一种电驱压裂的井场系统的制作方法

文档序号:19277804发布日期:2019-11-29 22:31阅读:268来源:国知局
一种电驱压裂的井场系统的制作方法

本发明涉及油气田压裂技术领域,具体涉及一种电驱压裂的井场系统。



背景技术:

在全球的油气田压裂作业现场,传统压裂设备所采用动力传动系统的配置方式都是柴油发动机连接变速箱经传动轴驱动压裂柱塞泵工作,也就是说,动力源是柴油发动机,传动装置是变速箱和传动轴,执行元件是压裂柱塞泵。该配置模式存在以下缺点:(1)、体积大重量大:柴油机驱动变速箱经传动轴驱动压裂柱塞泵,体积大,重量大,运输受限,功率密度小。(2)、不环保:柴油发动机驱动的压裂设备在井场运行过程中,会产生发动机废气污染和噪音污染,噪音超过105dba,严重影响周围居民的正常生活。(3)、不经济:柴油发动机驱动的压裂设备,设备初期的采购成本比较高,设备运行时单位功率燃料消耗费用高,发动机和变速箱的日常维护保养费用也很高。鉴于全球的油气开发设备正朝着“低能耗、低噪音、低排放”的方向发展,(4)井场布置占地面积大。所以,传统以柴油发动机为动力源的压裂设备的上述缺点从一定程度上阻碍了非常规油气能源的开发进程。



技术实现要素:

本发明的目的克服现有技术的不足,提供一种电驱压裂的井场系统,该电驱压裂的井场系统采用电驱压裂设备和电驱混砂设备,以燃气轮机发电机组作为供电系统,替换了柴油发动机为动力源的压裂设备,燃气轮机发电机以天然气作为燃料,天然气的气源多样化,不局限,更好的满足更多客户的实际需求。整个井场系统的燃气轮机发电机组,结构更紧凑,占地面积小,接线简单。整个井场系统的电驱压裂设备大幅度的提升压裂设备的输出功率,更好的满足了使用需求。整个井场系统的电驱混砂设备有效压缩混砂设备的整体尺寸,使得设备运输及井场布置更加灵活方便,优化了电动机的配置,及优化了混砂设备的动力系统配置。整个井场系统较传统的柴油发动机驱动压裂的方式,燃料燃烧成本更低,井场占地面积更小,功率密度更高,输出功率也更高,噪音小。

本发明的目的是通过以下技术措施达到的:一种电驱压裂的井场系统,包括气源,供电系统,电驱压裂设备,电驱混砂设备,供砂设备,供液设备,仪表设备,高低压管汇,所述供电系统为燃气轮机发电机组,所述气源为燃气轮机发电机组提供燃料,燃气轮机发电机组分别为电驱压裂设备和电驱混砂设备提供电力,供砂设备和供液设备都与电驱混砂设备的输入端连接,电驱混砂设备的输出端通过高低压管汇与电驱压裂设备连接,电驱压裂设备通过高低压管汇与井口连通,仪表设备用于远程控制电驱压裂设备和电驱混砂设备。

进一步地,所述燃气轮机发电机组包括燃气涡轮发动机,发电机,整流单元和逆变单元,燃气涡轮发动机为1台,发电机为1台,整流单元多组,发电机的一端与燃气涡轮发动机连接,发电机的另一端与整流单元连接,多组整流单元之间并排设置,逆变单元为多组,整流单元与逆变单元之间通过共直流母线连接,所述发电机为双绕组发电机。

进一步地,所述燃气轮机发电机组为半挂车载,逆变单元设在半挂车体的鹅颈上。

进一步地,所述电驱压裂设备为半挂车载,每台半挂车载的电驱压裂设备中,电动机为2台,柱塞泵为2台,每台电动机驱动一台柱塞泵。

进一步地,所述柱塞泵功率为5000hp以上,冲程为10″以上。

进一步地,所述电驱混砂设备包括排出离心泵,吸入离心泵,第一电动机和第二电动机,第一电动机驱动排出离心泵,第二电动机驱动吸入离心泵。

进一步地,所述第一电动机和第二电动机为变频一体电动机。

进一步地,所述气源为cng和/或lng和/或井口气和/或管道气。

与现有技术相比,本发明的有益效果是:1.气源多样化,不局限,更好的满足更多客户的实际需求。2.供电系统采用燃气涡轮发动机、发电机和整流单元的组合方式,发电机直接发出整流单元所需的绕组形式和电压,节省了常规的整流变压器设备,整流单元与逆变单元之间通过共直流母线连接,使得共直流母线可以分别驱动多个逆变单元,减少了供电线路的接线。高压逆变单元设置在电驱半挂车的鹅颈上,优化了设备的空间布置。整个供电设备,结构更紧凑,占地面积小,接线简单。3.整个电驱压裂设备采用双电动机驱动双泵的设计,大幅度的提升压裂设备的输出功率,更好的满足了使用需求。4.电驱混砂设备通过两台变频一体电动机的应用,首先有效减少了独立变频柜的配置,即有效压缩混砂设备的整体尺寸,使得设备运输及井场布置更加灵活方便。其次通过两台电动机驱动排出离心泵及除排出离心泵以外的其它混砂设备部件,有效优化了电动机的配置,及优化了混砂设备的动力系统配置。

下面结合附图和具体实施方式对本发明作详细说明。

附图说明

图1是电驱压裂的井场系统的结构示意图。

图2是供电系统的结构示意图。

图3是电驱压裂设备的结构示意图。

图4是电驱混砂设备的结构示意图。

其中,1.天然气接口,2.供电系统,3.电驱压裂设备,4.电驱混砂设备,5.运砂车,6.储砂罐,7.输砂设备,8.化添设备,9.储液罐,10.仪表设备,11.高低压管汇,12.供电半挂车体,13.燃气涡轮发动机,14.发电机,15.整流单元,16.半挂车体,17.柱塞泵,18.散热器,19.电气控制柜,20.压裂电动机,21.压裂逆变单元,22.第一电动机,23.第二电动机,24.排出离心泵,25.吸入离心泵,26.混合罐,27.干添系统,28.液添系统,29.输砂绞龙系统,30.混配设备,31.井口,32.天然气处理设备。

具体实施方式

如图1所示,一种电驱压裂的井场系统,包括气源,供电系统2,电驱压裂设备3,电驱混砂设备4,供砂设备,供液设备,仪表设备10,高低压管汇11,所述供电系统2为燃气轮机发电机组,通过燃气轮机发电机组,使用天然气代替了柴油,实现了电力集中供应。所述气源为燃气轮机发电机组提供燃料,燃气轮机发电机组分别为电驱压裂设备3和电驱混砂设备4提供电力,供砂设备和供液设备都与电驱混砂设备4的输入端连接,电驱混砂设备4的输出端通过高低压管汇11与电驱压裂设备3连接,电驱压裂设备3通过高低压管汇11与井口31连通,仪表设备10用于远程控制电驱压裂设备3和电驱混砂设备4。整个井场系统较传统的柴油发动机驱动压裂的方式,燃料燃烧成本更低,井场占地面积更小,功率密度更高,输出功率也更高,噪音小。供砂设备包括运砂车5,储砂罐6,输砂设备7。供液设备包括化添设备8,混配设备30和储液罐9。

所述燃气轮机发电机组包括燃气涡轮发动机13,发电机14,整流单元15和逆变单元,燃气涡轮发动机13为1台,发电机14为1台,整流单元15多组,发电机14的一端与燃气涡轮发动机13连接,发电机14的另一端与整流单元15连接,多组整流单元15之间并排设置,逆变单元为多组,整流单元15与逆变单元之间通过共直流母线连接,所述发电机14为双绕组发电机。所述燃气轮机发电机组为半挂车载,逆变单元设在另一供电半挂车体12的鹅颈上。发电机14的功率不低于30mw。采用燃气涡轮发动机13、发电机14和整流单元15的组合方式,发电机14直接发出整流单元15所需的绕组形式和电压,节省了常规的整流变压器设备,整流单元15与逆变单元之间通过共直流母线连接,使得共直流母线可以分别驱动多个逆变单元,减少了供电线路的接线。逆变单元设置在供电半挂车体12的鹅颈上,优化了设备的空间布置。整个供电设备,结构更紧凑,占地面积小,接线简单。

在一台供电半挂车体12上高度集成了发电机14和整流单元15,整流后输出直流电压到电驱压裂设备3上,通过电驱压裂设备3上的逆变单元逆变后直接驱动电动机,节省了变压器设备的投入,实现了单台供电半挂车可以驱动至少3台电驱压裂半挂车。也正因为不需要变压器,所以进一步降低了压裂成套设备的占地面积和重量和设备投入成本。

所述电驱压裂设备3为半挂车载,每辆半挂车载的电驱压裂设备3中,电动机为2台,柱塞泵17为2台,每台电动机驱动一台柱塞泵17。通过电动机驱动柱塞泵17,取代了发动机和变速箱驱动柱塞泵17。每辆半挂车上采用双电动机驱动双柱塞泵的设计,大大提高了单设备功率密度,降低了井场布置难度,提高了运输方便性。所述柱塞泵17功率为5000hp以上,冲程为10″以上,使得整个电驱压裂设备3的输出功率大幅度的提升,更好的满足了使用需求。

所述电驱混砂设备4包括排出离心泵24,吸入离心泵25,第一电动机22和第二电动机23,第一电动机22驱动排出离心泵24,第二电动机23驱动吸入离心泵25。通过一台电动机直接驱动电驱混砂设备4的排出离心泵24,提高了电驱混砂设备4的供液压力和排量。

所述第一电动机22和第二电动机23为变频一体电动机。

所述电驱混砂设备4为半挂车载。

所述气源为cng和/或lng和/或井口气和/或管道气。气源多样化,不局限,更好的满足更多客户的实际需求。所述cng和/或lng和/或井口气和/或管道气通过天然气接口1接入,并经天然气处理设备32处理后输送给供电设备。

图2是供电系统的结构示意图。燃气轮机发电机组采用半挂车载,以下简称为燃气供电半挂车,包括供电半挂车体12,燃气涡轮发动机13,发电机14,整流单元15和供电逆变单元,所述燃气涡轮发动机13,发电机14和整流单元15集成在供电半挂车体12上,燃气涡轮发动机13为1台,发电机14为1台,整流单元15多组,发电机14的一端与燃气涡轮发动机13连接,发电机14的另一端与整流单元15连接,多组整流单元15之间并排设置,供电逆变单元设在另一辆供电半挂车体12的鹅颈上,供电逆变单元为多组,整流单元15与供电逆变单元之间通过共直流母线连接。所述发电机14为双绕组发电机。所述发电机14直接发出整流单元15所需的绕组形式和电压。所述发电机14的双绕组相位差为30°,绕组形式为y-y型或者d-d型。发电机14发出的交流电压为1600vac到2300vac。

所述发电机14功率在10mva以上,频率为50--60hz或者100--120hz,以及所述整流单元15电压在4000vdc以上,进一步的所述整流单元15电压在4000vdc到6500vdc。保证了该燃气供电半挂车的输出功率大,从而能够驱动大功率的电驱压裂设备3。

图3是电驱压裂设备的结构示意图。电驱压裂设备3为半挂车载形式,以下对每辆半挂车载的电驱压裂设备3简称为电驱压裂半挂车,每辆电驱压裂半挂车包括半挂车体16,柱塞泵17,散热器18,电气控制柜19,压裂电动机20和压裂逆变单元21,所述柱塞泵17,润滑油散热器18,电气控制柜19,压裂电动机20和压裂逆变单元21集成在半挂车体16上,所述半挂车体16的车轴数量为个以上。压裂逆变单元21设在半挂车体16的鹅颈上,压裂电动机20的一端与压裂逆变单元21连接,压裂电动机20的另一端与柱塞泵17连接,散热器18对柱塞泵17的润滑油进行冷却,通过电气控制柜19实现电驱压裂半挂车的本地操控,压裂电动机20为2台,柱塞泵17为2台,散热器18为2台。本电驱压裂半挂车经过合理匹配压裂电动机20和柱塞泵17,使得一台半挂车可以安装2台压裂电动机20和2台柱塞泵17,所述柱塞泵17为10″以上冲程的五缸柱塞泵,双泵的总功率达到10000hp。通过压裂电动机20驱动柱塞泵17,取代了发动机和变速箱驱动柱塞泵17。压裂现场可根据需要布置1辆以上的电驱压裂半挂车。

图4是电驱混砂设备的结构示意图。电驱混砂设备4采用半挂车载形式,以下对半挂车载的电驱混砂设备4简称为电驱混砂半挂车,具体的,图4中所示的是电驱混砂设备4去除半挂车后的上装部件结构示意图。井场系统中可布置1辆以上的电驱混砂半挂车,有工作的,有备用的,保证混砂现场作业不停歇。电驱混砂半挂车包括混砂半挂车体,混砂电动机,液压泵,排出离心泵24,吸入离心泵25,混合罐26,干添系统27,吸入管汇,排出管汇,液添系统28和输砂绞龙系统29,所述混砂电动机,液压泵,排出离心泵24,吸入离心泵25,混合罐26,干添系统27,吸入管汇,排出管汇,液添系统28和输砂绞龙系统29集成在混砂半挂车体上,所述混砂电动机有2台,包括第一电动机22和第二电动机23,所述第一电动机22用于驱动排出离心泵24,排出离心泵24通过第一电动机22直接驱动,可方便有效提高排出离心泵24的输入功率,进而提升设备的作业能力。所述第二电动机23通过分动箱带动液压泵,进而驱动吸入离心泵25、混合罐26、干添系统27、液添系统28和输砂绞龙系统29,所述混砂电动机为变频一体电动机。通过选用变频一体电动机,及在电动机上集成了逆变功能,规避了柴油机系统结构复杂、占用空间大的问题,同时变频一体电动机的应用减少了独立变频柜的配置。通过2台变频一体电动机控制整个电驱混砂设备4的部件,使得控制系统更简洁,操作过程中驱动液压泵的第二电动机23可以直接进行定速设置,作业过程中只要按需调整各功能部件转速即可达到控制目的。

工作原理:储液罐9为混配设备30提供水,混配设备30将水和各种添加剂进行混配形成压裂基液,并将压裂基液提供给电驱混砂设备4,运砂车5将压裂支撑剂运输到井场,输送到储砂罐6内。运砂车5可为多台。压裂支撑剂从储砂罐6经输砂设备7输送给电驱混砂设备4。压裂基液和压裂支撑剂在电驱混砂设备4中进行混合后输送到高低压管汇11中,然后经高低压管汇11分流给每台电驱压裂半挂车,经电驱压裂半挂车将混好的压裂液高压泵注入到井口31中,(注入路线:电驱压裂半挂车--连接管线--高低压管汇11--井口31),然后对油井或者气井的地层进行压裂。化添设备8用于将各种化学添加剂提供给混配设备30或者电驱混砂设备4。

本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1