一种基于接口为CF400的分子泵抽速测试系统及方法与流程

文档序号:16337267发布日期:2018-12-19 06:40阅读:872来源:国知局
一种基于接口为CF400的分子泵抽速测试系统及方法与流程
本发明属于真空测量
技术领域
,具体涉及一种基于接口为cf400的分子泵抽速测试系统及方法。
背景技术
分子泵作为获得洁净超高真空的主要工具,在工业生产和科学研究中得到广泛的应用。为了改变我国分子泵高端产品市场被国外厂家垄断的局面,突破大口径分子泵国外对华禁运的现状,我国在大口径高性能分子泵的研制方面给予了大力支持。如北京航空航天大学牵头承担的国家重大科学仪器专项已经研制出接口为cf400的超高真空大抽速磁悬浮复合分子泵。要实现产品化,必须对分子泵的性能进行测试和评价,抽速是分子泵最主要的性能参数之一。以北京航空航天大学牵头研制出的接口为cf400的大抽速分子泵为代表的高性能分子泵对测试系统及方法提出了急迫的需求,但目前国内尚无能够对接口为cf400的分子泵进行抽速测试的系统及方法。文献《conductancemodulationmethodforthemeasurementofthepumpingspeedandoutgassingrateofpumpsinultrahighvacuum》,《vacuum》1990年第7-9期、第2004~2005页,介绍了东京大学的keikoterada等人通过测量用小孔隔开的两个真空腔室内的压力比测量抽速,称为流导调制法,该方法仅适用于高真空下测量抽速,而且两个真空计的一致性会给测量结果带来较大的偏差。文献《分子/增压泵抽速测试的实验研究》,《2007年真空技术学术交流会论文集》,介绍了合肥工业大学的朱武等人利用滴管流量计法测试了分子/增压泵的抽速,采用滴管流量计测试范围较小,所测抽速仅为1000l/s左右,无法满足抽速超过3500l/s的分子泵的测试需求。文献“分子泵性能参数测试装置”,《中国真空学会2014学术年会论文集》第36~37页,介绍了清华大学、北京东方计量测试研究所等单位研制的分子泵性能参数测试装置,该装置采用流量法测试抽速,测试真空室口径为250mm,无法满足cf400接口分子泵的测试需求。文献“studyonthemeasurementoftmppumpingspeed”,《appliedscience&convergencetechnology》2010年第4期、第249~255页,介绍了韩国标准科学研究院研制的高真空泵性能评价系统,该系统采用了流量法和流导法两种方法,对抽速为1000l/s的分子泵进行了测试,测试真空室口径小于400mm,且使用流导法测量时两个真空计的一致性给测量结果带来较大的偏差。以上的技术不能满足cf400口径大抽速分子泵抽速测试的需要。本发明提出了采用流量法测量抽速,研制了cf400口径且经过特殊工艺处理的高真空测试室,将复合型标准气体流量计集成在一套设备上,实现了在10-1pa~10-7pa的压力范围下对分子泵抽速范围为3000l/s~5000l/s内的抽速测量,解决了cf400口径分子泵的抽速测试问题,国内尚未开展过类似的测试系统及方法研究。本专利针对cf400口径分子泵的抽速测试需求,研制了cf400口径且经过特殊工艺处理的测试室,建立了cf400口径分子泵的抽速测试系统,提出了抽速测试的方法,解决了我国cf400口径分子泵抽速测试的技术问题,对保证我国前沿分子泵产品质量和可靠性及产品化的推广有重要意义。技术实现要素:发明要解决的技术问题本发明针对cf400口径分子泵抽速参数的测试需求,提出了一种基于接口为cf400的分子泵抽速测试系统及方法。技术手段为了解决上述技术问题,本发明提供了一套基于接口为cf400的分子泵抽速测试系统,其特征在于,该系统包括:机械泵rp、分子泵tmp、三个真空阀门(v1,v2,v3)、二个真空室(vc1,vc2)、两个真空计(g1,g2)、一个复合型标准气体流量计(q1)和一个气瓶(gas),在该系统中,真空系统的机械泵rp通过第一阀门v1与分子泵tmp的抽气出口连接,分子泵tmp的入口与第一真空室vc1连接,第一真空室vc1上面接了副标准电离真空计g1、监测真空计g2和第三阀门v3,第三阀门v3的另一端与第二真空室vc2连接,第二真空室上面连接了第三阀门v3、复合型标准气体流量计q1的出气口,复合型标准气体流量计q1的进气口与第二阀门v2连接,第二阀门v2的另一端与气瓶gas连接。优选地,所述第一真空室vc1的接口为cf400,开口直径为400mm,高度为600mm,在高度为200mm的高度上安装真空计,进气管道直径为40mm,进气管道在第一真空室vc1内的高度距离测试罩开口平面的高度为400mm。第一真空室vc1采用真空冶炼的经过无损检测的钢材,对钢材的焊接过程采用氩弧保护焊接过程,焊接后进行表面电抛光处理和清洗处理,经超高真空的表面处理工艺,并对第一真空室vc1进行高温烘烤除气并释放应力。第一真空室vc1的放气率小于10-11pam3/(s·cm2)。优选地,复合型标准气体流量计q1能够提供范围为5pam3/s~1×10-7pam3/s的标准气体流量。该系统仅采用流量法一种方法,在一套系统上实现了在10-1pa~10-7pa的压力范围下对分子泵抽速范围在3000l/s~5000l/s内的抽速测量。该系统在国内首次实现了抽速大于3500l/s的分子泵的抽速测试。所述的测试系统测试分子泵抽速的方法,其特征在于,包括如下步骤:步骤s1,保持环境温度为23±3℃,将被检测的分子泵tmp与阀门v1和真空室vc1连接,打开阀门v1,打开真空计g1和g2进行预热和稳定,依次打开机械泵rp、阀门v1、分子泵tmp和阀门v3对真空室抽真空;真空计稳定6小时以上,用监测真空计g2测量真空室vc1中的真空度,在真空度小于被测量真空度范围下限一个数量级时开始测量。步骤s2,打开真空阀门v2,让复合型标准气体流量计q1泄漏的气体通过真空室vc2和阀门v3进入真空室vc1中,用副标准电离真空计g1测量真空室vc1内的真空度,通过调节复合型标准气体流量计q1提供的流量值,使得真空计g1的示数稳定在一定的压力值p0,此时记录复合型标准气体流量计q1提供的流量值为q0,根据公式计算得到分子泵在入口压力为p0时的抽速s0。步骤s3,然后调节流量计的设置点,重复步骤s2测试得到不同压力下的抽速数据。发明效果本发明是一种基于接口为cf400的分子泵抽速测试系统及方法,在该系统中采用流量法测量抽速,研制了满足cf400分子泵测试需求的超高真空测试罩,采用复合型标准气体流量计在一套系统上实现了在10-1pa~10-7pa的压力范围下对分子泵抽速范围在3000l/s~5000l/s内的抽速测量,解决了cf400口径分子泵的抽速测试问题,对保证我国前沿分子泵产品质量和可靠性及产品化的推广有重要意义。附图说明图1为本发明的基于接口为cf400的分子泵抽速测试系统的结构原理示意图。图2为被测分子泵抽速随着压力的变化曲线。具体实施方式下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不是限制本发明的范围。如图1所示,本发明所述的一种基于接口为cf400的分子泵抽速测试系统,包括:机械泵rp、分子泵tmp、三个真空阀门(v1,v2,v3)、二个真空室(vc1,vc2)、两个真空计(g1,g2)、一个复合型标准气体流量计(q1)和一个气瓶(gas)。在该系统中,真空系统的机械泵rp通过第一阀门v1与分子泵tmp的抽气出口连接,分子泵tmp的入口与第一真空室vc1连接,第一真空室vc1上面接了副标准电离真空计g1、监测真空计g2和第三阀门v3,第三阀门v3的另一端与第二真空室vc2连接,第二真空室上面连接了第三阀门v3、复合型标准气体流量计q1的出气口,复合型标准气体流量计q1的进气口与第二阀门v2连接,第二阀门v2的另一端与气瓶gas连接。在一实施例中,所述第一真空室vc1的接口为cf400,开口直径为400mm,高度为600mm,在高度为200mm的高度上安装真空计,进气管道直径为40mm,进气管道在第一真空室vc1内的高度距离测试罩开口平面的高度为400mm。第一真空室vc1采用真空冶炼的经过无损检测的钢材,对钢材的焊接过程采用氩弧保护焊接过程,焊接后进行表面电抛光处理和清洗处理,经超高真空的表面处理工艺,并对第一真空室vc1进行高温烘烤除气并释放应力。第一真空室vc1的放气率小于10-11pam3/(s·cm2)。所述复合型标准气体流量计q1能够提供范围为5pam3/s~1×10-7pam3/s的标准气体流量。该系统仅采用流量法一种方法,在一套系统上实现了在10-1pa~10-7pa的压力范围下对分子泵抽速范围在3000l/s~5000l/s内的抽速测量,在国内首次实现了抽速大于3500l/s的分子泵的抽速测试。本发明所述的利用上述系统的对cf400口径分子泵抽速的测试方法,包括如下步骤:步骤s1,保持环境温度为23±3℃,将被检测的分子泵tmp与阀门v1和真空室vc1连接,打开阀门v1,打开真空计g1和g2进行预热和稳定,依次打开机械泵rp、阀门v1、分子泵tmp和阀门v3对真空室抽真空;真空计稳定6小时以上,用监测真空计g2测量真空室vc1中的真空度,在真空度小于被测量真空度范围下限一个数量级时开始测量。步骤s2,打开真空阀门v2,让复合型标准气体流量计q1泄漏的气体通过真空室vc2和阀门v3进入真空室vc1中,用副标准电离真空计g1测量真空室vc1内的真空度,通过调节复合型标准气体流量计q1提供的流量值,使得真空计g1的示数稳定在一定的压力值p0,此时记录复合型标准气体流量计q1提供的流量值为q0,根据公式计算得到分子泵在入口压力为p0时的抽速s0。步骤s3,然后调节流量计的设置点,重复s2步骤测试得到不同压力下的抽速数据。实施例1(1)s1,保持环境温度为23±3℃,将被检测的分子泵tmp与阀门v1和真空室vc1连接,打开阀门v1,打开真空计g1和g2进行预热和稳定,依次打开机械泵rp、阀门v1、分子泵tmp和阀门v3对真空室抽真空;真空计稳定6小时以上,用监测真空计g2测量真空室vc1中的真空度为7.8×10-7pa。(2)打开真空阀门v2,让复合型标准气体流量计q1泄漏的气体通过真空室vc2和阀门v3进入真空室vc1中,用副标准电离真空计g1测量真空室vc1内的真空度,通过调节复合型标准气体流量计q1提供的流量值,使得真空计g1的示数稳定在一定的压力值2.9×10-4pa,此时记录复合型标准气体流量计q1提供的流量值为1.1×10-3pam3/s,根据公式计算得到分子泵在入口压力为2.9×10-4pa时的抽速s0为3750l/s。(3)调节流量计的设置点,使得真空计g1的示数依次稳定在一定压力值(pi),分别记录在该压力值(pi)下复合型标准气体流量计q1提供的流量值(qi),根据公式计算得到分子泵在入口压力为pi时的抽速si,实际测量数据如下述表1所示。[表1]序号压力pi(pa)流量qi(pam3/s)抽速si(l/s)12.9×10-41.1×10-3379325.7×10-42.2×10-3386038.5×10-43.4×10-3400042.4×10-39.6×10-3400055.2×10-42.1×10-2403868.6×10-43.6×10-2418672.4×10-49.8×10-2408385.5×10-42.2×10-1400098.4×10-43.3×10-13929102.3×10-47.6×10-13304115.7×10-41.52632129.6×10-41.91979由以上数据绘出被测分子泵抽速随着压力的变化曲线,如图2所示。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1