethwa, J. L.,“Rock fracturing byexplosive energy: review of state-of-the-art,,,Fragblast: International Journalfor Blasting and Fragmentation 10,61-81(2006)。这可通过比较在硬岩石和软岩石中常规炸药和扁平炸药的爆炸的能量分布的图更进一步理解。图7是显示井筒中爆炸的能量分布的图700。在图700中,x轴702表示膨胀气体的体积,其可认为是来自爆炸的能量的代表。y轴704表示井眼压力,其随着井筒深度的增加而增加。在任何爆炸中,仅仅一部分能量可用于压裂岩石。例如,如在图700中所显示,驱动爆炸的冲击波能量706可小于总能量的约5%。相比之下,用于压裂产生的冲击波能量708可小于总能量的约25%并且用于压裂传播的冲击波能量710可小于总能量的约40%。因此,在常规爆炸中,40%至60%的化学能作为噪声、热、光和其他能量被浪费,如由参看数字712所指示。但是,随着地层中压力增加或随着岩石硬度降低或地层压力增加,可用的能力甚至更少。图8A是常规炸药在坚硬岩石层中引爆的能量分布的图。如图8A中所显示,随着地层中井眼压力704增加,在驱动爆炸中更多的能量806可能被消耗。这留下更少的可用能量用于产生压裂808和用于传播压裂810。这可能是更高地层压力的结果,其压缩从爆炸释放的气体,导致较少的气体用于能量转移至岩石。在更软的岩石中,爆炸在压裂岩石中的效力减弱。图8B是在软岩石层中常规炸药爆炸的能量分布图。如图SB中所显示,比起坚硬岩石,在软岩石中驱动爆炸812耗费的能量可进一步增加,这是因为由于软岩石的变形引起的能量耗散。因此,更少的能量可用于产生压裂814和用于传播压裂816。图9是软岩石层中平炸药层的能量分布的图。尽管驱动爆炸耗费的能量902的量可与在常规炸药爆炸期间耗费的812 (图SB)类似,但是更大量的能量可在形成岩层中压裂904中耗费。比用于在软岩石中常规炸药的爆炸816,稍微较少的能量耗费在传播压裂906中。因此,在压裂软岩石层中,浅盘爆炸(platter explosion)比常规炸药可更有效。因此,在关于图1-3讨论的井构造中使用碎甲弹炸药输送炸药可产生更大量的在从主井筒中延伸的多个横向井筒之间相互连接的压裂。在本技术的示例性实施方式中,对常规炸药反 应差的延展性页岩可进行增产措施,以进行烃生产。可包含碎甲弹炸药的完井工具为了有效,碎甲弹炸药应当与包含塑料炸药的部分一起送入横向井筒,面向岩层表面。许多系统可用在本技术的示例性实施方式中,下面就图10-12讨论其中的两个。可使用的输送系统不限于这些系统,因为本领域技术人员可识别可使用的诸多其他系统和构造。图10是按照本技术示例性实施方式的容纳许多碎甲弹炸药1002用于插入横向井筒的工具1000。在一种示例性实施方式中,至少一些碎甲弹炸药1002具有就图6讨论的构造。在其他实施方式中,一些或所有的所述炸药可抵消支撑剂616和二次炸药618。工具1000可具有框架1004,其通常容纳排列的碎甲弹炸药1002,当插入井筒时使每个碎甲弹炸药1002面向岩石面。框架1004可由柔性材料比如橡胶或塑料制成以使工具1000插入致密空间。在其他实施方式中,框架1004可由金属制成并可在沿着工具1000的各个点铰链,比如在每组炸药之间、在每个其他组炸药之间、在中途点,或在可用于将工具1000插入横向井筒的任何其他点处。如果工具1000包含许多碎甲弹炸药1002,比如10组四个碎甲弹炸药1002、20组四个碎甲弹炸药1002,或更多,这是有用的。在其他实施方式中,例如,如果工具1000包含更少的碎甲弹炸药1002,比如7组四个碎甲弹炸药1002、5组四个碎甲弹炸药1002或2组四个碎甲弹炸药1002,框架可以是刚性的。工具1000中或每个组中碎甲弹炸药1002的数量不限于这些实例,因为取决于如通过模拟和数据确定的地层的特性可选择任何数量。该炸药弹可指向多个方向。在图10中所显示的示例性工具1000中,碎甲弹炸药1002指向是90°间隔。但是,取决于地层和井筒构造,可使用各个碎甲弹炸药1002的许多其他方位。电总线1006可沿着工具1000的中心向下行进,以点燃碎甲弹炸药1002,如就图11进一步讨论的。图11是按照本技术示例性实施方式的图10工具1000的正视图。每个碎甲弹炸药1002的引信610(图6)可与沿着工具内部长度行进的电总线1006连接。电总线1006可例如通过沿井筒向上返回的电缆与地面的控制器连接。在其他实施方式中,可消除到地面的电缆,如就图12所讨论的。图12是按照本技术示例性实施方式的可用于在横向井筒中放置炸药的另一工具1200的图。工具1200可具有箱体1202,其具有圆形的头锥体1204。该形状可允许更容易地将工具1200插入横向井筒。例如,携带许多工具1200的流体可流入井筒,其可导致工具1200被携带进入横向井筒。每个工具1200可包含一个或多个碎甲弹炸药600,如就图6所讨论。在其他实施方式中,炸药的构造可抵消支撑剂616和二次炸药618。尽管在工具1200中显示了 2个碎甲弹炸药600,但是取决于工具1200期望的流动特性,可包括任何数量的碎甲弹炸药600。每个碎甲弹炸药600的引信610可与控制单元1206例如通过内部电总线1208连接。控制单元1206可通过电缆与地面连接,但是在一些实施方式中可不使用电缆。例如,在一种示例性实施方式中,为了利于无线构造,可去除电缆。在该构造中,可包括电源1210,比如电池组,以为控制单元1206供电。接收器1212可包括在工具1200中,并且与控 制单元1206连接以为控制单元1206提供信号,从而启动爆炸顺序。接收器1212可包括例如脉冲探测器、超声探测器或声音探测器等。因此,爆炸可通过控制信号启动,控制信号可以是从地面沿流体柱向下携带的一序列压力波。尽管本技术可进行各种修改和可选的形式,但上面讨论的示例性实施方式已仅仅通过举例进行说明。但是,应当再次理解,本技术不意欲限于本文公开的具体实施方式
。事实上,本技术包括落在所附权利要求真正精神和范围内的所有的备选型、改型和等同物。
权利要求
1.用于爆炸压裂储层的系统,其包括 碎甲弹炸药;和 配置来使所述碎甲弹炸药朝向所述储层的井筒中岩石面的框架。
2.根据权利要求I所述的系统,其包括与所述碎甲弹炸药连接的内部电总线,其中所述内部电总线配置来携带点火信号至点火药以引爆所述碎甲弹炸药。
3.根据权利要求2所述的系统,其包括 与所述内部电总线连接的控制器;和 通过所述井筒使控制器与地面连接的电缆,其中所述电缆配置来携带信号至控制器,以触发所述点火信号。
4.根据权利要求2所述的系统,其包括 与所述内部电总线连接的控制器;和 与所述控制器连接的接收器;其中所述接收器配置来探测信号脉冲以触发来自所述控制器的点火信号。
5.根据权利要求4所述的系统,其包括与所述控制器和所述接收器连接的便携式电源。
6.根据权利要求I所述的系统,其包括推进剂炸药,其将支撑剂推入通过所述碎甲弹炸药的爆炸在岩石面中导致的压裂。
7.根据权利要求6所述的系统,其中所述支撑剂包括砂、玻璃珠、陶瓷颗粒或其任何组入口 o
8.根据权利要求6所述的系统,其中所述支撑剂包括配置来在压裂中引爆的高能材料。
9.根据权利要求I所述的系统,其中所述框架包括配置来使所述碎甲弹炸药通过流体流动输送进入所述井筒的箱体。
10.根据权利要求I所述的系统,其中所述井筒包括从主井筒钻出的横向井筒。
11.压裂储层中岩石的方法,其包括 钻一个或多个进入储层的井,其中至少一个所述井包括主井筒,两个或更多个横向井筒从所述主井筒钻出,其中在与所述主井筒相对的每个横向井筒末端的中心线在与所述主井筒垂直的约30°的锥形之内; 将一个或多个炸药放置在所述两个或更多个横向井筒的每一个中;和引爆所述炸药,以产生压力脉冲,该压力脉冲至少部分压裂两个或更多个横向井筒之间的岩石,其中所述引爆被定时,使得发射自不同横向井筒的一个或多个压力脉冲相互作用。
12.根据权利要求11所述的方法,进一步包括钻出从至少一个所述井分支的多个主井筒,其中所述多个主井筒基本上彼此平行,并且所述多个主井筒的每个与多个横向井筒连接。
13.根据权利要求11所述的方法,进一步包括使用机械钻头钻出所述横向井筒。
14.根据权利要求11所述的方法,进一步包括使用喷水器钻出所述横向井筒。
15.根据权利要求11所述的方法,进一步包括基本上同时引爆所述炸药。
16.根据权利要求11所述的方法,进一步包括使用水力压裂技术将支撑剂放入由所述压力脉冲导致的压裂中。
17.根据权利要求11所述的方法,其中所述主井筒与岩层中最低水平应力的方向基本上平行。
18.根据权利要求11所述的方法,其中所述主井筒与岩石中最低水平应力的方向基本上垂直。
19.根据权利要求11所述的方法,其中从主井筒钻出所述横向井筒,使得三个或更多个所述横向井筒基本上形成平面。
20.根据权利要求19所述的方法,其中所述平面基本上是水平的。
21.根据权利要求19所述的方法,其中所述平面基本上是垂直的。
22.根据权利要求11所述的方法,其中所述炸药括碎甲弹炸药。
23.根据权利要求11所述的方法,进一步包括按顺序引爆所述炸药,所述顺序已基于所述压力脉冲的计算机模拟和最大相长干涉的强度和节点分布优化。
24.根据权利要求11所述的方法,包括通过使携带所述炸药进入所述横向井筒的流体流动,将所述炸药放置在所述横向井筒中。
25.从地下岩层收获产出液的方法,其包括 钻出进入地层的井,其中所述井包括主井筒; 从所述主井筒钻出两个或更多个横向井筒,其中每个所述横向井筒与所述主井筒基本上垂直; 将携带碎甲弹炸药的工具放入每个所述横向井筒中; 以定时的顺序引爆所述碎甲弹炸药,所述顺序配置来使来自所述碎甲弹炸药的冲击波与来自另一碎甲弹炸药爆炸的第二冲击波相互作用;和从所述地下岩层提取所述产出液。
26.根据权利要求25所述的方法,包括引爆推进剂炸药,所述推进剂炸药配置来将支撑剂推入由所述碎甲弹炸药的爆炸形成的压裂中。
全文摘要
提供压裂地层中岩石以增强从地层生产流体的方法和系统。在一种示例性方法中,一个或多个井被钻入储层,其中每个井包括主井筒,两个或更多个横向井筒从主井筒钻出。一个或多个炸药放置在所述两个或更多个横向井筒的每个中,并且引爆炸药以产生压力脉冲,该压力脉冲至少部分压裂两个或更多个横向井筒之间的岩石。所述引爆是定时的,使得从不同横向井筒发射的一个或多个压力脉冲相互作用。
文档编号E21B43/263GK102803650SQ201180014757
公开日2012年11月28日 申请日期2011年2月17日 优先权日2010年3月19日
发明者C·沃尔特斯, N·H·崔, M·E·麦克拉肯, J·H·摩斯 申请人:埃克森美孚上游研究公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1