离心式压缩机的制作方法

文档序号:25028725发布日期:2021-05-11 16:56阅读:82来源:国知局
离心式压缩机的制作方法

本发明涉及一种离心式压缩机。



背景技术:

离心压缩机为叶轮对气体作功使气体的压力与速度升高,完成气体的运输,使气体流过叶轮的压缩机。当叶轮高速旋转时,气体随着旋转,在离心力作用下,气体被甩到后面的扩压器(diffuser)中去,而在叶轮(impeller)处形成真空地带,这时外界的新鲜气体进入叶轮。叶轮不断旋转,气体不断地吸入并甩出,从而保持了气体的连续流动。

现有离心式冰水机组容量的控制方式,主要是以控制离心式压缩机的转速与吸入口的进气导叶(inletguidevane,igv)的开度(opendegree)来因应负载的变化,达到冰水机组容量调节的目的。但是离心式冰水机在低负载条件下运转时或高低压差增加时,由于所运送的冷媒气体质量流率无法克服高低压的压差,导致冷媒气流便无法压送至高压端而停止送出,此时高压端的气体便产生逆流回低压端。当低压端压力升高时,高低压力差减小,压缩机叶轮回复可压送的能力范围,冷媒气流回复至正常的流动方向;然后高低压力差又再度上升,高低压力差又再增加超过叶轮的压送能力范围,高压端的冷媒气体又再度逆流回低压端,如此现象反复发生即所谓的喘震。

喘震为离心式压缩机的特有现象,一般定频离心式冰水机为防止此现象的发生,最常使用的方法为利用调整进气导叶的开度与高压气体旁通至低压侧,使离心式冰水机组能在低负载的条件下继续运转而不会发生喘震的现象,避免对压缩机本体产生损害。

然而,现有技术进气导叶配置于叶轮,当进气导叶的开度降低时,会产生噪音。因此,如何改良并能提供一种『离心式压缩机』来避免上述所遭遇到的问题,是业界所待解决的课题。



技术实现要素:

本发明提供一种离心式压缩机,其通过结构配置的改变,可达到调整扩压器的流道宽度的目的,可以防止喘震与产生噪音,具结构简洁与运转安静的优势。

本发明的一实施例提出一种离心式压缩机,包括一涡壳、一涡壳盖板、一叶轮、一扩压器调整组件、至少三径向组件、至少三轴向组件以及一驱动组件。涡壳盖板设置于涡壳之内,且涡壳盖板与涡壳之间形成一扩压器流道与一涡道,涡道连通扩压器流道。扩压器流道连通叶轮的出口。扩压器调整组件可动地设置于涡壳之内,扩压器调整组件包括一驱动环、至少三驱动杆、至少三插销以及一扩压器流道宽度调整环,其中驱动环可转动地配置于涡壳盖板,驱动环包括至少三驱动杆导槽与至少三插销轨道,各驱动杆导槽贯穿设置于驱动环的一顶部与一底部,各插销轨道设置于驱动环的一外圆周面,各驱动杆连接对应的插销,各驱动杆穿设于相对应的驱动杆导槽以及涡壳盖板,各驱动杆的一端连接扩压器流道宽度调整环,扩压器流道宽度调整环邻近于扩压器流道,各插销可移动地设置于对应的插销轨道内。每个径向组件设置于驱动环的一内圆周面。每个轴向组件设置于驱动环的该外圆周面、顶部与底部之间。驱动组件用以旋转传动驱动环转动,驱动组件包括一驱动器、一联轴器、一驱动轴、一曲柄、一万向滑块与一滑块座,滑块座固定于驱动环,万向滑块可移动地设置于滑块座之内,曲柄的一端连接万向滑块,且曲柄的另一端连接驱动轴,驱动器用以旋转传动驱动轴转动,驱动轴带动曲柄以驱动轴为轴心摆动,使万向滑块往复移动于滑块座,并旋转传动驱动环转动。当驱动环被转动时,通过各插销移动于插销轨道,使各驱动杆移动,以驱使扩压器流道宽度调整环移动,来调整扩压器流道的一流道宽度。

基于上述,在本发明的离心式压缩机中,通过在涡壳外连接驱动组件的设计,将驱动组件的旋转运动利用驱动环转换为扩压器流道宽度调整环的直线运动,由此进行扩压器流道的流道宽度的调整,由此让离心式压缩机在更低负载条件运转,并通过调整扩压器流道的流道宽度来防止压缩机发生喘震。

再者,本发明舍弃现有配置于叶轮的进气导叶的作法,故可免除噪音的困恼,具结构简洁与运转安静的优势。

为让本发明能更明显易懂,下文特举实施例,并配合所附的附图作详细说明如下。

附图说明

图1为本发明的离心式压缩机一实施例的示意图;

图2为本发明的离心式压缩机一实施例的局部分解示意图;

图3为图2中的扩压器调整组件的分解示意图;

图4a为图2中的径向组件的分解示意图;

图4b为图2中的径向组件的示意图;

图5a为图2中的轴向组件的分解示意图;

图5b为图2中的轴向组件的示意图;

图6a为本发明的离心式压缩机中的扩压器流道宽度调整环于伸出位置的示意图;

图6b为图6a的b-b线的剖面示意图;

图7为图6a中的扩压器调整组件的侧面示意图;

图8a为本发明的离心式压缩机中的扩压器流道宽度调整环于一中间位置的示意图;

图8b为图8a的b-b线的剖面示意图;

图9为图8a中的扩压器调整组件的侧面示意图;

图10a为本发明的离心式压缩机中的扩压器流道宽度调整环于缩回位置的示意图;

图10b为图10a的b-b线的剖面示意图;

图11为图10a中的扩压器调整组件的侧面示意图。

符号说明

1离心式压缩机

10涡壳

102涡壳盖板

1020孔洞

1022轴承密封盖

1023孔洞

105涡道

11扩压器流道

12叶轮

13插销

132衬套

14驱动组件

141驱动器

141a轴心

142驱动器固定座

143联轴器

144驱动轴

145驱动轴固定座

146曲柄

147万向滑块

148滑块座

149衬套

15扩压器调整组件

151驱动环

1511顶部

1512底部

1513外圆周面

1514驱动杆导槽

1515插销轨道

1516内圆周面

152轴承

153密封环

16径向组件

161固定架

161a底板

162移动架

163径向轴承随动器

163a锁固元件

164调整元件

165垫圈

17轴向组件

171固定架

171a底板

172轴向轴承随动器

172a锁固元件

173固定元件

18驱动杆

181杆件本体

182密封环

187衬套

188c扣环

19扩压器流道宽度调整环

192沉孔

a1锁固元件

a2垫圈

a3锁固元件

a4密封件

a5锁固元件

a6锁固元件

a7锁固元件

a8锁固元件

b2孔洞

c1第一斜面

c2第二斜面

g1、g2固定元件

h1穿孔

h2沟槽

h3锁固孔

h4孔洞

h6枢接孔

l1第一方向

l2第二方向

具体实施方式

以下结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此限制本发明的保护范围。需说明的是,在各个实施例的说明中,「上方/上」、「下方/下」等的描述以附图为基准进行说明,但亦包含其他可能的方向转变。此外,所谓的「第一」、「第二」用以描述不同的元件,这些元件并不因为此类谓辞而受到限制。为了说明上的便利和明确,附图中各元件的厚度或尺寸,以夸张或省略或概略的方式表示,且各元件的尺寸并未完全为其实际的尺寸。

图1为本发明的离心式压缩机一实施例的示意图。图2为本发明的离心式压缩机一实施例的局部分解示意图。图3为图2中的扩压器调整组件的分解示意图。请参阅图1至图3。在本实施例中,离心式压缩机1包括一涡壳10、一涡壳盖板102、一叶轮12、一驱动组件14、一扩压器调整组件15、至少三径向组件16以及至少三轴向组件17。涡壳盖板102设置于涡壳10之内,且涡壳盖板102与涡壳10之间形成一扩压器流道11与一涡道105,涡道105相通于扩压器流道11。扩压器流道11连通叶轮12的出口,叶轮12可转动地排出气体于扩压器流道11。扩压器调整组件15可动地设置于涡壳10之内,扩压器调整组件15用以调整扩压器流道11的流道宽度,在此「流道宽度」指扩压器流道11内的间隙。

在本实施例中,扩压器调整组件15包括一驱动环(drivingring)151、至少三驱动杆(drivingrod)18、至少三插销(pin)13以及一扩压器流道宽度调整环(diffuserring)19。驱动环151可转动地配置于涡壳盖板102。详细而言,驱动环151包括一顶部1511、一底部1512、一外圆周面1513、至少三驱动杆导槽(driverodgroove)1514、至少三插销轨道(pintrack)1515以及一内圆周面1516,外圆周面1513形成于底部1512与顶部1511之间,内圆周面1516为外圆周面1513的相对面。各驱动杆导槽1514贯穿设置于驱动环151的顶部1511与底部1512。各插销轨道1515设置于驱动环151的外圆周面1513,即各插销轨道1515设置于顶部1511与底部1512之间的外圆周面1513上。插销轨道1515的数量与驱动杆导槽1514的数量相匹配,以图3为例,插销轨道1515的数量与驱动杆导槽1514的数量均为四个,但可依据实际状况来调整驱动杆导槽与插销轨道的数量。

在本实施例中,各驱动杆18穿设于相对应的驱动杆导槽1514以及涡壳盖板102,且驱动杆18的一端连接扩压器流道宽度调整环19,扩压器流道宽度调整环19邻近于扩压器流道11(如图6b所示)。

详细而言,每个驱动杆18包括一杆件本体181、一密封环182、一衬套187以及一c扣环188。涡壳盖板102包含对应每个驱动杆18位置的一孔洞1020以及一轴承密封盖1022,轴承密封盖1022设置于孔洞1020。杆件本体181的一端通过衬套187与c扣环固定,并可配置密封环182以强化密封性,杆件本体181的一端依序穿设涡壳盖板102的孔洞1020、轴承密封盖1022的孔洞1023以及驱动杆导槽1514。

另一方面,杆件本体181的另一端穿设扩压器流道宽度调整环19的沉孔192并通过一锁固元件a7固定,沉孔192即阶梯孔,其并未贯穿扩压器流道宽度调整环19。由此可知,驱动杆18可在驱动环151的轴向方向上移动时,驱动杆18可连动扩压器流道宽度调整环19,由此调整扩压器流道11的流道宽度。在一实施例中,扩压器调整组件15更包括至少三轴承152,轴承152为一直线运动轴承或自润轴承,轴承152的一端固接于轴承密封盖1022之内,且轴承152位于涡壳盖板102的孔洞1020之内,各轴承套设于相对应的驱动杆18,当驱动杆18可在驱动环151的轴向方向上移动时,使各驱动杆18可移动于相对应的轴承152,由此提供驱动杆18支撑其轴向方向上往复线性移动。在其他实施例中,可配置一密封环153于轴承密封盖1022之内,以强化密封程度。

在本实施例中,每个驱动杆18连接对应的插销13,插销13可先穿设衬套132以固定于驱动杆18的侧缘。当驱动杆18穿设于相对应的驱动杆导槽1514以及涡壳盖板102时,各插销13可移动地设置于对应的插销轨道1515内。详细而言,插销轨道1515的两端连线的相对于驱动环151的顶部1511具有一倾斜角度,亦即,插销轨道1515为具斜度的移动轨迹,以图3为例,各插销轨道1515为朝涡壳盖板102斜下的开槽。由此可知,驱动环151相对于涡壳盖板102转动时,插销13移动于插销轨道1515,由于插销轨道1515具有朝涡壳盖板102斜下的移动轨迹,使得插销13朝向涡壳盖板102移动时,插销13可带动驱动杆18朝涡壳盖板102的方向移动,换言之,可通过插销13移动于插销轨道1515内,来达成驱动杆18在驱动环151的轴向方向上移动的目的,并通过驱动杆18连动扩压器流道宽度调整环19,由此调整扩压器流道11的流道宽度。

在本实施例中,为了使驱动环151相对于涡壳盖板102转动时,驱动环151不会相对于涡壳盖板102朝驱动环151的轴向方向移动或驱动环151的径向方向移动。以图2与图3为例,本实施例配置径向组件16与轴向组件17,其中每个径向组件16设置于驱动环151的一内圆周面1516,径向组件16可用以拘束驱动环151于其径向方向上移动;每个轴向组件17设置于驱动环151的外圆周面1513、顶部1511与底部1512之间,轴向组件17可用以拘束驱动环151于其轴向方向上移动。

在本实施例中,径向组件16的数量为四个,然而本发明不对此加以限制,在其他实施例中,径向组件16的数量例如为三个。具体而言,请并参阅图4a与图4b,径向组件16包括一固定架161、一移动架162以及一径向轴承随动器163,其中径向组件16通过锁固元件a6(如图2与图3所示),以将固定架161的底板161a固定于涡壳盖板102,移动架162的一端连接固定座161,移动架162的另一端连接径向轴承随动器163。由此可知,本实施例通过固定架161与移动架162构成一固定在涡壳盖板102,且固定架161与移动架162位于驱动环151的内部,使径向轴承随动器163接触于驱动环151的内圆周面1516,以限制驱动环151朝驱动环151的径向方向上移动,即可限制驱动环151朝其圆心方向移动。

在一实施例中,径向轴承随动器163一端穿设于移动架162的一穿孔h1并通过锁固元件163a固定在移动架162。此外,还可通过一固定元件g1由移动架162的侧面固定,固定元件g1例如为止回螺丝。

进一步而言,径向组件16还包括一调整元件164,如图4a与图4b所示,调整元件164例如为螺丝,但本发明不对调整元件的型态加以限制。移动架162具有一第一斜面c1与一沟槽h2,固定架161具有一第二斜面c2,第二斜面c2由固定架161的底面倾斜而成。其中沟槽h2的位置不同于穿孔h1的位置,且沟槽h2例如为一长型沟槽。安装时,调整元件164依序穿设于垫圈165的孔洞h4、沟槽h2与固定架161的锁固孔h3,以将移动架162锁固至固定架161时,随着调整元件164持续锁紧,第一斜面c1的倾斜度与第二斜面c2的倾斜度相对应,即第一斜面c1可相互配合第二斜面c2,使得移动架162的第一斜面c1朝固定架161的第二斜面c2的第一方向l1移动,让移动架162的第一斜面c1远离固定架161的第二斜面c2的方向移动以带动径向轴承随动器163朝固定架161的第一方向l1移动,所述第一方向l1为径向轴承随动器163朝远离固定架161的位置移动;反之,随着调整元件164持续放松,则反而使得移动架162的第一斜面c1朝固定架161的第二斜面c2的一第二方向l2移动,以带动径向轴承随动器163朝固定架161的第二方向l2移动,所述第二方向l2为径向轴承随动器163朝固定架161的位置移动,其中第二方向l2与第一方向l1为相反方向。如此一来,例如以图2为例,若需要调整驱动环151于径向方向上的位置时,可通过上述放松调整元件164的作法,将其中一个径向轴承随动器163朝固定架161的第二方向l2移动,使得这一个径向轴承随动器163暂时远离驱动环151的内圆周面1516,此时由于其他三个径向轴承随动器163通过调整元件164的锁紧,使其他三个径向轴承随动器163朝固定架161的第一方向l1移动,故驱动环151便会朝上述移动后的径向轴承随动器163位移,使得径向轴承随动器163再度接触于驱动环151的内圆周面1516,由此达到调整驱动环151于径向方向上的位置的目的。

请复参阅图2,在本实施例中,轴向组件17的数量为三个,然而本发明不对此加以限制,在其他实施例中,端视实际情况而可调整轴向组件17的数量。具体而言,请并参阅图5a与图5b,轴向组件17包括一固定架171与一轴向轴承随动器172。轴向组件17通过锁固元件a8(如图2所示),以将固定架171的底板171a固定于涡壳盖板102,轴向轴承随动器172的一端枢接于固定架172的枢接孔h6并通过锁固元件172a固定。此外,进一步可通过一固定元件173固定于固定架171的顶侧,固定元件173例如为止回螺丝。以图2为例,轴向轴承随动器172接触于驱动环151的顶部1511与底部1512之间,且轴向轴承随动器172设置于驱动环151的外圆周面1513、顶部1511与底部1512之间,通过轴向轴承随动器172限制驱动环151朝驱动环151的轴向方向上移动,即避免驱动环151朝涡壳盖板102的方向或远离涡壳盖板102的方向移动。

请复参阅图2,在本实施例中,驱动组件14用以旋转传动驱动环151转动,驱动组件14包括一驱动器141、一驱动器固定座142、一联轴器143、一驱动轴144、一驱动轴固定座145、一曲柄146、一万向滑块147、一滑块座148以及一衬套149。驱动器141的轴心141a穿设驱动器固定座142并连接于联轴器143,通过锁固元件a1与垫圈a2以将驱动器141固定至涡壳10;通过锁固元件a3以将联轴器143固定至涡壳10。联轴器143的一端连接驱动轴144,并可于联轴器143与驱动轴144之间配置一密封件a4以加强联轴器143与驱动轴144之间的密封程度。驱动轴144的一端依序穿设于涡壳10中的孔洞b2、衬套149与驱动轴固定座145,其中驱动轴固定座145可通过锁固元件a5固定于涡壳盖板102之上。在此配置之下,驱动器141例如为马达,驱动器141驱动轴心141a转动,通过联轴器143以驱使驱动轴144转动。

此外,滑块座148固定于驱动环151,万向滑块147可移动地设置于滑块座148之内,曲柄146的一端连接万向滑块147,且曲柄146的另一端连接驱动轴144。此外,驱动环151的轴心与驱动轴144的轴心正交,在此配置之下,驱动器141用以旋转传动驱动轴144转动,驱动轴144带动曲柄146以驱动轴144为轴心摆动,使万向滑块147往复移动于滑块座148,并旋转传动驱动环151转动。曲柄146摆动的运动轨迹为圆弧线,通过曲柄146摆动的运动轨迹的弦长距离传递于驱动环151旋转,即曲柄146摆动的运动轨迹的弦长距离等于驱动环151的旋转角度的弦长距离,驱动环151与万向滑块147相对于驱动环圆心的旋转角度相等,其连接传递方式由万向滑块147作用于滑块座148来进行动力传递至驱动环151,且滑块座148锁固于驱动环151上,可任意调整曲柄146的旋转角度改变的弦长距离,以控制驱动环151的旋转角度。此外,当驱动环151被转动时,通过各插销13移动于插销轨道1515,使各驱动杆18移动,以驱使扩压器流道宽度调整环19移动,来调整扩压器流道11的流道宽度。

由此可知,可通过调整曲柄146的旋转角度改变的弦长距离,通过控制驱动环151的旋转角度,来调控扩压器流道宽度调整环19的移动距离,来限制扩压器流道11的流道宽度的尺寸。以下通过图6a至图11,说明扩压器流道宽度调整环19于伸出位置、中间位置与缩回位置。需说明的是,伸出位置、中间位置与缩回位置的三个位置仅是说明改变扩压器流道11的流道宽度的效果,本发明的扩压器流道宽度调整环19的改变是能够移动在收缩位置与伸出位置之间的任何位置,并达到可以任意调变各种不同扩压器流道11的流道宽度的功效。

如图6a、图6b与图7,其表示扩压器流道宽度调整环19于伸出位置时,使得扩压器流道宽度调整环19完全遮住扩压器流道11的流道宽度,其中如图7所示,插销13移动至邻近插销轨道1515的底端(即靠近涡壳盖板102)。在图6a、图6b与图7的伸出位置中,驱动器141旋转传动驱动轴144转动,驱动轴144带动曲柄146以驱动轴144为轴心且顺时针方向摆动45度,使万向滑块147移动于滑块座148,并旋转传动驱动环151逆时针转动,使插销13朝驱动环151的顶部1511的方向移动至如图9的位置。如图8a、图8b与图9,其表示扩压器流道宽度调整环19于中间位置时,使得扩压器流道宽度调整环19一半遮住扩压器流道11的流道宽度。在此所述「中间位置」是指扩压器流道11的流道宽度被遮蔽一半,仅剩50%的流道宽度。在图8a、图8b与图9的中间位置中,驱动器141再旋转传动驱动轴144转动,驱动轴144带动曲柄146以驱动轴144为轴心且顺时针方向再摆动45度,使万向滑块147移动于滑块座148,并旋转传动驱动环151逆时针转动,使插销13朝驱动环151的顶部1511的方向移动至如图11的位置,插销13移动至邻近插销轨道1515的顶端(即靠近驱动环151的顶部1511)。如图10a、图10b与图11,其表示扩压器流道宽度调整环19于缩回位置时,使得扩压器流道宽度调整环19并未遮住扩压器流道11的流道宽度。

综上所述,在本发明的离心式压缩机中,通过在涡壳外连接驱动组件的设计,将驱动组件的旋转运动利用驱动环转换为扩压器流道宽度调整环的直线运动,由此进行扩压器流道的流道宽度的调整,由此让离心式压缩机在更低负载条件运转,并通过调整扩压器流道的流道宽度来防止压缩机发生喘震。

再者,本发明舍弃现有配置于叶轮的进气导叶的作法,故可免除噪音的困恼,具结构简洁与运转安静的优势。

此外,本发明的径向组件可通过相互配合的斜面,随着调整元件持续锁紧,来调整径向轴承随动器的位置,进而达到调整驱动环于径向方向上的位置的目的。

虽然结合以上实施例公开了本发明,然而其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,可作些许的更动与润饰,故本发明的保护范围应当以附上的权利要求所界定的为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1