不透明的聚酯容器的制作方法

文档序号:5537192阅读:273来源:国知局
专利名称:不透明的聚酯容器的制作方法
背景技术
发明领域本发明涉及不透明的拉伸吹塑聚酯容器。具体而言,本发明涉及对氧、二氧化碳和可见光具有优异阻挡性能的拉伸吹塑不透明聚酯容器。更具体而言,将本发明设计为不透明的,以致于可见光(500nm)通过0.4毫米的容器材料片的透光率低于15%。不透明的材料可以是与聚酯树脂相容的任何材料。通常,粉末越细,不透明性能越好。某些不透明材料的选择也可以得到有利的再热性能,阻挡气体渗透性改进,并且当树脂含有不透明材料和氧清除剂时,对于CO2渗透可以具有协同效应。
2)现有技术目前的拉伸吹塑聚酯容器是透明的。工业上需要透明的聚酯容器,原因在于消费公众特别喜欢看见所有的食物项目。当将聚酯容器用作诸如啤酒、软饮料,瓶装水,婴儿食品,番茄酱,芥末酱和蛋黄酱容器等东西的食品级容器时,消费公众在心理上必须看见食物。此障碍对于容器设置了许多限制。例如,当寻找适宜的阻透材料作为聚酯容器的添加剂,或例如除去乙醛或氧的化合物时,必须找到不引起模糊或使透明的瓶脱色的化合物。因而,进行了很多的研究和开发,以发现保持聚酯容器透明的适宜阻透材料和清除剂材料。
Jakobsen的美国专利4,427,122公开了一种双层共挤出坯料,其中一层含有不透光或类似放射线的粉状材料。该材料可以例如由金属如铝粉组成。然后使用常规技术将此坯料吹塑成为瓶子。
McRoberts等的英国专利2,299,965公开了向用来制备瓶子的聚酯树脂中加入颗粒,以出现不同的视觉外观,即,“闪光颜料”,以产生闪烁的效果。这种美学上愉悦的外观是指颗粒容易被肉眼看见。瓶子可以是有色的。而且,颗粒必须非常光泽并且具有反射性,以产生闪烁效果。
Curry的美国专利3,371,062公开了向聚丙烯中加入铝粉,以抵抗紫外线和氧化降解。该树脂被用于制造管子,绳子或纤维。未提及瓶子,更不用说提及拉伸吹塑瓶子了。
Tanner的美国专利4,772,656公开了将铝粉掺入聚烯烃中,以改善流体烃类通过模塑容器壁渗透的阻透性能。用于烃流体的容器通常是注塑的。Tanner未提及拉伸吹塑。
Mills等的美国专利5,258,233公开了TiO2作为色料在热成型或注塑盘中的应用,以改善在结晶的聚酯薄中聚酰胺和成核剂的掺混物的不透明白度。此参考文献还公开了采用透明无色的树脂用于拉伸吹塑瓶子中的重要性。
Cochran等的美国专利公开了部分芳族聚酰胺用作氧清除剂的应用,其基于树脂的重量,以约4至约6重量%的浓度使用。
工业上需要改善均匀单一层的拉伸吹塑聚酯容器,其允许对于阻透材料,清除剂化合物节省成本的解决方案,和更有效的制备方法,所述的制备方法与必须保持聚酯容器透明的那些工艺条相比,基本上更简单。在讨论过的专利中没有一篇教导了不透明材料在拉伸吹塑聚酯容器中的应用,以掩盖由用于食物包装的透明容器中使用的特殊添加剂形成的颜色。
本发明为一条与迄今总是要求透明无色容器的拉伸吹塑聚酯透明容器完全相反的途径。
发明概述本发明寻求制备一种不透明容器,在壁厚度为约0.4毫米时,其通过壁的可见光(500nm)少于15%。在当今的可应用于食品级的拉伸吹塑容器的市场上,将不会采用这种类型的容器。
拉伸吹塑不透明聚酯用于制备容器的用途解除了限制阻透材料或乙醛清除材料的这些透明局限性,并且允许对于目前制备透明容器限制的节省成本的解决方案。例如,不需要限制将保持容器透明的阻透材料。现在,对于不透明的聚酯容器,人们可以考虑所有的阻透材料,如聚乙烯醇,聚丁二烯,部分芳族聚酰胺和铁粉的掺混物和纳米颗粒。此外,人们不再必须考虑典型地用于聚酯透明容器领域的结晶阻滞剂。结晶阻滞剂使由于结晶所导致的模糊最小化。对于本发明的容器,模糊没有问题,原因在于它在不透明容器是看不见或观察不到的。
用于使聚酯树脂不透明的材料通常降低了由这些树脂制成的容器之间的磨檫系数;这使在包装和拆包容器的硬纸盒中一起的容器附着最小化。
此外,现在可以使用导致黄色或模糊性的添加剂,如某些催化剂或其它化合物如低分子量含氮化合物(其在生产聚酯树脂期间变为黄色),其为有效的乙醛清除剂产品,或为引起模糊性或颜色形成的氧清除剂,因为黄色或模糊性将被掩盖。最后,本发明的不透明聚酯容器容易通过过滤回收的聚酯去除使用的不透明颗粒而可以重复利用。
广义而言,本发明包含一种不透明聚酯容器,其具有低于15%的可见光(500nm)透过0.4毫米壁的透光率。
广义而言,本发明还包含一种拉伸吹塑不透明聚酯容器,其采用与聚酯树脂相容的不透明材料。通常,聚酯树脂含有约0.1至约5重量%的所述不透明材料。
广义而言,本发明还包含一种不透明单层拉伸吹塑聚酯容器,其与不含不透明材料的容器相比,具有改进的阻透性能。
广义而言,本发明还包含一种不透明单层拉伸吹塑聚酯容器,其与不含不透明材料和氧清除剂的容器相比,具有协同的除氧性能。
优选实施方案描述通常,可以由下面的两种方法之一制备聚酯,即(1)酯方法和(2)酸方法。酯方法是其中在酯交换反应中二元羧酸酯(如对苯二甲酸二甲酯)与1,2-亚乙基二醇或其它二元醇反应。由于该反应是可逆的,通常必须移走醇(采用对苯二甲酸二甲酯时为甲醇),以将原料完全地转变为单体。用于酯交换反应的某些催化剂是众所周知的。过去,通过在酯交换反应的末期引入磷化合物,如多磷酸而使催化活性隔绝。首先,使酯交换催化剂隔绝以防止在聚合物中产生黄色。由于本发明,不需要担心黄色聚合物,因为聚合物将是不透明的。因此,由于本发明,更少地需要加入螯合剂如磷化合物。
于是,单体进行缩聚,并且在此反应中采用的催化剂通常是锑化合物或钛化合物。过去,这些催化剂是优选的,因为它们通常不容易使得到的聚合物降解。再一次,由于本发明,可以考虑其它的催化剂,其对于聚合物的颜色具有不利的作用,但另一方面,可以改善总停留时间,以便可以实质上减少制备聚酯的总停留时间。
在制备聚酯的第二种方法中,通过直接的酯化反应,酸(如对苯二甲酸)与二元醇(如1,2-亚乙基二醇)反应制备单体和水。此反应如酯方法一样也是可逆的,因此驱使反应完成,则必须除去水。直接酯化反应不需要催化剂。然后正如在酯方法中一样,单体进行缩聚生成聚酯,且采用的催化剂和条件通常与酯方法中的那些相同。
总之,酯方法中有两个步骤,即(1)酯交换,和(2)缩聚。酸方法中也有两个步骤,即(1)直接酯化,和(2)缩聚。
由二元酸或二元酯组分与二元醇组分的反应来制备适宜的聚酯,所述的二元酸或二元酯组分包含至少65摩尔%,优选至少70摩尔%,更优选至少75摩尔%,再更优选至少95摩尔%的对苯二甲酸或对苯二甲酸C1-C4烷基酯,所述的二元醇组分包含至少65摩尔%,优选至少70摩尔%,更优选至少75摩尔%,再更优选至少95摩尔%的1,2-亚乙基二醇。还优选二元酸组分为对苯二甲酸且二元醇组分为1,2-亚乙基二醇,由此生成聚对苯二甲酸乙二醇酯(PET)。所有二元酸组分的摩尔百分比之和为100摩尔%,且所有二元醇组分的摩尔百分比之和为100摩尔%。
在由除1,2-亚乙基二醇外的一种或多种二元醇组分对聚酯组分进行改性时,所述聚酯的适宜二元醇组分可以选自1,4-环己烷二甲醇、1,2-丙二醇,1,4-丁二醇,2,2-二甲基-1,3-丙二醇,1,6-己二醇,1,2-环己二醇,1,4-环己二醇,1,2-环己烷二甲醇,1,3-环己烷二甲醇,和在链中含有一个或多个氧原子的二元醇,如二甘醇,三甘醇,双丙甘醇,三丙二醇,或这些的混合物等。通常,这些二元醇含有2至18个,优选2至8个碳原子。可以以它们的顺式构型或反式构型或两种形式的混合物使用环脂肪族二元醇。优选的改性二元醇组分为1,4-环己烷二甲醇或二甘醇,或这些的混合物。
在由对苯二甲酸外的一种或多种酸组分对聚酯组分进行改性时,线性聚酯的适宜酸组分(脂肪族,脂环族或芳香族二羧酸)可以选自例如间苯二甲酸,1,4-环己烷二羧酸,1,3-环己烷二羧酸,琥珀酸,戊二酸,己二酸,癸二酸,1,12-十二烷二酸,2,6-萘二羧酸,联苯甲酸,或这些的混合物等。在聚合物的制备中,通常优选使用其官能酸衍生物,如二元羧酸的二甲酯,二乙酯,或二丙酯。实践中还可以采用这些酸的酸酐或酰基卤。这些酸改性剂与对苯二甲酸相比,通常延迟结晶速率。
本发明还特别关注的是由至少85摩尔%的来自于对苯二甲酸或对苯二甲酸二甲酯的对苯二甲酸酯与任何上述共聚单体反应制备的改性聚酯。
除了由对苯二甲酸(或对苯二甲酸二甲酯)与1,2-亚乙基二醇制备的聚酸或上面所述的改性聚酯外,本发明还包括100%的芳香族二元酸如2,6-萘二羧酸或联苯甲酸,或它们的二元酯的应用,及由至少85摩尔%的来自于这些芳香族二元酸/二元醇与任何上述共聚单体反应制备的改性聚酯。
可以使用与聚酯树脂相容的任何不透明材料;这些包括i)金属粉末如铝、铜、铁、锌和锡;ii)铝、钛、锌、锡、锆和硅的金属氧化物;iii)二氧化硅,热解法二氧化硅和热解法氧化铝;iv)铝和钙的金属硅酸盐;v)钙、钡、锌和镁的碳酸盐、硫化物和硫酸盐;和vi)粘土;及其混合物。通常,聚酯树脂含有约0.1至约5重量%的所述不透明材料。
如上所述,过去通常需要制备最清洁,最透明的聚合物,以便容器是透明的。但是,由于本发明,对于聚合物添加剂没有这些限制。因此,本发明可以考虑所有类型的相容的颜料、染料、填料、支化剂,再热剂,防粘剂,抗氧化剂,抗静电剂,抗微生物剂,发泡剂,偶联剂,阻燃剂,填料,热稳定剂,抗冲改性剂,光稳定剂,润滑剂,增塑剂,加工助剂,其它清除剂,和增滑剂。
在聚酯树脂的制备完成时,通常需要对树脂进行固态聚合方法以提高粘度。增加粘度的其它方法也在本发明的范围内,如通过将树脂保持于熔融缩聚阶段直到通过采用某些反应剂而使其粘度增加。所有这些方法对于本领域技术人员而言是已知的。
在固态聚合或其它方法增加粘度后,通常将本发明的树脂加热并且挤出成为均匀单层的预成型体。然后将预成型体加热至约100-120℃并且以约12.5的拉伸比吹塑成为均匀单层容器。拉伸比是径向的拉伸乘以长度(轴向)的拉伸。因此,如果将预成型体吹塑成为容器,可以将其长度拉伸约2倍并且直径拉伸约6倍,得到12(2×6)的拉伸比。
本发明有很多益处,如(1)对于注塑,可以出现更短的注塑时间,原因在于聚酯在冷却期间的结晶不再是一个因素;(2)在拉伸吹塑期间,可以得到更快的循环时间,原因还是在于在聚酯冷却期间的结晶不成问题,并且除了添加剂本身可以作为再热剂外,可以采用更高浓度的再热剂(和材料的更宽范围,如碳,铁,锑和其它金属),以减少再热预成型体的时间(这些添加剂在过去是受到容器透明度的限制的);(3)省去结晶抑制剂,原因在于本发明不用担心结晶引起模糊,在省去这种化合物如间苯二甲酸或额外的二甘醇中存在成本优势;(4)不透明颗粒的存在通常改善阻透性能,并且不透明材料掩盖本发明遇到的任何颜色或模糊问题;(5)此外,还可以加入氧清除材料,其过去使聚合物模糊,如聚乙烯醇的掺混物,聚丁二烯,部分芳族聚酰胺和铁(其产生红褐色)的共混物,以及纳米颗粒;(6)现在可以提高热定形温度以改善热填充性能,其过去受到透明度的限制,所以现在可以使用或采用更高的成型温度,或更长的热定形时间,或两者;(7)许多乙醛清除剂化合物产生黄色,如低分子量的含氮化合物,并且现在可以将这种化合物与不透明树脂容器一起使用;(8)不透明聚酯容器的循环利用可仍然是成功的,原因在于可以容易地由聚合材料通过简单过滤来除去不透明材料;(9)可以将不透明材料用于特殊应用领域,如用于啤酒的铝颜料(产生铝罐的外观)或用于牛奶的TiO2,其得到白色容器;和(10)制备聚酯的方法,即酯交换和缩聚,或直接酯化和缩聚,可以由更短的停留时间改进,原因在于不良的颜色不再是本发明的因素。
本发明的适宜氧清除化合物是部分芳香族尼龙,如由Mitsubishi GasChemical Co.,Inc.Type 6007出售的MDX6;含有聚烯烃段的共聚酯,如由BP Chemical以Amosorb DFC出售的聚丁二烯;烯式不饱和烃,如由Chevron Phillips Chemical Company以EMCM树脂型OSP出售的乙烯丙烯酸甲酯环己烯;和其它可氧化聚合物。在这些活性氧清除体系中,使用的是过渡金属催化剂,典型地钴盐的加入。以约1至约10重量%(基于所述树脂的重量)的范围向树脂中加入氧清除剂。
优选将用于本发明的不透明材料在聚合期间加入,或制备为用于与聚合物混合的母料。还可以用不透明材料涂布聚酯颗粒。已知可以通过下面的方法制备聚酯容器首先将聚酯树脂注塑成为预成型体,并且将预成型体拉伸吹塑为容器的形状。不透明材料的母料,与其它材料一起,可以任选加入至注塑机的挤出机中。这些工艺步骤适宜于例如形成碳酸软饮料、水或啤酒瓶和热罐装容器。可以将本发明用于制备聚酯容器的常规已知的拉伸吹塑工艺。
测试程序通过下面的方法测定特性粘数(IV)将0.2g的无定形聚合物组合物溶解于25℃的20毫升的二氯乙酸中,并且使用乌氏(Ubbelhode)粘度计测量相对粘度(RV)。使用等式IV=[(RV-1)×0.691]+0.063,将RV转变为IV用Mocon Ox-Tran model 2/20测量于零百分比相对湿度,一个大气压下和25℃的氧通量。将98%的氮与2%的氢的混合物用作载气,并且将100%的氧用作测试气。测试前,将样品在装置内的氮气中调节最少24小时,以除去痕量大气中的氧。调节持续进行,直到得到稳定的基线,其中氧通量的改变对于30分钟的周期小于百分之一。接着,将氧引入测试室中。从0至至少350小时测量氧量的降低。数据的处理得到表观渗透系数(APC),为联机时间与氧气暴露的函数(cc(STP).cm)/(m2.atm.天)。得到的APC数据在标准的渗透系数中不是一个稳定的值。APC是描述在固定的时间点氧气渗透而产生的数据,尽管此系数随着时间而慢慢地变化。这些变化太小,以致于不能在对于在任何固定的时间点测量它们的值所需要的时间期间检测到。根据用于PET共聚物的渗透系数的文献方法,由具有适宜边界条件的溶液费克第二扩散定律,进行APC的计算。文献为Sekelik等,Journal of Polymer Science Part BPolymer Physics,1999,Volume 37,847-857页。第二篇文献是Qureshi等,Journal of Polymer Science Part BPolymer Physics,2000,Volume 38,1679-1686页。第三篇文献是Polyakova等,Journal of Polymer Science Part B.Polymer Physics,2001,Volume 39,1889-1899页。
使用MOCON Permatran C-200 CO2渗透体系测量瓶子的二氧化碳渗透性。测试于22℃进行。将瓶子中装入氮气,然后用60psi(4.01 MPa)的CO2加压。将瓶子放置于环境条件中3天,并且测量压力。舍弃其中压力降低至56psi(3.75MPa)以下的瓶子,将其它瓶子再加压至60psi(4.01MPa)并且放置于测试室中,所述的测试室已经用氮气吹扫了至少5小时。一天后,在8小时的周期内,在30分钟时限内进行在测试室中CO2的测量。对传感器的氮气流量为100cm3/分钟,并且对载体流为460cm3/分钟。结果以由至少4个瓶子和每个瓶子15个读数平均的cm3/瓶/天表示。
由Hunter浊度计测量浊度。由使用D65光源,2°观测器的HunterColorQuest II Instrument测量颜色,并且表示为颜色和亮度的1976 CEI值L、a*和b*。
实施例1对照树脂为KoSa 1101型。这是一种用于透明瓶子最终用途而出售的标准树脂。它是在连续聚合反应器中,由对苯二甲酸和1,2-亚乙基二醇开始制备的。配方还含有2.4摩尔%的间苯二甲酸和1.5重量%的二甘醇。此外,配方中还包含8ppm作为再热剂的石墨,和140ppm作为防滑剂的热解法二氧化硅(Cab-O-Sil,Cabot Corporation)。将该无定形树脂在连续反应器固态化至最终的IV为0.83。
使用相同的配方,制备含0.32重量%二氧化钛(TiO2)的树脂。这在间歇试验级反应器中制备。在缩聚前加入TiO2(来自Sachtleben Company,LWSU级)。将该无定形树脂在间歇反应器中固态化至与对照树脂相同的IV,即0.83。将这两种树脂加工成为采用48克的预成型体形式的2升瓶子,用Arburg注塑机于282℃进行注塑。将预成型体加热至约110℃,并且使用Cincinnati制瓶机在模具中(于室温)拉伸吹塑。选择这些温度是为了制备适宜于对照树脂的透明均匀的瓶子。将相同的加工用于含TiO2的树脂。对照瓶的浊度为1.5%,且含TiO2的树脂是不透明的,并且其浊度为85%。
实施例2以不同的量将平均颗粒尺寸为10.2微米的铝粉(来自Silvet CompanyType 330-20E)加入至以颗粒形式使用的PET载体(80%铝)。将该片剂与实施例1中所使用的相同对照树脂配方(KoSa 1101型)掺混,制备含有0.16至4重量%负载的聚酯。将掺混物注射成型,并且将预成型体在与实施例1中所述的相同条件下拉伸吹塑,以制备2升的瓶子。
即使在铝粉的加入量为0.16重量%的最低水平下,容器的侧壁(厚度为0.4mm)完全阻挡了可见光。测试瓶子的CO2和O2渗透率。结果示于表1中。
表1
这表明0.24重量%的铝颗粒提高了CO2渗透率至少15%,而对于更高的浓度没有进一步的提高。在此水平上,还可以发现O2渗透率提高了5至10%的。
0.4mm侧壁的瓶子的颜色和浊度示于表2中。
表2
n.m.-未测量(样品不透明)这表明,在0.4重量%铝负载时,瓶壁具有100%浊度(不透明),并且将掩盖在基础树脂中的任何颜色。
此外,将含有0.4重量%的铝颗粒的样品3通过5微米的过滤器熔融过滤,得到透明的挤出物(过滤器保留铝颗粒),这表明产品可以容易地通过采用过滤器而循环利用。
实施例3以0.5重量%的量将不同颗粒尺寸的铝粉(来自Silvet Company Type330-20E)加入至PET载体(80%铝)并且以颗粒形式挤出(0.4重量%Al)。将该颗粒与实施例1中所使用的相同对照树脂配方(KoSa 1101型)掺混。将掺混物注射成型,并且将预成型体拉伸吹塑,以制备20盎司(0.59升)的瓶子。测量0.25mm厚瓶子侧壁的颜色和浊度,并且结果示于表3中。
表3
n.m.-未测量(样品不透明)
结果表明,在固定的负载下,更小的颗粒产生最佳的覆盖能力。测试样品的CO2和O2渗透率,并且结果示于表4中。
表4
颗粒尺寸为10.2至83微米的0.4重量%的Al粉将CO2渗透率提高了20-30%,O2渗透率表明对于颗粒尺寸大于10微米的Al粉而言没有改进。
实施例4以0.5重量%的量将平均颗粒尺寸为10.2微米的铝粉(来自SilvetCompany Type 330-20E)加入至PET载体(80%铝)中并且以颗粒形式挤出()。将该颗粒与实施例1中所使用的相同对照树脂配方(KoSa 1101型)掺混。将掺混物和对照树脂都注射成型为预成型体,并且在拉伸吹塑前,将预成型体以常规的方式,通过一组IR灯加热12.5秒。IR温度传感器测量预成型体离开IR加热区即刻和15秒后的温度。结果示于表5中。
表5
这表明作为IR再热剂的铝粉量改善了加热预成型体的速率,其允许更少的能量,或增加的速度,以得到拉伸吹塑平衡后相同的预成型体温度。
实施例5制备无间苯二甲酸的聚酯均聚物,并且将其注塑成为预成型体。这些预成型体是模糊的。将相同的树脂与铝母料掺混,得到0.4重量%铝的负载。该预成型体完全掩盖了模糊,并且视觉上可以比得上含有0.4重量%铝的实施例3样品7的预成型体。这表明,可以在不限制模糊的条件下使注塑和拉伸吹塑工艺最优化。此外,可以对瓶子开始加热,以提高热罐装性能,而不用考虑由于瓶子的热结晶导致的模糊。
实施例6已知聚酰胺是乙醛(AA)清除剂并且是改善阻透性的手段(US5,258,233),但其浓度是有限的,通常低于2重量%,原因在于黄色色调的形成。其中添加有过渡金属催化剂的部分芳香族聚酰胺也是活性氧清除剂(US 5,021,515),其浓度基于树脂为4至6重量%。钴催化剂的使用是用来掩盖黄色。
将对照树脂(KoSa 1101型)与5重量%的部分芳香族聚酰胺(MitsubishiGas Chemical Co.,Inc.MXD6 Type 6007)掺混,并且注塑和拉伸吹塑成为20盎司(0.59升)的瓶子。用相同浓度的MXD6,但用0.4%的所述10.2微米Al粉制备类似的瓶子。此外,将0.05重量%的辛酸钴与MXD6掺混。这些瓶子的CO2和O2渗透率列于表6中。
表6
结果表明Al粉与含有钴的MXD6的组合对于瓶子的CO2渗透率具有协同作用。活性氧清除效果的降低可能是由于Al粉导致的钴催化剂失活,并且对于采用其它的不透明剂不能预期。瓶子颜色的测量示于表7中。
表7
通过加入不透明剂可以明显地隐藏随着聚酰胺的加入黄色(b*)和浊度的增加。
实施例7将对照KoSa 1100树脂与热解法二氧化硅(Cab-O-Sil,CabotCorporation)母料掺混,得到0.5重量%的二氧化硅负载。Cab-O-Sil颗粒的颗粒尺寸为0.22微米。CO2渗透率从对照的9.7降低至含二氧化硅瓶子的3.4cm3/瓶/天,其浊度水平为100%。
由此,显而易见的是,根据本发明提供了一种产品和制备该产品的方法,所述的产品完全满足于上面所述的目标、目的和益处。虽然本发明结合其具体实施方案进行了描述,但显然,对于本领域的技术人员而言,按照上面的描述,许多备选方案,修改和变体是明显的。因而,意欲包含同样落入本发明精神和广泛范围之内的所有这样的备选方案,修改和变体。
权利要求
1.一种拉伸吹塑不透明聚酯容器,其包含含有不透明材料的聚酯树脂,所述不透明材料具有低于15%的可见光(500nm)透过0.4毫米厚的透光率,并且其透气率低于不含不透明材料的容器。
2.权利要求1的容器,其中所述的聚酯树脂含有约0.1至约5重量%的所述不透明材料。
3.权利要求1的容器,其中所述不透明材料选自i)金属粉末如铝、铜、铁、锌和锡的组;ii)铝、钛、锌、锡、锆和硅的金属氧化物;iii)二氧化硅,热解法二氧化硅和热解法氧化铝;iv)铝和钙的金属硅酸盐;v)钙、钡、锌和镁的碳酸盐、硫化物和硫酸盐;和vi)粘土;或其混合物。
4.权利要求3的容器,其中所述不透明材料选自铝粉、二氧化钛和热解法二氧化硅的组。
5.权利要求1的容器,其中所述不透明材料的颗粒尺寸小于约25微米。
6.权利要求5的容器,其中所述不透明材料的颗粒尺寸小于约10微米。
7.权利要求5的容器,其中所述不透明材料的颗粒尺寸小于约1微米。
8.一种拉伸吹塑不透明聚酯容器的制备方法,该方法包含通过酯交换和缩聚工艺,或通过直接酯化和缩聚工艺形成聚酯树脂;将不透明材料与所述聚酯树脂混合;形成所述容器的预成型体;和将所述预成型体拉伸吹塑成为聚酯容器,所述聚酯容器的透气率低于在没有所述不透明材料条件下制备的容器的透气率。
9.权利要求8的方法,其中所述容器具有低于15%的可见光(500nm)透过0.4毫米壁厚的透光率。
10.权利要求8的方法,其中所述混合所述不透明材料的步骤是在聚合期间,或作为母料与聚合物一起加入,或涂布所述的树脂,或在所述树脂的注射吹塑期间,或原样,或与所述聚酯树脂的母料掺混物。
11.权利要求8的方法,其中所述的聚酯树脂含有约0.1至约5重量%的所述不透明材料。
12.权利要求8的方法,其中所述不透明材料选自i)金属粉末如铝、铜、铁、锌和锡的组;ii)铝、钛、锌、锡、锆和硅的金属氧化物;iii)二氧化硅,热解法二氧化硅和热解法氧化铝;iv)铝和钙的金属硅酸盐;v)钙、钡、锌和镁的碳酸盐、硫化物和硫酸盐;和vi)粘土;或其混合物。
13.权利要求12的方法,其中所述不透明材料选自铝粉、二氧化钛和热解法二氧化硅的组。
14.一种拉伸吹塑不透明聚酯容器,其包含含有不透明材料和氧清除剂的聚酯树脂。
15.权利要求14的容器,其中所述的聚酯树脂含有约0.1至约5重量%的所述不透明材料。
16.权利要求14的容器,其中所述不透明材料选自i)金属粉末如铝、铜、铁、锌和锡的组;ii)铝、钛、锌、锡、锆和硅的金属氧化物;iii)二氧化硅,热解法二氧化硅和热解法氧化铝;iv)铝和钙的金属硅酸盐;v)钙、钡、锌和镁的碳酸盐、硫化物和硫酸盐;和vi)粘土;或其混合物。
17.权利要求16的容器,其中所述不透明材料选自铝粉、二氧化钛和热解法二氧化硅的组。
18.权利要求14的容器,其中所述氧清除剂选自部分芳族聚酰胺,含有聚烯烃段的共聚酯和烯式不饱和烃,及任选的过渡金属催化剂。
19.权利要求14的容器,其中所述氧清除剂的含量为所述聚酯树脂的约1重量%至约10重量%。
20.权利要求19的容器,其中所述不透明材料为粉状铝并且所述氧清除剂是部分芳族聚酰胺,由此所述容器的二氧化碳渗透率低于只含粉状铝的容器或只含部分芳族聚酰胺的容器的二氧化碳渗透率的约一半。
21.一种拉伸吹塑不透明聚酯容器,其包含含有不透明材料的聚酯树脂,所述的不透明材料还是IR再热剂。
22.权利要求21的容器,其中所述不透明材料选自金属粉末。
23.权利要求21的容器,其中所述的聚酯树脂含有约0.1至约5重量%的所述不透明材料。
24.一种拉伸吹塑不透明聚酯容器,其包含含有不透明材料的聚酯树脂,与只含有聚酯的容器相比,所述的不透明材料还是改善CO2渗透性和O2渗透性的阻透剂。
25.权利要求24的容器,其中所述不透明材料的含量为所述树脂的约0.1至约5重量%。
26.权利要求24的容器,其中所述不透明材料的颗粒尺寸小于约25微米。
27.权利要求26的容器,其中所述不透明材料的颗粒尺寸小于约10微米。
28.权利要求26的容器,其中所述不透明材料的颗粒尺寸小于约1微米。
29.权利要求24的容器,其中所述CO2渗透性改善了至少约15%。
30.权利要求24的容器,其中所述不透明材料选自i)金属粉末如铝、铜、铁、锌和锡的组;ii)铝、钛、锌、锡、锆和硅的金属氧化物;iii)二氧化硅,热解法二氧化硅和热解法氧化铝;iv)铝和钙的金属硅酸盐;v)钙、钡、锌和镁的碳酸盐、硫化物和硫酸盐;和vi)粘土;或其混合物。
全文摘要
本发明描述了不透明的拉伸吹塑聚酯容器及其制备方法。容器,典型地饮料瓶,具有低于15%的可见光(500nm)透过0.4毫米壁厚的透光率。其含有约0.1至约5重量%的所述不透明材料。不透明材料可以是与聚酯树脂相容的任何材料。制备所述容器的方法包括在聚合过程中引入不透明材料,或制备成母料用于与聚合物混合。某些不透明材料的选择也可以得到有利的再热性能,阻挡气体渗透性改进,并且当树脂含有不透明材料和氧清除剂时,对于CO
文档编号F16L1/00GK1625466SQ03803149
公开日2005年6月8日 申请日期2003年1月31日 优先权日2002年2月1日
发明者杰弗里·R·斯坎特伯里, 刘振国, 黄小燕 申请人:因温斯特北美公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1