容量可调型流体泵的制作方法

文档序号:15898090发布日期:2018-11-09 21:20阅读:111来源:国知局

本实用新型涉及一种流体泵,尤其涉及一种能够利用倾斜调节部对斜盘以及安装在斜盘上的盘状挡圈的倾斜角度进行调节并借此对基于活塞的流体压力进行调整的流体泵。



背景技术:

如液压泵等一般的流体泵是利用在一侧面倾斜的斜盘(Swash Plate)进行旋转时所发生的相位变化的进行工作。接下来,将简单地对其结构进行说明。活塞通过活塞滑靴连接到挡圈,用于通过在气缸内部的直线移动动作而生成流体压力。挡圈用于阻挡活塞滑靴,而且因为挡圈与斜盘相抵,因此最终能够使活塞被贴紧到斜盘上。此时,因为所述挡圈是以所述活塞为媒介连接到所述气缸,因此所述挡圈也将在外壳的内部进行旋转。

如上所述的流体泵在如挖掘机等建筑装备或装甲车等重型装备中,利用如内燃机等引擎或电动机所提供的旋转动能驱动泵的工作。此时,流体泵用于供应驱动执行器所需的工作油,通常使用如容量可调型泵(variable displacement axial piston pump)等能够对突出容量进行调整的容量可调型液压泵。

尤其是,在多种类型的容量可调型流体泵中,最近使用最为广泛的是配备有在外壳内部倾斜安装的倾斜斜盘(swash plate)的容量可调型流体泵。在斜盘式容量可调型流体泵中,因为从容量可调型流体泵吐出的工作油的油量取决于斜盘的倾斜度(回转角度或倾斜角度),因此需要配备用于对斜盘的倾斜角度进行调节的结构。

但是,在现有的容量可调型斜盘式泵中,用于对斜盘的倾斜角度进行调节的结构比较复杂。例如,需要配备用于对斜盘的回转角度进行调节的单独的驱动单元,还需要配备用于维持变化之后的回转角度状态的回馈机构,并因此导致整体部件的数量以及制造成本增加的问题。

在先公开的技术文献

专利文献

大韩民国专利公开公报第10-2002-0090245号



技术实现要素:

本实用新型的目的在于解决如上所述的现有技术中的问题,使其能够利用与斜盘直接接触的倾斜调节部对斜盘的倾斜角度进行调节。

本实用新型的另一目的在于,使其能够在不配备单独的回馈机构的情况下维持斜盘的变化之后的倾斜角度状态。

本实用新型的又一目的在于,使其能够通过将盘状的挡圈贴紧到斜盘中而使挡圈在始终维持一定的角度的状态下进行旋转。

为了实现上述目的,本实用新型提供一种容量可调型流体泵(Variable capacity type fluid pump),其技术解决方案为:

包括:外壳,在内部形成有驱动空间;斜盘,位于所述驱动空间并采用能够以支架为中心进行旋转的方式安装,能够对倾斜面的倾斜角度进行调节;气缸柱,安装于所述驱动空间并在驱动轴的作用下进行旋转,在内部沿着与驱动轴平行的方向延长形成多个气缸孔;活塞总成,至少一部分被插入到所述气缸柱的气缸孔的内部,在沿着所述气缸柱进行旋转的同时在所述气缸孔的内部进行直线移动;挡圈,在与所述活塞总成连接并将活塞总成被贴紧到斜盘的倾斜面中的状态下沿着所述活塞总成一同旋转;以及,倾斜调节部,通过所述外壳在所述驱动空间的内部进出,在被插入到所述驱动空间内部的过程中,利用其一侧末端推动所述斜盘的底面并借此对斜盘的倾斜角度进行调节。

通过如上所述的适用本实用新型的容量可调型流体泵,能够实现如下所述的技术效果:

在本实用新型中,倾斜调节部由于斜盘直接贴紧的单个部件构成。因为如上所述的倾斜调节部会在进出过程中直接对斜盘的倾斜角度进行调节,因此能够使用于对斜盘的倾斜角度进行调节的结构趋于单纯化,减少部件数量以及组装工程数量,并进一步降低制造成本。

此外,在本实用新型中,能够通过使倾斜调节部的一侧末端直接与斜盘进行接触而对斜盘进行推动,但是并没有被固定到斜盘上。当倾斜调节部后退时,斜盘将在活塞压力的作用下后倾直至与倾斜调节部发生接触,在此过程中,其倾斜角度将减小。如上所述,在本实用新型中,因为能够在不将倾斜调节部连接到斜盘上的状态下增加或减少斜盘的倾斜角度,因此并不需要配备用于直接或间接地对倾斜调节部与斜盘进行连接的复杂结构或用于维持倾斜角度的回馈结构等。借此,不仅能够使流体泵的整体结构进一步趋于单纯化,而且还能够借此提升其耐久性。

此外,在适用本实用新型的流体泵中,因为用于将活塞贴紧到斜盘上的挡圈是以可旋转的方式结合到斜盘上,因此能够在与斜盘的倾斜面贴紧的状态下以一定的旋转角度进行旋转。借此,能够防止在泵的工作过程中挡圈以与基本旋转轴无关的其他旋转轴为中心随意进行旋转或倾斜的现象,而且还能够防止在上述过程中所发生的磨损现象,并借此提升其耐久性。

此外,在本实用新型中,只需要将连接到活塞中的球形接头压入到挡圈的挡圈孔中,即可完成活塞与挡圈之间的组装。借此,能够省略挡圈与活塞滑靴之间的复杂的组装过程,并借此减少挡圈与活塞滑靴的部件数量。因此,还能够降低流体泵的制造成本。

附图说明

图1是对适用本实用新型的容量可调型流体泵的一实施例的构成进行图示的斜视图;

图2是对构成图1中的实施例的部件进行分解图示的分解斜视图;

图3是为了对图2所图示的部件中的外壳的内部构成进行示意而对切开一部分的状态进行图示的斜视图;

图4是对图2所图示的部件中的活塞总成的构成进行分解图示的分解斜视图;

图5是图1中的I-I'线的截面图;

图6是对在图1中移除外壳之后的内部构成进行图示的斜视图;

图7是对在图5中调节斜盘的倾斜角度之后的状态进行图示的截面图;

图8是对在图6中调节斜盘的倾斜角度之后的状态进行图示的斜视图。

图中附图标记说明:

10为第一外壳

11为第一外壳的主体

12为驱动空间

13、13'为第一连通槽、第二连通槽

14为阻挡环部

15为内部外壳

17为盖子主体

18a、18b为第一气门口、第二气门口

19为第一凸缘

30为第二外壳

31为第二凸缘

31'为基体

32为第二结合孔

33为第一轴孔

33'为组装孔

34为支架

34'为旋转轴

35为斜盘

36为倾斜面

37为结合凸台

38为斜盘的侧面槽

39为斜盘孔

50为气缸柱

51为气缸柱的主体

52为第二轴孔

55为气缸孔

55a为活塞部

55b为流体流动部

70为活塞总成

71为活塞主体

72为接头结合孔

72'为组装突起部

73为球形接头

74为滚动球

75为活塞连接部

76为加压部

77为组装凹陷

80为挡圈

81为盘体

82为挡圈孔

83为挡圈的中心孔

90为驱动轴

91为驱动轴的主体

92为驱动轴的驱动连接部

93为驱动轴的气缸连接部

100为倾斜调节部

101为调节主体

105为接触头

具体实施方式

本实用新型涉及一种通过利用电机或引擎等使驱动轴90发生旋转并将驱动轴90的旋转力转换成活塞的平移运动,从而形成油压或水压的容量可调型流体泵。尤其是,在本实用新型中,能够利用结构简单的倾斜调节部100对斜盘35的倾斜角度进行调节。此外,斜盘35以不可旋转的方式固定,而挡圈80能够相对于斜盘35独立旋转并以可旋转的方式固定到斜盘35上。借此,能够使挡圈80在始终维持一定的倾斜角度的状态下进行旋转,从而避免挡圈80在旋转过程中发生倾斜或晃动。接下来,将对本实用新型的具体构造进行详细地说明。

如图1所示,本实用新型的主体结构由外壳10、30构成。所述外壳10、30大致为圆筒形状并在其内部形成驱动空间12。所述外壳10、30可以视为由两个构成,在本实施例中,所述外壳10、30由第一外壳10以及第二外壳30构成。当第一外壳10与第二外壳30相互组装时,能够在其内部构成密闭的驱动空间12。在此,能够将第二外壳30视为一个盖子。在图2中,图示了第一外壳10与第二外壳30相互分离的状态。

第一外壳10如图3所示,在所述第一外壳10的主体11内侧形成有驱动空间12,而在驱动空间12的内侧形成有连通槽。连通槽大致上可以分为两个部分,连通槽能够被分为相互分离的第一连通槽13与第二连通槽13'。所述第一连通槽13与第二连通槽13'与后续说明的活塞总成70的进出口连接。作为多个进出口中的一部分的第一气门口18a与第一连通槽13连接,而作为剩余一部分的第二气门口18b与第二连通槽13'连接。借此,在活塞总成70的作用下被挤压出的流体能够通过第一连通槽13或第二连通槽13'得到排出。

所述第一连通槽13与第一气门口18a连接,第二连通槽13'与第二气门口18b连接。如图1至图3所示,所述第一气门口18a和第二气门口18b全部向流体泵的外侧方向开放,第一气门口18a和第二气门口18b能够与如操纵器(未图示)或储液罐(fluid reservoir,未图示)等连接。所述说明的第一连通槽13、第二连通槽13'以及与其连接的第一气门口18a气门口、第二气门口18b的数量、位置以及形状仅为一个实例,能够对其进行变更。

在第一外壳10的驱动空间12中配备有内部外壳15与阻挡环部14。内部外壳15被贴紧到第一外壳10的内侧面,而阻挡环部14位于驱动空间12的最内侧,用于对后续说明的气缸柱50的边缘进行阻挡。内部外壳15和阻挡环部14能够被省略,或者与第一外壳10形成为一体。

在本实施例中,位于所述第一外壳10末端部分的盖子主体17与第一外壳10形成为一体。因为所述第一外壳10是通过利用合成树脂材料进行注塑成型而制成,因此盖子主体17也能够作为第一外壳10的一部分而形成为一体。此外,还能够在制作出与第一外壳10独立的盖子主体17之后再进行组装。

在所述第一外壳10的边缘配备有第一凸缘19。所述第一凸缘19是在第一外壳10的边缘部分突出形成,也是用于与第二外壳30的第二凸缘31进行组装的部分。在对第一外壳10与第二外壳30进行组装时,第一凸缘19与第二凸缘31将相互贴紧,而在利用结合用具(未图示)对上述部分进行结合时,能够完成对第一外壳10与第二外壳30的组装操作。

如图2所示,在所述第二外壳30中突出形成第二凸缘31,且围绕第二凸缘31贯通形成多个第二结合孔32。所述第二结合孔32在与所述第一凸缘19的第一结合孔(未图示)相同的位置以相同的数量形成。在结合用具通过第二结合孔32之后,其中的一部分将移动到第一结合孔并对两者进行组装,为此,能够在第一结合孔与第二结合孔32的内侧面加工形成螺纹。

在所述第二外壳30中突出形成圆柱形状的基体31',在基体31'中形成有第一轴孔33。所述第一轴孔33是供后续说明的驱动轴90通过的部分。在所述基体31'中形成有支架34,所述支架34由一对构成。所述一对支架34分别位于基体31'的两侧,将成为后续说明的斜盘35的旋转中心。附图编号H代表旋转孔,可供用于使斜盘35旋转的旋转轴34'嵌入。附图编号33'代表用于组装倾斜调节部100的组装孔。

斜盘35被组装到所述基体31'的支架34。所述斜盘35以可旋转的方式组装到所述支架34,为此,旋转轴34'在通过所述支架34的旋转孔H之后被嵌入到所述斜盘35的侧面槽38。所述旋转轴34'由两个构成,被分别组装到一对支架34。两个旋转轴34'位于一个假想的延长线上并作为斜盘35的旋转中心。

在所述斜盘35的上侧面形成有倾斜面36。在斜盘35进行旋转时,所述倾斜面36的倾斜角度也将发生变化,而在斜盘35的倾斜角度发生变化时,相对于斜盘35发生相对旋转的部件,尤其是在气缸柱50、活塞总成70以及挡圈80沿着斜盘35的倾斜面36进行旋转的过程中,其相位将连续发生变化。虽然能够对所述斜盘35的倾斜角度进行调节,但是会由后续说明的倾斜调节部100进行支撑,并不会以驱动轴90为中心进行旋转。在相对于倾斜角度被固定的斜盘35进行相对旋转的活塞总成70沿着斜盘35的周围进行旋转的过程中,将使其高度将发生变化。

在所述斜盘35的突出的外表面尤其是在朝向气缸柱50的外侧面形成有倾斜面36,而且在其中心形成有斜盘孔39。所述斜盘孔39是供后续说明的驱动轴90通过的部分。虽然所述倾斜面36会因为斜盘35的倾斜形状而具有向气缸柱50突出较多的部分以及突出较少的部分,但仍然由连续的平面构成。

虽然在本实施例中是在所述斜盘35上形成所述倾斜面36,但是也能够采用与其不同的在气缸柱50上形成所述倾斜面36的构成。即,因为只要使气缸柱50与倾斜面36形成相对倾斜的状态即可,因此也能够采用与所述斜盘35相向的气缸柱50的外侧面相对于地面倾斜的构成。

在所述斜盘35上形成有结合凸台37。所述结合凸台37围绕斜盘孔39突出形成,将后续说明的挡圈80固定成可旋转的状态。挡圈80在使从所述斜盘35上突出形成的结合凸台37发生弹性变形的情况下,以强行嵌入的形态被组装到结合凸台37上。因为所述结合凸台37与斜盘35构成为一体,因此在没有配备单独的固定器具的情况下也能够将挡圈80以可旋转的方式进行固定。此外,也能够通过配备单独的结合器具而替代结合凸台37。

在与所述斜盘35相向的位置形成有气缸柱50。所述气缸柱50被组装到驱动空间12,能够相对于固定的外壳10、30以及斜盘35进行旋转。所述气缸柱50是在驱动轴90的作用下进行旋转的部件,如图2所示,大致为圆筒形状。在所述气缸柱50的中心形成有第二轴孔52,第二轴孔52可供驱动轴90嵌入。第二轴孔52与第一轴孔33连接。

在所述气缸柱50的主体51上形成有多个气缸孔55。所述气缸孔55可供构成活塞总成70的活塞主体71插入。活塞主体71沿着所述气缸孔55进行直线移动,并在此过程中对流体进行压缩或吸入。所述气缸孔55沿着所述气缸柱50的中心周围形成多个,且分别供活塞主体71嵌入。

如图6所示,所述气缸孔55由直径各不相同的两个部分构成。其中,直径相对较大的部分为供活塞主体71进出的活塞部55a,而直径相对较小的部分为供流体突出或吸入的流体流动部55b。所述流体流动部55b与上述说明的第一连通槽13以及第二连通槽13'连接。所述活塞部55a以及流体流动部55b的形状或大小可以进行多种变形。

在所述气缸柱50与斜盘35之间形成有活塞总成70。所述活塞总成70由多个构成,其数量与上述说明的气缸柱50的气缸孔55的数量相同。所述活塞总成70通过在气缸孔55内进出而对流体进行压缩或吸入。活塞总成70以后续说明的挡圈80为媒介贴紧到所述斜盘35的倾斜面36上,并借助于在围绕倾斜面36进行旋转的过程中所发生的相位变化进出气缸孔55的内外部并进行直线往返运动。

接下来,将结合图4对所述活塞总成70的结构进行详细的说明。所述活塞总成70大致上可以分为活塞主体71、球形接头73以及加压部76。所述活塞主体71是在气缸孔55的内部进行直线往返运动的部分,采用圆柱形状的构成。在所述活塞主体71的两侧末端分别连接有与活塞主体71一起移动的球形接头73以及加压部76。在所述活塞主体71的一侧末端凹入形成接头结合孔72,而在另一侧则形成有组装突起部72'。球形接头73以可旋转的方式被压入到所述接头结合孔72,而加压部76被压入到组装突起部72'。

所述球形接头73用于将活塞主体71与挡圈80进行连接。所述球形接头以可旋转的形态对活塞主体71与挡圈80进行连接。具体来讲,位于所述球形接头73的一侧的活塞连接部75以可旋转的方式连接到所述活塞主体71中朝向气缸孔55外侧的部分即接头结合孔72中,而位于另一侧的挡圈连接部以可旋转的方式连接到所述挡圈80的挡圈孔82中。借此,球形接头73将处于能够在挡圈80与活塞主体71之间自由旋转一定程度的状态,因此能够在挡圈80与活塞总成70进行相对移动的过程中对因为斜盘35的倾斜面36而导致的间隔进行补偿。

所述球形接头73的活塞连接部75和挡圈连接部大体上为球形形状,分别被压入到接头结合孔72以及挡圈孔82中。此外,在挡圈连接部中形成有滚动球74。所述滚动球74是通过所述挡圈80贴紧到所述斜盘35的倾斜面36上的部分。所述滚动球74用于在活塞总成70的旋转过程中降低球形接头73与斜盘35的倾斜面36之间的摩擦。与本实施例不同,所述滚动球74也能够采用独立构成并被压入到所述球形接头73中的结构。

此外,构成所述活塞总成70的加压部76被结合到活塞主体71中与所述球形接头73结合的部分的另一侧,在本实施例中,形成于所述加压部76中的组装凹陷77将被压入到上述说明的活塞主体71的组装突起部72'中。所述加压部76用于在所述气缸柱50的气缸孔55中对流体进行加压。所述加压部76是在活塞总成70的移动过程中实质性地对流体进行推动的部分,在气缸孔55中被贴紧到活塞部55a的内侧面,从而强力地对流体进行推动。当将水作为流体使用时需要配备加压部76,但是当使用油类时则能够省略加压部76。

如图2所示,挡圈80被贴紧到所述斜盘35上。所述挡圈80在保持与所述斜盘35的倾斜面36的贴紧状态的同时相对于所述斜盘35独立旋转。所述挡圈80中配备有大体上圆形板状结构的盘状的盘体81,用于通过与所述活塞总成70的球形接头73连接而使活塞总成70被贴紧到斜盘35的倾斜面36上。即,所述挡圈80通过对活塞总成70的球形接头73进行阻挡而防止球形接头73从斜盘35上脱离。

所述挡圈80以可旋转的状态结合到所述斜盘35的中心部。借此,所述挡圈80能够不发生晃动并以与所述斜盘35部的倾斜面36对应的一定的倾斜角度进行旋转。即,所述挡圈80能够在与斜盘35的倾斜面36保持平行的状态下进行旋转。借此,能够防止在泵的工作过程中挡圈80以与基本旋转轴无关的其他旋转轴为中心随意进行旋转或倾斜的现象。

在将所述挡圈80组装到所述斜盘35上的结构中,所述挡圈80通过斜盘的结合凸台37组装到斜盘35上。当所述结合凸台37在发生弹性变形之后再次还原到原状的过程中被嵌入到所述挡圈80的中心孔83边缘时,挡圈80将以可旋转的形态结合到斜盘35上。

以所述中心孔83为中心,沿着圆周方向形成多个挡圈孔82。所述球形接头73的挡圈连接部将被嵌入到所述挡圈孔82中。所述挡圈孔82贯通所述挡圈80形成,当挡圈连接部被嵌入到所述挡圈孔82中时,挡圈连接部的滚动球74将通过挡圈孔82并与斜盘35的倾斜面36发生接触。在图6中,对如上所述的状态进行了图示。

附图编号90代表驱动轴90。在所述驱动轴90中,位于轴主体91一侧的驱动连接部92将与电机等驱动部(未图示)连接并接收旋转力,而位于另一侧的气缸连接部93将与气缸柱50连接并将驱动部的旋转力传递到气缸柱50中。如图1所示,在驱动轴90被结合到流体泵的状态下,驱动连接部92将处于突出到外壳10、30外侧的状态。

在所述第二外壳30中安装有倾斜调节部100。所述倾斜调节部100通过第二外壳30进出所述驱动空间12的内部,在被插入到所述驱动空间12内部的过程中,一侧末端将对所述斜盘35的底面进行推动,从而对斜盘35的倾斜角度进行调节。即,所述倾斜调节部100通过与斜盘35直接接触而增加或减少斜盘35的倾斜角度。

在本实施例中,所述倾斜调节部100被组装到所述第二外壳30的组装孔33'中,沿着与所述驱动轴90的长度一致的方向安装。此外,所述倾斜调节部100能够被螺纹结合到所述第二外壳30的组装孔33'中,从而通过旋转对朝向斜盘的底面突出的程度进行调节。

所述倾斜调节部100包括与所述第二外壳30螺纹结合的调节主体101以及位于调节主体101末端部分的接触头105。在调节主体101中形成有螺纹并借此实现与第二外壳30的螺纹结合,在本实施例中,所述调节主体101采用圆柱形形状。此外,接触头105大致上为半球形形状,与所述斜盘35的底面进行点接触。但是,如上所述的形象仅为一个实例,所述接触头105也能够采用多种不同的形状进行变形。例如,接触头105能够是与调节主体101相同的圆柱形形状。

此外,虽未图示,在倾斜调节部100中能够配备弹性部件,从而在所述弹性部件因为受到从所述斜盘35上传递过来的外力而发生变形时,使得倾斜调节部100后退并借此对斜盘35的倾斜角度进行调节。具体来讲,所述倾斜调节部100并不是与所述第二外壳30进行螺纹结合,而是单纯地通过第二外壳30或被安装在第二外壳30内侧的驱动空间12中,并利用弹性部件对其进行支撑。

其中,弹性部件向斜盘35的方向对所述倾斜调节部100进行弹性支撑。借此,当通过斜盘35传递过来较强的压力时弹性部件将被压缩,而斜盘35将以旋转轴34'为中心自然地向倾斜角度减小的方向进行旋转。在如上所述的情况下,使用者将不需要利用倾斜调节部直接对斜盘35的倾斜角度进行调节。

此时,所述弹性部件能够被配置在倾斜调节部100的前侧,从而使弹性部件与斜盘35的底面直接接触。在如上所述的情况下,能够在通过弹性部件使斜盘35的倾斜角度自动发生变化的同时,还能够通过对所述倾斜调节部100的操作而对倾斜调节部100以及弹性部件向斜盘35方向突出的基本高度进行调节,从而对斜盘35的最小倾斜角度进行设定。

或者,也能够将弹性部件配置在倾斜调节部100的后方,再利用单独的调节部(未图示)对弹性部件进行支撑。即,按照调节部-倾斜调节部100-弹性部件的顺序进行配置,在如上所述的情况下,当调节部通过螺纹结合等方式组装到第二外壳30中时,使用者能够通过对调节部的调节而对所述倾斜调节部100以及弹性部件向斜盘35方向突出的基本高度进行调节,从而对斜盘35的最小倾斜角度进行设定。

此外,在附图中图示了所述倾斜调节部100在第二外壳30中沿着所述驱动轴90的长度方向安装的状态,但所述倾斜调节部100也能够被安装在第一外壳10的侧面。例如,所述倾斜调节部100能够以与所述驱动轴90垂直相交的方向安装在所述第一外壳10的侧面并以驱动空间12的方向进出。在此过程中,能够通过与斜盘35的底面接触而对斜盘35的倾斜角度进行调节。

在本实用新型中,所述外壳10、30和斜盘35、气缸柱50、活塞总成70以及挡圈80能够全部使用合成树脂材料制成。即,上述部件能够在通过注塑成型的方式制造之后进行组装。合成树脂材料不仅便于进行成型,还能够使各个部件能够在一定程度上发生弹性变形,以便于更加轻易地完成通过压入方式的组装作业。

接下来,将对适用本实用新型的流体泵工作的过程进行说明。

作为参考,在图5和图6中对斜盘35的倾斜角度为最小状态即0°的状态进行了图示,而在图7和图8中对斜盘35的倾斜角度为最大状态即12°的状态进行了图示。

以图5为基准,首先,驱动轴90将在驱动部的作用下进行旋转。当驱动轴90向箭头①的方向进行旋转时,被固定到驱动轴90上的气缸柱50也将一起进行旋转。气缸柱50将沿着与驱动轴90相同的方向进行旋转,箭头②指示出了气缸柱50的旋转方向。此时,气缸柱50的旋转轴为驱动轴90。

当气缸柱50旋转时,被插入到气缸柱50上的活塞总成70将一起进行旋转。因为活塞总成70的活塞主体71被插入到气缸柱50的气缸孔55内部,因此在所述气缸柱50旋转时,活塞总成70也将被带动并一起进行旋转。分别被插入到所述多个气缸孔55中的活塞总成70将同时进行旋转。

此外,当活塞总成70进行旋转时,被连接到活塞总成70中的挡圈80也将一起进行旋转。因为配备于所述活塞总成70中的球形接头73在被连接到活塞主体71中的同时还被连接到挡圈80中,因此最终能够使活塞总成70带动挡圈80一起进行旋转。各个球形接头73的挡圈连接部以可旋转的状态被压入到所述挡圈80的挡圈孔82中。因为挡圈80能够相对于斜盘35进行独立旋转,因此将相对于固定的斜盘35进行旋转运动。箭头③代表挡圈80的旋转方向。

当挡圈80进行旋转时,挡圈80将在维持与斜盘35的倾斜面36平行的角度的状态下进行旋转。这是因为挡圈80能够通过斜盘35的旋转接头维持被贴紧到所述斜盘35上的状态,其结果,所述挡圈80能够在旋转过程中不发生晃动并以与所述斜盘35部的倾斜面36对应的一定的倾斜角度进行旋转。借此,能够防止在泵的工作过程中挡圈80以与基本旋转轴无关的其他旋转轴为中心随意进行旋转或倾斜的现象。

此时,与挡圈80一起进行旋转的活塞总成70的运动会受到倾斜面36的影响,在如图5以及图6所示的情况下,因为斜盘35处于平行的状态即没有倾斜,因此活塞总成70将不进行升降运动(箭头④方向)。即,在如图5以及图6所示的状态下,适用本实用新型的流体泵将不执行抽吸功能。

但是,在如图7以及图8所示的倾斜状态下,因为所述挡圈80会与斜盘35的倾斜面36一起维持倾斜的状态并进行旋转,因此与挡圈80一起进行旋转的活塞总成70将通过倾斜面36进行升降运动。

以图7为基准,当原来位于左侧的活塞总成70在旋转的同时向右侧移动时,将沿着倾斜面36向相对较高的位置移动即上升。其结果,活塞总成70的活塞主体71将向气缸柱55的内侧移动。接下来在继续旋转时,活塞总成70将重新沿着倾斜面36向相对较低的位置移动即下降。箭头④代表活塞总成70的升降方向。

此外,在活塞总成70的升降过程中,活塞总成70将进行压缩/拉伸运动并在此过程中对流体进行压缩或吸入。存在于气缸孔55内部的流体在活塞总成70上升的过程中被压缩,并经由第一连通槽13通过第一气门口18a吐出。与此同时,下降的活塞总成70将通过第二气门口18b将流体吸入到第二连通槽13'的内而出,准备在下一个行程中对其进行压缩。通过所述气缸柱50、活塞总成70以及挡圈80的旋转,将连续执行如上所述的一系列动作,并借此反复完成吸入以及吐出行程。

此时,根据驱动轴90的旋转方向,外壳10、30上的第一气门口18a或第二气门口18b能够转换为流体的入口或出口。即,以特定的活塞总成70为基准,如果当气缸柱50沿着顺时针方向进行旋转时所述活塞总成70进行压缩运动,则当气缸柱50沿着逆时针方向进行旋转时所述活塞总成70将进行拉伸运动。借此,能够使第一气门口18a以及第二气门口18b在吐出流体或吸入流体的方向上进行转换。这是在斜盘35被固定而气缸柱50发生旋转的结构下实现的优点,能够通过对驱动轴90的旋转方向进行转换而简单地实现液压形成方向的转换。

此外,在球形接头73的挡圈连接部中配备有滚动球74,滚动球74被贴紧到斜盘35的倾斜面36上。所述滚动球74用于在活塞总成70的旋转过程中降低球形接头73与斜盘35的倾斜面36之间的摩擦。

接下来,对从如图5所示的状态将斜盘35的倾斜角度转换成如图7所示的状态的过程进行说明。首先,作业人员能够通过向斜盘35的方向推动倾斜调节部100而抬起斜盘35。即,当沿着图6中的箭头A方向旋转倾斜调节部100时,倾斜调节部100将沿着组装孔33'的螺纹进行直线移动并向图8中的B方向上升。借此,所述倾斜调节部100的接触头105将抬起斜盘35的底面,而斜盘35将以支架34的旋转轴34'为中心进行旋转并使得其倾斜角度增加。

此时,使用者能够通过对倾斜调节部100的旋转程度进行调节,而精确地将斜盘35的倾斜角度调整到所需要的状态。为此,通过将倾斜调节部100旋转一周时倾斜调节部100向斜盘35的方向突出的距离调整为一定的程度,能够借助于倾斜调节部100的旋转次数对斜盘35的倾斜角度的变化程度进行调节。如上所述,在本实施例中,倾斜调节部100由与斜盘35直接贴紧的单个部件构成。如上所述的倾斜调节部100能够在进出过程中直接对斜盘35的倾斜角度进行调节,因此能够简化用于对斜盘35的倾斜角度进行调节的结构。

与此相反,用于减小斜盘35的倾斜角度的过程与上述过程的顺序相反。当向相反的方向旋转倾斜调节部100时,倾斜调节部100将逐渐远离斜盘35并使得斜盘35的倾斜角度逐渐减小。此时,虽然倾斜调节部100的一侧末端即接触头105仍然能够通过保持与斜盘35的直接接触状态而继续推动斜盘35,但是因为并没有被固定或连接到斜盘35上,因此倾斜调节部100并不会直接拉动斜盘35使其进行旋转。

当倾斜调节部100后退时,斜盘35将在活塞总成70的压力作用下自然地进行移动直至与倾斜调节部100发生接触,并在此过程中减小其倾斜角度。即,从如图7所示的状态变更为如图5所示的状态。如上所述,在本实施例中并不需要将倾斜调节部100直接连接或固定到斜盘35上,也能够增加或减小斜盘35的倾斜角度。借此,不需要配备用于将倾斜调节部100直接或间接地连接到斜盘35上的复杂结构或用于维持其倾斜角度的回馈结构等。

与此不同,当所述倾斜调节部100中配备有弹性部件时,不需要使用者直接对倾斜调节部100进行调节,而是能够利用弹性部件自然地对斜盘35的倾斜角度进行调节。即,当通过斜盘35传递过来较强的压力时弹性部件将被压缩,而斜盘35将以所述支架34的旋转轴34'为中心自然地向倾斜角度减小的方向进行旋转,从而实现对其倾斜角度的调节。

此外,如上所述,当弹性部件再次被单独的调节部支撑时,使用者能够通过对调节部的调节而对所述倾斜调节部100以及弹性部件向斜盘35方向突出的基本高度进行调节,从而对斜盘35的最小倾斜角度进行设定。

显然,本领域的技术人员可以对本实用新型进行各种改动和变形,而不脱离本实用新型的精神和范围。这样,倘若本实用新型的这些修改属于本实用新型权利要求及其同等技术的范围之内,则本实用新型也意图包含这些改动和变形在内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1