基于裂隙观测的多段式分级降压注水的观测方法与流程

文档序号:15628500发布日期:2018-10-12 20:00阅读:130来源:国知局

本发明属于岩体渗透性测定技术领域,具体涉及基于裂隙观测的多段式分级降压注水的观测方法。



背景技术:

矿山底板采动裂隙带深度的测量是标志煤岩赋存状态的重要参数。在研究矿井防治水时,它是一个关键性的基础参数,因此为研究采动围岩中的导水通道的形成,就有必要掌握岩层移动规律和确定采动破坏带的高度测定。现场探测所采用的以“双端封堵测漏装置”为代表本的系列探测设备,存在外端接多个操作与控制系统,对应内至少存在2根及其上的管道,操作过程麻烦且存在绕线问题,在观测过程中稳定性较差。在系列产品中,虽能解决单回路问题,但存在水压转换幅度较大,转换过程稳定性不好,不宜控制水压,易导致机械故障。,现有技术未能同时解决上述问题。



技术实现要素:

本发明的目的在于提供一种基于裂隙观测的多段式分级降压注水的观测方法。

本发明的技术方案:

一种基于裂隙观测的多段式分级降压注水的观测方法,所用的装置包括测试探头、推进系统和控制系统;

所述的测试探头包括封堵器、分压总成49和连通管28,封堵器进一步包括前部封堵器35、中部封堵器36和尾部封堵器37,前部封堵器35、中部封堵器36、尾部封堵器37与钻孔之间形成一号注水空腔29和二号注水空腔34;分压总成49安装在前部封堵器35、中部封堵器36的尾部,由初级转换器6和二级转换器39构成,将连通管28内的高压水源分级转换至低压水源流入一号注水空腔29和二号注水空腔34内进行探测;封堵器包括漏水管3、橡胶囊5和连接在漏水管3两端的系列接头,橡胶囊5包绕在漏水管3外部,通过紧固圈24固定在接头两端,与漏水管3之间形成封堵空腔30;

所述的推进系统包括钻机14和钻杆12,钻杆12为空心杆,其内部可输送高压水源,与测试探头呈螺纹连接,钻机14通过钻杆12用以推进测试探头至钻孔指定区域;

所述的控制系统包括控制操作台38,包括放水开关15、流量表16、机械压力表17、电子压力表19和总控开关18,通过高压软管13与钻杆12连接,负责提供指定压力的外界水源,通过钻杆12流入测试探头;

所述的前部封堵器包括接头一2、漏水管3、接头二4和橡胶囊5,接头一2、接头二4与漏水管3呈螺纹连接,橡胶囊5包绕在漏水管3外部,通过紧固圈24固定在接头一2和接头二4的外部,与漏水管3间形成封堵空腔30;接头一2外端螺纹连接引导头1,引导头1起导向作用,用以引导测试探头在钻孔31中平顺滑动;

所述的中部封堵器36包括接头二4、漏水管3、接头三7和橡胶囊5,橡胶囊5通过紧固圈24固定在接头二4和接头三7的外部,漏水管3上开有漏水孔25;

所述的尾部封堵器37包括两个接头三7、漏水管3和橡胶囊5,橡胶囊5通过紧固圈24固定在两个接头三7之间;接头三7外部螺纹连接一个圆形挡板11,圆形挡板11直径较橡胶囊5直径大,阻止橡胶囊5脱落;圆心挡板11与接头三7呈螺纹连接,可拆卸以便于与更换橡胶囊5;

外界水源通过前部封堵器35、中部封堵器36和尾部封堵器37中漏水孔25进入封堵空腔30,起胀对应橡胶囊5分别与钻孔31之间形成一号注水空腔29和二号注水空腔34;

所述的分压总成49左右两端分别与连通管28、接头二4呈螺纹连接,将连通管28中的高压水源依次经初级转换器6、二级转换器39分级转换至低压水源输送至注水空腔内;

所述的初级转换器6开有一个中心通孔32和四个周边通孔33,四个周边通孔33对称分布于中心通孔32周围;

所述的中心通孔32为阶梯孔,左端孔径小于右端孔径,周边通孔33侧壁开有一侧漏孔20;

所述的周边通孔33内依次安装有转换体10、内弹簧9和调节螺丝8,周边通孔33左侧内壁设置螺纹,与调节螺丝8相配合,使调节螺丝8在周边通孔33一定范围内旋转压缩内弹簧,控制转换体10的开启压力;

所述的调节螺丝8侧壁开有六角通孔21,便于旋转调节螺丝8、且使反馈水压作用于转换体10左端面;

所述的转换体10呈不等直径圆柱体,其左端面直径大于右端面直径,在不等直径圆柱过渡处即为密封锥面26,与周边通孔33内壁的密封锥面26相吻合,密封锥面26呈30°角;

所述的转换体10内开有“l”形一号通水孔29,在靠近转换体10左端面的圆柱形外表面开有环形水槽22,一号通水孔29与环形水槽22相连通,在外界水源推动下,转换体10向左移动时,使环形水槽22与侧漏孔20相连通;

所述的二级转换器39包括外环基体40、内环基体41、转换环42、外弹簧47和十字丝套48,外环基体40右端内壁设置有螺纹,套在初级转换器6右端的外壁上,与初级转换器6之间形成中继腔50;侧漏孔20、六角通孔21与中继腔50相连通;

所述的内环基体40呈圆柱环状,其内壁设置有螺纹,包绕在连通管28外壁,外壁设置有四个凸台46,以限制转换环42的向左最大移动范围;内环基体41管壁内设置有集水槽44、分水孔45,分水孔45数量为4个,分别与集水槽44垂直相通,将集水槽44中的水分流排出;

所述的转换环42位于外环基体40与内环基体41中间,沿内环基体41表面左右滑动;

所述的转换环42内对应开有四个“l”形二号通水孔43,当转换环向左移动,二号通水孔43与集水槽44相连通,将中继腔60内的高压水源输送至集水槽44内,此时转换环42左端面恰与凸台46接触;转换环42左端面较右端面直径大,中间连接部位设置与外环基体40配合的密封锥面26;

所述的外弹簧47位于转换环42和十字丝套48之间,其直径与转换环42左端面直径相等;

所述的十字丝套48呈“十字形”,中间部位呈圆形,内壁设置螺纹,与内环基体41相配合,利用外部工具使十字丝套48在其上旋转,改变外弹簧47压缩程度以控制转换环42的开启压力;

所述的初级转换器6工作原理:

(1)当转换体10满足p中s体左+k内x≤p右s体右时,则转换体10向左移动,环形水槽22与侧漏孔20连通,向中继腔50内供水,实现初级降压;

(2)当转换体10满足p中s体左+k内x≥p右s体右时,则转换体10向右移动,环形水槽22被周边通孔33内壁封闭,停止向中继腔50内供水;

(3)若p右过大,为防止p右极端水压通过分压总成49对注水空腔部分的钻孔31内壁造成破坏,则在外界水源作用下,转换体10向左移动,直至环形水槽22移动到侧漏孔20的左端,与周边通孔33内壁形成再次封闭作用;

其中,p中为中继腔水源压力,一般为0.8~1mpa左右;p右为连通管内供给水源压力,一般为1.5mpa左右,s体左为转换体左端面面积,s体右为转换体右端面面积,k内为内弹簧的弹性系数,x为压缩量;

所述的二级转换器39工作原理:

(1)当转换环42满足p左s环左+k外x≤p中s环右时,则转换环42向左移动,二号通水孔43与集水槽44连通,通过分水孔45向注水空腔进行注水观测,实现二级降压;

(2)当转换环42满足p左s环左+k外x≥p中s环右时,则转换体42向右移动,二号通水孔43被内环基体41外壁封闭,停止向注水空腔供水;

其中,p左为注水空腔观测水源压力,一般为0.2~0.5mpa左右;p中为中继腔水源压力,一般为0.8~1mpa左右,s环左为转换环左端面过水面积,s环右为转换环右端面过水面积,k外为外弹簧的弹性系数,x为压缩量;

所述的控制操作台38包括放水开关15、流量表16、机械压力表17、总控开关18和电子压力表19,放水开关15负责推进测试结束后将测试探头内压力水释放,使橡胶囊5与钻孔31脱离接触,便于钻机14推进测试探头;总控开关18负责外界水源的停供,流量表16负责检测外界水源向测试探头输入实时水量,机械压力表17与电子压力表19的示数相互对比检验,若大致相当,则表明压力有效。

具体步骤如下:

(1)施工钻孔(31):按照预先设计的施工要求,利用钻机(14)在待测岩体(27)区域施工不同方位和倾角a的钻孔3~5个,钻孔(31)直径为89mm,长度为70m左右,并清理钻孔(31)内的碎屑;

(2)安装设备:安装测试探头各部件,并依次连接钻机(14)、钻杆(12)、高压软管(13)及控制操作台(38),然后利用钻机(14)将测试探头移送至钻孔(31)的初始位置;

(3)密封检验:首先关闭控制操作台(38)的放水开关(15),打开总控开关(18),向测试探头提供检测水压,对橡胶囊(5)进行封堵密封性检验,若无明显漏水现象,则进行下一步操作,否则返回步骤(2)操作,检查各部件间的连接及安装情况,直至合格为止;

(4)进行压水观测:密封检验合格后,进行压水试验,使测试探头处于初始位置,重新关闭控制操作台(38)上的放水开关(15)并打开总控开关(18),向测试探头提供高压水源,经连通管(28)、漏水管(3)进入封堵空腔,起胀前部封堵器(35)、中部封堵器(36)和尾部封堵器(37)的橡胶囊(5),分别与钻孔(31)形成一号注水空腔(29)和二号注水空腔(34),调节外界水源压力逐渐升高至1.5mpa,此时仅一号注水空腔(29)压力的分水总成(49)开启,向一号注水空腔(29)内注水,待流量表示数稳定后,记录此时稳定时流量表的示数qi1,继续升高外界水源压力至1.7mpa,此时由于压力升高致使一号注水空腔(29)的初级转换器(6)关闭,停止向一号注水空腔(29)供水,而二号注水空腔(34)的分压总成(49)开启,向二号注水空腔(34)内注水,待流量表示数稳定后,记录此时稳定时流量表的示数qi2,并记录探测距离li1和li2;

(5)卸压推进:关闭总控开关(18),打开放水开关(15),释放封堵空腔(30)压力,待橡胶囊(5)与钻孔(31)脱离接触后,关闭放水开关(15),取另一钻杆(12)接长测试探头,利用钻机(14)推进测试探头至下一探测区域,重复步骤(4)操作,直至测完钻孔长度为止;

(6)计算分析:根据钻孔(31)长度及对应观测孔段漏水量,分别绘制不同钻孔内流量分布图,分析钻孔长度范围内不同位置的裂隙发育特征和渗透特性,进一步结合不同方位的钻孔倾角a和累计连续漏水段长度ln1+ln2(n=1+2+....+k),计算得到不同空间范围岩体的破坏范围。

本发明的有益效果:

(1)本发明提出了基于裂隙观测的多段式分级降压注水装置,与现有技术相比,该装置实现了测试探头的的封堵测试一体化,减少了钻孔内同时工作的管道数量为1根,解决了推进过程中钻孔内多管道相互缠绕问题,提高了岩体破坏范围测量过程的稳定性。

(2)该装置实现了利用同一外界水源,使观测过程和封堵过程在各自压力下工作问题,且可以避免观测水源压力过高对钻孔裂隙的破坏作用,提高了岩体破坏范围测量过程的精确性。

(3)该装置采用初级转换器和二级转换器进行梯度压力转换,配合密封锥面设计,提高了分压总成工作过程的稳定性,通过螺丝(十字丝套)调节弹簧压缩程度,控制转换体(环)具有不同的开启和转换压力,使调压范围更为广泛,可适应不同的工作需求。

(4)环形水槽和集水槽的设计,可以解决通水孔与出水口不对应问题,保证无论转换体(环)如何转动,其通水孔中的水都可以通过环形水槽流向转换器出口。

(5)该装置实现了一次推进多段依次测量过程,提高了每次推进观测效率,相对传统装置相比,提高了探测速度,缩短了探测时间。

附图说明

图1为本发明基于裂隙观测的多段式分级降压注水装置的整体结构及观测状态示意图;

图2为本发明基于裂隙观测的多段式分级降压注水装置的卸压推进状态示意图;

图3为本发明基于裂隙观测的多段式分级降压注水装置测试探头的结构示意图;

图4为本发明基于裂隙观测的多段式分级降压注水装置前部封堵器结构示意图;

图5为本发明基于裂隙观测的多段式分级降压注水装置中部封堵器结构示意图;

图6为本发明基于裂隙观测的多段式分级降压注水装置尾部封堵器结构示意图;

图7为本发明基于裂隙观测的多段式分级降压注水装置分压总成结构示意图;

图8(a)为本发明基于裂隙观测的多段式分级降压注水装置初级转换器主视图;

图8(b)为本发明基于裂隙观测的多段式分级降压注水装置初级转换器侧视图;

图9(a)为本发明基于裂隙观测的多段式分级降压注水装置初级转换器静止状态图;

图9(b)为本发明基于裂隙观测的多段式分级降压注水装置初级转换器工作状态图;

图10(a)为本发明基于裂隙观测的多段式分级降压注水装置转换体结构主视图;

图10(b)为本发明基于裂隙观测的多段式分级降压注水装置转换体结构后视图;

图10(c)为本发明基于裂隙观测的多段式分级降压注水装置转换体结构侧视图;

图11(a)为本发明基于裂隙观测的多段式分级降压注水装置调节螺丝结构主视图;

图11(b)为本发明基于裂隙观测的多段式分级降压注水装置调节螺丝结构侧视图;

图12为本发明基于裂隙观测的多段式分级降压注水装置二级转换器结构示意图;

图13为本发明基于裂隙观测的多段式分级降压注水装置转换环结构示意图;

图14(a)为本发明基于裂隙观测的多段式分级降压注水装置内环基体结构主视图;

图14(b)为本发明基于裂隙观测的多段式分级降压注水装置内环基体结构侧视图;

图15为本发明基于裂隙观测的多段式分级降压注水装置十字丝套结构示意图;

图中:1引导头;2接头一;3漏水管;4接头二;5橡胶囊;6初级转换器;7接头三;8调节螺丝;9内弹簧;10转换体;11圆形挡板;12钻杆;13高压软管;14钻机;15放水开关;16流量表;17机械压力表;18总控开关;19电子压力表;20侧漏孔;21六角通孔;22环形水槽;23一号通水孔;24紧固圈;25漏水孔;26密封锥面;27待测岩体;28连通管;29一号注水空腔;30封堵空腔;31钻孔;32中心通孔;33周边通孔;34二号注水空腔;35前部封堵器;36中部封堵器;37尾部封堵器;38控制操作台;39二级转换器;40外环基体;41内环基体;42转换环;43二号通水孔;44集水槽;45分水孔;46凸台;47外弹簧;48十字丝套;49分压总成;50中继腔。

具体实施方式

下面结合具体实施例对本发明做进一步详细说明。

如图1-3所示,一种基于裂隙观测的多段式分级降压注水装置,包括测试探头、推进系统和控制系统;

所述的测试探头包括封堵器、分压总成49和连通管28,封堵器进一步包括前部封堵器35、中部封堵器36和尾部封堵器37,前部封堵器35、中部封堵器36、尾部封堵器37与钻孔之间形成一号注水空腔29和二号注水空腔34;分压总成49安装在前部封堵器35、中部封堵器36的尾部,由初级转换器6和二级转换器39构成,将连通管28内的高压水源分级转换至低压水源流入一号注水空腔29和二号注水空腔34内进行探测;封堵器包括漏水管3、橡胶囊5和连接在漏水管3两端的系列接头,橡胶囊5包绕在漏水管3外部,通过紧固圈24固定在接头两端,与漏水管3之间形成封堵空腔30;

所述的推进系统包括钻机14和钻杆12,钻杆12为空心杆,其内部可输送高压水源,与测试探头呈螺纹连接,钻机14通过钻杆12用以推进测试探头至钻孔指定区域;

所述的控制系统包括控制操作台38,包括放水开关15、流量表16、机械压力表17、电子压力表19和总控开关18,通过高压软管13与钻杆12连接,负责提供指定压力的外界水源,通过钻杆12流入测试探头;

所述的前部封堵器包括接头一2、漏水管3、接头二4和橡胶囊5,接头一2、接头二4与漏水管3呈螺纹连接,橡胶囊5包绕在漏水管3外部,通过紧固圈24固定在接头一2和接头二4的外部,与漏水管3间形成封堵空腔30;接头一2外端螺纹连接引导头1,引导头1起导向作用,用以引导测试探头在钻孔31中平顺滑动;

所述的中部封堵器36包括接头二4、漏水管3、接头三7和橡胶囊5,橡胶囊5通过紧固圈24固定在接头二4和接头三7的外部,漏水管3上开有漏水孔25;

所述的尾部封堵器37包括两个接头三7、漏水管3和橡胶囊5,橡胶囊5通过紧固圈24固定在两个接头三7之间;接头三7外部螺纹连接一个圆形挡板11,圆形挡板11直径较橡胶囊5直径大,阻止橡胶囊5脱落;圆心挡板11与接头三7呈螺纹连接,可拆卸以便于与更换橡胶囊5;

外界水源通过前部封堵器35、中部封堵器36和尾部封堵器37中漏水孔25进入封堵空腔30,起胀对应橡胶囊5分别与钻孔31之间形成一号注水空腔29和二号注水空腔34;

所述的分压总成49左右两端分别与连通管28、接头二4呈螺纹连接,将连通管28中的高压水源依次经初级转换器6、二级转换器39分级转换至低压水源输送至注水空腔内;

所述的初级转换器6开有一个中心通孔32和四个周边通孔33,四个周边通孔33对称分布于中心通孔32周围;

所述的中心通孔32为阶梯孔,左端孔径小于右端孔径,周边通孔33侧壁开有一侧漏孔20;

所述的周边通孔33内依次安装有转换体10、内弹簧9和调节螺丝8,周边通孔33左侧内壁设置螺纹,与调节螺丝8相配合,使调节螺丝8在周边通孔33一定范围内旋转压缩内弹簧,控制转换体10的开启压力;

所述的调节螺丝8侧壁开有六角通孔21,便于旋转调节螺丝8、且使反馈水压作用于转换体10左端面;

所述的转换体10呈不等直径圆柱体,其左端面直径大于右端面直径,在不等直径圆柱过渡处即为密封锥面26,与周边通孔33内壁的密封锥面26相吻合,密封锥面26呈30°角;

所述的转换体10内开有“l”形一号通水孔29,在靠近转换体10左端面的圆柱形外表面开有环形水槽22,一号通水孔29与环形水槽22相连通,在外界水源推动下,转换体10向左移动时,使环形水槽22与侧漏孔20相连通;

所述的二级转换器39包括外环基体40、内环基体41、转换环42、外弹簧47和十字丝套48,外环基体40右端内壁设置有螺纹,套在初级转换器6右端的外壁上,与初级转换器6之间形成中继腔50;侧漏孔20、六角通孔21与中继腔50相连通;

所述的内环基体40呈圆柱环状,其内壁设置有螺纹,包绕在连通管28外壁,外壁设置有四个凸台46,以限制转换环42的向左最大移动范围;内环基体41管壁内设置有集水槽44、分水孔45,分水孔45数量为4个,分别与集水槽44垂直相通,将集水槽44中的水分流排出;

所述的转换环42位于外环基体40与内环基体41中间,沿内环基体41表面左右滑动;

所述的转换环42内对应开有四个“l”形二号通水孔43,当转换环向左移动,二号通水孔43与集水槽44相连通,将中继腔60内的高压水源输送至集水槽44内,此时转换环42左端面恰与凸台46接触;转换环42左端面较右端面直径大,中间连接部位设置与外环基体40配合的密封锥面26;

所述的外弹簧47位于转换环42和十字丝套48之间,其直径与转换环42左端面直径相等;

所述的十字丝套48呈“十字形”,中间部位呈圆形,内壁设置螺纹,与内环基体41相配合,利用外部工具使十字丝套48在其上旋转,改变外弹簧47压缩程度以控制转换环42的开启压力;

所述的初级转换器6工作原理:

(1)当转换体10满足p中s体左+k内x≤p右s体右时,则转换体10向左移动,环形水槽22与侧漏孔20连通,向中继腔50内供水,实现初级降压;

(2)当转换体10满足p中s体左+k内x≥p右s体右时,则转换体10向右移动,环形水槽22被周边通孔33内壁封闭,停止向中继腔50内供水;

(3)若p右过大,为防止p右极端水压通过分压总成49对注水空腔部分的钻孔31内壁造成破坏,则在外界水源作用下,转换体10向左移动,直至环形水槽22移动到侧漏孔20的左端,与周边通孔33内壁形成再次封闭作用;

其中,p中为中继腔水源压力,一般为0.8~1mpa左右;p右为连通管内供给水源压力,一般为1.5mpa左右,s体左为转换体左端面面积,s体右为转换体右端面面积,k内为内弹簧的弹性系数,x为压缩量;

所述的二级转换器39工作原理:

(1)当转换环42满足p左s环左+k外x≤p中s环右时,则转换环42向左移动,二号通水孔43与集水槽44连通,通过分水孔45向注水空腔进行注水观测,实现二级降压;

(2)当转换环42满足p左s环左+k外x≥p中s环右时,则转换体42向右移动,二号通水孔43被内环基体41外壁封闭,停止向注水空腔供水;

其中,p左为注水空腔观测水源压力,一般为0.2~0.5mpa左右;p中为中继腔水源压力,一般为0.8~1mpa左右,s环左为转换环左端面过水面积,s环右为转换环右端面过水面积,k外为外弹簧的弹性系数,x为压缩量;

所述的控制操作台38包括放水开关15、流量表16、机械压力表17、总控开关18和电子压力表19,放水开关15负责推进测试结束后将测试探头内压力水释放,使橡胶囊5与钻孔31脱离接触,便于钻机14推进测试探头;总控开关18负责外界水源的停供,流量表16负责检测外界水源向测试探头输入实时水量,机械压力表17与电子压力表19的示数相互对比检验,若大致相当,则表明压力有效。

基于裂隙观测的多段式分级降压注水装置的观测方法,具体为:

(1)施工钻孔:按照预先设计的施工要求,利用钻机14在待测岩体27区域施工不同方位和倾角a的钻孔3~5个,钻孔31直径为89mm,长度为70m左右,并清理钻孔31内的碎屑;

(2)安装设备:安装测试探头各部件,并依次连接钻机14、钻杆12、高压软管13及控制操作台38,然后利用钻机14将测试探头移送至钻孔31的初始位置;

(3)密封检验:首先关闭控制操作台38的放水开关15,打开总控开关18,向测试探头提供检测水压,对橡胶囊5进行封堵密封性检验,若无明显漏水现象,则进行下一步操作,否则返回步骤(2)操作,检查各部件间的连接及安装情况,直至合格为止;

(4)进行压水观测:密封检验合格后,进行压水试验,使测试探头处于初始位置,重新关闭控制操作台38上的放水开关15并打开总控开关18,向测试探头提供高压水源,经连通管28、漏水管3进入封堵空腔,起胀前部封堵器35、中部封堵器36和尾部封堵器37的橡胶囊5,分别与钻孔31形成一号注水空腔29和二号注水空腔34,调节外界水源压力逐渐升高至1.5mpa,此时仅一号注水空腔29压力的分水总成49开启,向一号注水空腔29内注水,待流量表示数稳定后,记录此时稳定时流量表的示数qi1,继续升高外界水源压力至1.7mpa,此时由于压力升高致使一号注水空腔29的初级转换器6关闭,停止向一号注水空腔29供水,而二号注水空腔34的分压总成49开启,向二号注水空腔34内注水,待流量表示数稳定后,记录此时稳定时流量表的示数qi2,并记录探测距离li1和li2;

(5)卸压推进:关闭总控开关18,打开放水开关15,释放封堵空腔30压力,待橡胶囊5与钻孔31脱离接触后,关闭放水开关15,取另一钻杆12接长测试探头,利用钻机14推进测试探头至下一探测区域,重复步骤(4)操作,直至测完钻孔长度为止;

(6)计算分析:根据钻孔31长度及对应观测孔段漏水量,分别绘制不同钻孔内流量分布图,分析钻孔长度范围内不同位置的裂隙发育特征和渗透特性,进一步结合不同方位的钻孔倾角a和累计连续漏水段长度(即漏水量突变零点)ln1+ln2(n=1+2+....+k),计算得到不同空间范围岩体的破坏范围。

本发明中未述及的部分采用或借鉴已有技术即可实现。

尽管本文中较多的使用了诸如转换体10、分压总成49、初级转换器6等术语,但并不排除使用其它术语的可能性,本领域技术人员在本发明的启示下对这些术语所做的简单替换,均应在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1