用于结构振动控制的无阀液压驱动主动质量控制系统的制作方法

文档序号:5509078阅读:657来源:国知局
专利名称:用于结构振动控制的无阀液压驱动主动质量控制系统的制作方法
技术领域
本发明涉及一种无阀液压驱动主动质量控制系统,具体涉及一种用于结构 振动控制的无阀液压驱动主动质量控制系统。
背景技术
随着社会经济发展和科学技术进步,特别是2008年末世界范围经济危机 的愈演愈烈,促使各国政府正加紧加大力度投入土木工程和基础设施建设来拉 动内需刺激经济增长,在此背景下超高层建筑、超大跨度桥梁、超大跨空间结 构、核电站、(深海)海洋石油钻井平台等大型复杂结构得到大量兴建,其中 不乏一些标志性重大工程。另一方面,随着材料科学和结构设计理论的发展, 土木工程结构呈现更高、更轻、更柔的发展趋势,从而结构在地震、风、海洋 风浪流冰等动载作用下动力响应更大、随之而来结构的损伤和破坏问题更加突 出,灾害袭击造成经济损失和人员伤亡威胁更大。如1995年日本阪神大地震 的直接经济损失达1500亿美元,死亡近6000人。2004年12月26日发生在 印度尼西亚苏门答腊岛的海底地震引发了南亚与东南亚地区的大规模海啸,造 成了巨大的经济损失和数以万计的人员伤亡。2008年5月12日发生的汶川8.0 级地震,死亡失踪超过87000人,直接经济损失超过l万亿元人民币。资料显 示,我国有22个省会级城市和三分之二的百万以上人口大城市位于地震高危 险区,此外东南沿海经济发达地区平均每年'遭受10次以上的台风登陆,所有 这些潜在的自然灾害一旦发生都会给人类的生存和发展带来巨大威胁。
随着科技水平不断发展,结构振动控制技术现已成为土木工程以及航空航 天、汽车、机械、军事工程等领域研究的热点方向。对于土木工程结构,在结 构中恰当地安装振动控制装置能够有效地减小结构的动力反应,减轻结构构件 的破坏或损伤,达到经济性、安全性与可靠性的合理平衡。大量研究表明结 构振动控制可以有效地减轻结构在风、浪、流、冰及地震等动力作用下的反应 和损伤、有效地提高结构的抗灾性能,是积极有效的防灾减灾对策。
4土木工程结构振动控制的研究和应用已有半个多世纪的历史了,总体上可 以分为三个领域基础隔震、被动耗能减震以及主动、半主动和智能控制。
1972年,美籍华人Yao结合现代控制理论,提出了土木工程结构振动主
动控制的概念,开创了结构振动控制研究的新里程。主动控制装置依赖于结构 振动信息反馈,实时地改变系统控制参数,控制效果理论上可以根据需要进行 预设调节达到最佳状态。
土木工程结构振动控制的研究与应用己有半个多世纪的历史,特别是主动
控制的研究已经历了近40年的发展。目前发展起来的适用于土木工程结构主 动控制的装置主要有主动质量阻尼器(Active Mass Driver/Damper)、主动 质量驱动器(Active Mass Driver, AMD)、主动锚索系统(Active Tendon System, ATS)、主动支撑系统(Active Bracing System, ABS)、气体脉冲发生器(Pulse Generator)以及空气动力挡风板(Aerodynamic Appendage)等。AMD以其良好 的控制效果、低廉的控制代价在众多的主动控制手段中脱颖而出,成为目前研 究与应用最为广泛和成熟的一种主动控制形式。
AMD系统工作的原理就是由外部能源驱动系统中的惯性质量运动,将结构 的振动能量转变为AMD质量块运动的动能、弹性元件存储的势能和阻尼元件的 耗散能,同时,质量块又是作为作动器给结构施加主动控制力的支撑点。如果 系统中存在弹簧和阻尼器可以在一定程度上减小质量块的运动行程、调配各种 力在控制过程中的比例,最终形成的合力(即质量块惯性力的反作用力)就是 AMD系统对结构施加的主动控制力。现有的重要结构抗风抗震液压AMD系统均 基于节流原理伺服阀控驱动,需要在高油压下待机及工作,否则地震或强风袭 来时无法瞬时启动并快速施加主动控制力。地震等发生具有随机性,系统长时 间高压待机消耗巨大能量,且带来组件密封、疲劳等问题;此外高压油液流经 伺服阀时压力损失很大,能量转换效率仅约30%,噪声大以及油液易泄露污染 环境,以上是液压AMD系统未得到推广应用的重要原因。因此,现有的主动质 量驱动器(AMD)存在能量转换效率低(节能效果差)、构结复杂、体积大、造 价较高、不利于环保等缺点
发明内容
本发明为了解决现有的主动质量驱动器(AMD)存在能量转换效率低(节
能效果差)、结构复杂、体积大、不利于环保(噪声大以及油液泄露污染环境) 等问题,进而提供了一种用于结构振动控制的无阀液压驱动主动质量控制系 统。
本发明为解决上述技术问题采取的技术方案是本发明所述的用于结构振
动控制的无阀液压驱动主动质量控制系统包括交流伺服电机和联轴器;所述无
阀液压驱动主动质量控制系统还包括双向定量泵、液压缸(也可称为作动器或 执行器)、质量块、密闭压力油罐、两个补油阀、两个液控单向阀和两个溢流 阀,所述交流伺服电机通过联轴器与双向定量泵连接,双向定量泵与液压缸构 成闭式回路,双向定量泵的泄油口与密闭压力油罐连通,两个补油阀相向串接 在一起后并联在闭式回路上,两个补油阀均与密闭压力油罐连通,两个液控单 向阀分别串联在双向定量泵两侧的闭式回路上,两个溢流阀分别并联在闭式回
路上;所述两个补油阀、两个液控单向阀和两个溢流阀集成在一起构成集成阀
块;质量块与液压缸的活塞杆连接。
本发明的有益效果是
本发明具有能量转换效率高、节能效果好(能量转换效率可达90%)、结
构简单、体积小、输出力大、利于环保等优点。该系统的最大特点是液压主回
路改为闭式回路,系统用油量很少(去掉泵站后系统总节油量达95%),不需 要大油箱,节省空间,减少污染;去掉传统液压系统中两大控制阀(换向阀、
节流阀或调速阀,从安全冗余设计角度考虑暂时保留溢流阀,如果技术进一步 成熟该阀也可考虑去掉),变节流控制为容积控制,系统压力损失小,运行效
率高,发热量小,不需单独配置冷却系统;有电机控制灵活和液压大出力的双 重优点,运行时无污染、噪音低。本发明(DAMD)由伺服电机直接控制油泵和 缸体实现驱动、换向和调速限压三大功能,在低压甚至相对零压下可以随时启 动。本发明的核心就是利用直驱容控电液伺服作动器驱动质量块工作。本发明 执行器的驱动、换向和调速限压三大控制功能全部由交流伺服电动机直接控 制,所以称为"直驱",油泵的出油量的改变也是由电机变转速直接控制,称 为"容控"。本发明对长周期结构,例如高层超高层建筑、高鸷结构、大跨度桥梁桥塔在强风、地震等荷载作用下的振动控制十分有利,并且对于深海海洋 平台结构等在风浪流联合激励振动下的振动或运动控制具有可观的效果。
本发明由伺服电机直接控制油泵和缸体实现驱动、换向和调速限压三大功 能,利用无阀液压(直驱容控)电液伺服作动器驱动质量块工作。
.本发明的液压主回路为闭式回路,系统用油量很少(去掉泵站后系统总节
油量可达95%),无需大油箱,节省空间,减少污染;去掉传统液压系统中两 大控制阀,变节流控制为容积控制,在低压甚至相对零压下可以随时启动;系 统压力损失小,运行效率高,并且发热量小,不需单独配置冷却系统;能量转 换效率高、节能效果好(能量转换效率可达90%),有电机控制灵活和液压大 出力的双重优点;运行时无污染、噪音低、利于环保。
本发明适用于长周期结构,例如高层超高层建筑、高耸结构、大跨度桥梁 桥塔在强风、地震等荷载作用下的振动控制,以及深海海洋平台结构等在风浪 流联合激励振动下的振动或运动控制。


图1是本发明的整体结构示意图,图2是本发明的工作原理示意图,图3 是图1的A部放大图。
具体实施例方式
具体实施方式
一如图1和图2所示,本实施方式所述的用于结构振动控 制的无阀液压驱动主动质量控制系统包括交流伺服电机1和联轴器2;所述无
阀液压驱动主动质量控制系统还包括双向定量泵3、液压缸4 (也可称为作动 器或执行器)、质量块5、密闭压力油罐6、两个补油阀7、两个液控单向阀8 和两个溢流阀9,所述交流伺服电机1通过联轴器2与双向定量泵3连接,双 向定量泵3与液压缸4构成闭式回路10,双向定量泵3的泄油口与密闭压力 油罐6连通,两个补油阀7相向串接在一起后并联在闭式回路10上,两个补 油阀7均与密闭压力油罐6连通,两个液控单向阀8分别串联在双向定量泵3 两侧的闭式回路10上,两个溢流阀9分别并联在闭式回路10上;所述两个补 油阀7、两个液控单向阀8和两个溢流阀9集成在一起构成集成阀块16;质量 块5与液压缸4的活塞杆连接。所述的用于结构振动控制的无阀液压驱动主动质量控制系统,也称直接驱
动主动质量控制系统(Direct Driving Active Mass Driver,简称DAMD控制 装置)是用交流伺服电机1直接驱动可双向转动的双向定量泵3,双向定量泵 3直接驱动液压缸4,通过调节交流伺服电机1的转动方向和转动速度来控制 液压缸4的运动方向和运动速度,从而实现对DAMD的控制。两个补油阀7能 可靠地保证双向定量泵3的吸油口与密闭压力油罐6内液压油相通,补偿双向 定量泵3和液压缸4的泄漏,保证低压管道内的压力大于空气分离压,防止气 穴现象和空气渗入。两个液控单向阀8形成双向液压锁,可以实现油源正常双 向出油,又能在油源停止工作时封闭液压回路。两个溢流阀9起安全保护液压 系统的作用。为了使油路尽可能短,减小能量损失,在集成阀块上可设置泵阔 过桥。
具体实施方式
二本实施方式所述联轴器2是弹性联轴器。其它组成及连 接关系与具体实施方式
一相同。
具体实施方式
三如图1和图2所示,本实施方式所述双向定量泵3与由 两个补油阀7、两个液控单向阀8和两个溢流阀9集成在一起构成的集成阀块 16 —同置于密闭压力油罐6内形成液压包,所述液压包置于液压缸4的缸体 上。如此设置可进一步减少本发明所述的DAMD的体积。其它组成及连接关系 与具体实施方式
一或二相同。
具体实施方式
四如图1和图2所示,本实施方式所述无阀液压驱动主动 质量控制系统还包括万向球铰11,液压缸4的活塞杆与质量块5之间采用所 述万向球铰11相连接。万向球铰11可实现质量块5的灵活运动。其它组成及 连接关系与具体实施方式
三相同。
具体实施方式
五如图1和图2所示,本实施方式所述无阀液压驱动主动 质量控制系统还包括压力传感器12,所述压力传感器12设置在万向球铰11 和液压缸4的活塞杆之间。压力传感器12用于实时监测作动器的驱动力,进 而及时调整交流伺服电机1的转速,以达到所需主动控制力。其它组成及连接 关系与具体实施方式
一或四相同。
具体实施方式
六如图1和图2所示,本实施方式所述无阀液压驱动主动质量控制系统还包括阻尼器13和弹簧14,所述阻尼器13和弹簧14安装在质 量块5和相应的基座15之间。阻尼器13和弹簧14可限制质量块5的位移行 程。其它组成及连接关系与具体实施方式
五相同。
工作原理
本发明在使用时,可通过基座15安装在被控建筑物上。工控机对伺服电
机的驱动器施加经计算的指令信号,通过伺服控制器改变交流伺服电动机转速 的正反向、大小和持续时间,使定量泵的输出流量发生变化,进而改变液压执 行结构输出的正反向、大小,实现速度控制、位置控制。
基于能量转换的观点,该系统实现电能一电动机一机械能一液压泵一液压 能一执行机构一机械能4负载的传递过程。
无阀液压驱动主动质量控制系统由软件系统和硬件系统组成。软件系统为
数据采集程序、计算及指令控制程序,数据采集程序采用Bland 0++语言编译, 在荷载作用下实时采集结构响应的状态量,计算及指令控制程序采用Labview 语言编译,根据采集的状态量,实时计算并向硬件系统发出控制指令。硬件系 统主要由直接驱动作动器和质量块组成。
本发明直接驱动质量阻尼控制装置,工作流程如下
由传感器采集结构在荷载作用下的响应状态量,经程序计算给电机驱动器 施加合适的电压输入指令,伺服电动机能按照输入的指令进行变转速驱动、变 向驱动和限转矩驱动。电动机变速一油泵变量一执行器变速;电动机变向一油 路变向一执行器变向;执行器压强超限一油泵转矩超限,电动机输出转矩超限 —电动机停止。质量块同时作为作动器给结构施加主动控制力的支撑点。
本发明提出的DAMD装置实际上是将主动控制与机电一体化联合应用,本 系统还保留了传统認D系统的优越性,在结构经常遇到的小风荷载作用下,关 闭主动作动器,整套系统处于TMD被动工作状态,当荷载增强,启动主动控制 作动器,整套系统处于AMD主动工作状态。本发明提出的DAMD控制装置采用 直接驱动、容积控制技术,减小能源浪费,系统运行噪声低,是一款节能高效 环保的主动控制装置。
权利要求
1、一种用于结构振动控制的无阀液压驱动主动质量控制系统,所述无阀液压驱动主动质量控制系统包括交流伺服电机(1)和联轴器(2);其特征在于所述无阀液压驱动主动质量控制系统还包括双向定量泵(3)、液压缸(4)、质量块(5)、密闭压力油罐(6)、两个补油阀(7)、两个液控单向阀(8)和两个溢流阀(9),所述交流伺服电机(1)通过联轴器(2)与双向定量泵(3)连接,双向定量泵(3)与液压缸(4)构成闭式回路(10),双向定量泵(3)的泄油口与密闭压力油罐(6)连通,两个补油阀(7)相向串接在一起后并联在闭式回路(10)上,两个补油阀(7)均与密闭压力油罐(6)连通,两个液控单向阀(8)分别串联在双向定量泵(3)两侧的闭式回路(10)上,两个溢流阀(9)分别并联在闭式回路(10)上;所述两个补油阀(7)、两个液控单向阀(8)和两个溢流阀(9)集成在一起构成集成阀块(16);质量块(5)与液压缸(4)的活塞杆连接。
2、 根据权利要求1所述的用于结构振动控制的无阀液压驱动主动质量控 制系统,其特征在于所述联轴器(2)是弹性联轴器。
3、 根据权利要求1或2所述的用于结构振动控制的无阀液压驱动主动质 量控制系统,其特征在于所述双向定量泵(3)与由两个补油阀(7)、两个 液控单向阀(8)和两个溢流阀(9)集成在一起构成的集成阀块(16) —同置 于密闭压力油罐(6)内形成液压包,所述液压包置于液压缸(4)的缸体上。
4、 根据权利要求3所述的用于结构振动控制的无阀液压驱动主动质量控 制系统,其特征在于所述无阀液压驱动主动质量控制系统还包括万向球铰(11),液压缸(4)的活塞杆与质量块(5)之间采用所述万向球铰(11)相 连接。
5、 根据权利要求1或4所述的用于结构振动控制的无阀液压驱动主动质量控制系统,其特征在于所述无阀液压驱动主动质量控制系统还包括压力传感器(12),所述压力传感器(12)设置在万向球铰(11)和液压缸(4)的活 塞杆之间。
6、根据权利要求5所述的用于结构振动控制的无阀液压驱动主动质量控 制系统,其特征在于所述无阀液压驱动主动质量控制系统还包括阻尼器(13)和弹簧(14),所述阻尼器(13)和弹簧(14)安装在质量块(5)和相应的基 座(15)之间。
全文摘要
用于结构振动控制的无阀液压驱动主动质量控制系统,它涉及一种无阀液压驱动主动质量控制系统。本发明解决了现有的主动质量驱动器(AMD)存在能量转换效率低、结构复杂、体积大、不利于环保的问题。所述交流伺服电机通过联轴器与双向定量泵连接,双向定量泵与液压缸构成闭式回路,双向定量泵的泄油口与密闭压力油罐连通,两个补油阀相向串接在一起后并联在闭式回路上,两个补油阀均与密闭压力油罐连通,两个液控单向阀分别串联在双向定量泵两侧的闭式回路上,两个溢流阀分别并联在闭式回路上;所述两个补油阀、两个液控单向阀和两个溢流阀集成在一起构成集成阀块;质量块与液压缸的活塞杆连接。本发明具有能量转换效率高、节能效果好(能量转换效率可达90%)、结构简单、体积小、输出力大、利于环保等优点。
文档编号F15B11/00GK101532315SQ20091007179
公开日2009年9月16日 申请日期2009年4月16日 优先权日2009年4月16日
发明者刘军龙, 刘庆和, 姜继海, 张春巍, 欧进萍 申请人:哈尔滨工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1