带齿V带及使用了该带齿V带的传动系统的制作方法

文档序号:16595138发布日期:2019-01-14 19:32阅读:259来源:国知局
带齿V带及使用了该带齿V带的传动系统的制作方法

本发明涉及一种带齿v带及使用了该带齿v带的传动系统。



背景技术:

迄今为止,已知在带式传动系统中,一般而言带齿v带用作用于在带轮之间传递动力的传动带。该带齿v带是在其内周面、外周面上沿带长方向并排地突出设置有多个齿来构成的,该带齿v带具有下述优点,即,通过使带变厚来维持针对压力的刚性,该压力是从带轮给带的侧面方向施加的压力,并且弯曲性优异,并且公开了各种技术(例如专利文献1)。

专利文献1:日本公开专利公报特开2014-70644号公报



技术实现要素:

-发明所要解决的技术问题-

然而,将如上所述的带齿v带用于例如农机等大型设备的传动系统中的情况下,要维持带的刚性就需要使带尺寸大型化,因此存在无法避免带的弯曲性下降,难以向小径带轮上安装这样的问题。

本发明是鉴于所述问题而完成的。其目的在于:通过改善用于大型设备的传动系统等中的带齿v带的形状,由此既维持带刚性,又提高弯曲性。

-用以解决技术问题的技术方案-

为了达到所述目的,在本发明中,着眼于带中的形成在齿之间的凹槽部,使该凹槽部的底部的截面形状的曲率半径比齿前端部的截面形状的曲率半径大,由此提高了带的弯曲性。

具体而言,第一方面的发明涉及一种带齿v带,在所述带齿v带的内周面和外周面中的至少一者上设置有多个齿,多个所述齿沿带宽方向延伸,多个所述齿是以在带长方向上相隔开一定的间隔而排列的状态设置的,所述带齿v带的特征在于:在相邻的所述齿之间,设置有向与该齿的突出方向相反的方向凹嵌下去的凹槽部,各个所述齿的突出方向上的前端部和各个所述凹槽部的底部由截面呈圆弧状的曲面形成,所述凹槽部底部的截面形状的曲率半径大于所述齿前端部的截面形状的曲率半径。

通过上述构成方式,由于在齿之间形成的凹槽部的底部的截面形状的曲率半径比齿前端部的截面形状的曲率半径大,因此能够容易将带弯曲。由此,能够既通过设置齿使带变厚来确保针对来自侧面方向的压力的带刚性,又提高带的弯曲性。

第二方面的发明的特征在于,在第一方面的发明的基础上,所述齿的前端部与和该齿相邻的所述凹槽部的底部通过位于两者之间的平面连接,所述凹槽部两侧的所述平面之间的相交角度的值在20°以上30°以下。

通过上述构成方式,与只用曲面形成齿和凹槽部的带相比,由于存在平面,从而能够与之相应地将齿之间的凹槽部形成得更深,从而能够进一步提高带的弯曲性。

第三方面的发明的特征在于,在第一或者第二方面的发明的基础上,各个所述齿形成为,以垂直于所述带长方向且通过该齿的厚度方向上的中央的对称面为基准面对称。

通过上述构成方式,带的走行方向并不限于带长方向上的一个方向,能够将本发明应用于带向带长方向上的两个方向走行的传动系统中。

第四方面的发明的特征在于,传动系统是在第一至第三方面中任一方面的发明的带齿v带缠绕在多个带轮上而构成的。

根据上述构成方式,能够既通过在带齿v带上设置齿使带变厚来确保针对来自侧面方向的压力的带刚性,又提高带的弯曲性。

-发明的效果-

如以上说明,根据本发明,用截面呈圆弧状的曲面形成齿前端部和形成在齿之间的凹槽部的底部,使凹槽部底部的截面形状的曲率半径大于齿前端部的截面形状的曲率半径,由此,能够既维持带齿v带的刚性又提高弯曲性,从而能够实现适用于大型农机等的传动系统中的带齿v带。

附图说明

图1是示出本发明的第一实施方式所涉及的带齿v带的一部分的立体图。

图2是图1的ii-ii线截面图。

图3是示意性地示出使用了带齿v带的传动系统的主视图。

图4是图3的俯视图。

图5是示出第二实施方式所涉及的带齿v带的相当于图2的图。

图6是示出实施例的带刚性的解析模型的示意图。

图7是示出带的弯曲阻力的解析模型的示意图。

图8是示出将齿前端部与凹槽部连结起来的平面之间的相交角度和齿前端部的半径之间的关系的图表。

图9是示出将齿前端部与凹槽部连结起来的平面之间的相交角度和带刚性之间的关系的解析结果的图表。

图10是示出将齿前端部与凹槽部连结起来的平面之间的相交角度和带的弯曲阻力之间的关系的解析结果的图表。

具体实施方式

下面,基于附图对本发明的实施方式进行详细说明。需要说明的是,下面的对实施方式的说明仅仅是本质上优选的示例而已,并没有对本发明、本发明的应用对象或本发明的用途加以限制的意图。

(第一实施方式)

图1示出本发明的第一实施方式所涉及的带齿v带(coggedv-belt)s,该带s以形成闭合环(loop)的方式,构成为环状(endless),其例如用于大型设备的传动系统等中。带s包括:埋设有沿带长度方向延伸的芯线7的芯线埋设部1;与芯线埋设部1一体地设置在芯线埋设部1的内周面侧(图1中的下表面侧)的压缩部2;以及设置在芯线埋设部1的外周面侧(图1中的上表面侧)的延长部3。另外,在延长部3的外周面侧,与延长部3一体地层叠有帆布4。

此外,带s形成为,在垂直于带长度方向的平面上的截面形状是带宽方向上的长度随着从外周面侧接近内周面侧而缩短的梯形。

芯线埋设部1由黏合橡胶层8和芯线7、7…构成,黏合橡胶层8由橡胶组合物形成,芯线7、7…以并排成在带宽方向上互相相邻的状态螺旋状地布置,芯线7、7…埋设在该黏合橡胶层8的内部,芯线7、7…由捻纤维构成。

作为构成黏合橡胶层8的橡胶组合物的橡胶成分,例如能够使用氯丁橡胶(cr)、三元乙丙橡胶(epdm)等。能够将例如聚酯(pet)纤维等的拈线浸渍在间苯二酚-甲醛-胶乳水溶液等中后,实施干燥处理,来制造芯线7。

延长部3由以短纤维向带宽方向取向的方式混合分散的橡胶组合物形成,作为橡胶组合物的橡胶成分,能够使用氯丁橡胶(cr)、三元乙丙橡胶(epdm)等。

能够对由尼龙纤维、棉、芳纶纤维及它们的混合纤维等形成的具有伸展性的织布实施浸渍在橡胶糊中后使其干燥的黏合处理,来制造帆布4。

压缩部2由以短纤维向带宽方向取向的方式混合分散的橡胶组合物成形,作为橡胶组合物的橡胶成分,能够使用氯丁橡胶(cr)、三元乙丙橡胶(epdm)等。

在压缩部2上并排设置多个齿11、11…,多个齿11、11…由沿带宽方向延伸且向带内侧方向突出的凸条构成,多个齿11、11…在带长方向上相隔开一定的间距(间隔)。各个齿11形成为,以垂直于所述带长方向且通过该齿11的厚度方向上的中央的对称面16为基准面对称。

此外,如图2所示,在相邻的齿11、11之间设置有凹槽部13,凹槽部13由向与齿11的突出方向相反的方向凹陷下去的凹条构成。各个齿11的突出方向上的前端部12和各个凹槽部13的底部14均由截面呈圆弧状的曲面形成,凹槽部底部14的截面形状的曲率半径r2大于齿前端部12的截面形状的曲率半径r1(r1<r2)。

而且,齿前端部12和与该齿相邻的凹槽部底部14之间形成为平面15,齿前端部12与凹槽部底部14通过位于两者的曲面之间的平面15平滑地连接。此外,位于凹槽部13两侧(带长方向上的两侧)的平面15、15彼此之间的相交角度a的大小为20°以上30°以下(20°≤a≤30°),在图示例子中,例如是27°。在该相交角度a小于20°的情况下,难以在保持r1<r2这样的关系的情况下形成齿11、11…,而另一方,在大于30°的情况下,针对侧压的刚性会显著降低,因而优选在20°以上30°以下。

下面,基于图3和图4,对使用了本实施方式的带s的传动系统v进行说明。

如图3所示,传动系统v是将本实施方式的带s缠绕在带轮t、t上而构成的,带轮t、t彼此相分开布置且绕旋转轴22、22旋转,带轮t、t由两个v带轮构成,传动系统v构成为,将一侧(例如图3中的右侧)的带轮t的动力经由带s向另一侧的带轮t传递。需要说明的是,也可以为,带轮t、t不仅向正转方向(在图3中是实线箭头的方向)旋转,而且还向反转方向(在图3中是虚线箭头的方向)旋转,由此通过带s传递动力。

在此,如图4所示,在各带轮t上设置有以截面呈v字状的方式凹嵌下去的带轮凹槽21(v形槽),截面呈v字状的带s以嵌合在该带轮凹槽21内的方式缠绕在带轮t上。此外,伴随着一侧的主动带轮t的旋转,带s借助楔形效应而嵌入该带轮t的带轮凹槽21内,由此,规定的张力便施加在带s上,带s就沿主动带轮t的旋转方向走行。伴随着该带s的走行,带s借助楔形效应而嵌入另一侧的从动带轮t的带轮凹槽21内,该带轮t向同一方向旋转,带s被拉向张力起作用的方向且朝向带轮t、t的中心方向被按向带轮凹槽21,从而从带轮凹槽21的侧壁23受到压力即来自该带轮凹槽21的反作用力。

在此,在带s的内周面上形成有齿11、11…,由此,能够增大接受压力的面积,能够确保针对该压力的带刚性,其中,该压力来自带轮凹槽21的侧壁23。此外,位于齿11、11之间的凹槽部13的底部14的截面形状的曲率半径r2大于齿11的前端部12的截面形状的曲率半径r1,由此,提高带s的弯曲性,从而容易将带s折弯后缠绕在带轮t、t上。

此外,齿前端部12与和该齿相邻的凹槽部底部14通过位于它们之间的平面15连接,由此,与假设没有平面15且曲面的齿前端部12和凹槽部底部14直接连接的情况相比,能够将齿11形成得更深,与之相应地,能够提高带s的弯曲性。此时,凹槽部13两侧的所述平面15、15彼此之间的相交角度在20°以上30°以下,因此,能够良好地确保带s的侧压刚性。

根据以上说明,在该实施方式中,在带s的内周面上形成有齿11、11…,而且位于齿11、11之间的凹槽部13的底部14的截面形状的曲率半径r2大于齿11的前端部12的截面形状的曲率半径r1,因此,能够既确保针对来自带轮t的带轮凹槽21的侧壁23的压力的带刚性,又提高弯曲性,由此能够抑制弯曲抗力。通过这样抑制弯曲抗力,还有利于缓解带s的弯曲疲劳,能够抑制带s发热来延长寿命。

进而,齿11形成为,以垂直于带长方向且通过该齿11的厚度方向上的中央的对称面16为基准面对称,因此,带s的走行方向并不受限定,即使是带轮t、t向正转方向和反转方向两个方向进行旋转的传动系统v,也能够使用带s。

(第二实施方式)

图5示出本发明的第二实施方式所涉及的带s’。需要说明的是,对于与图1和图2相同的部分标注相同的符号,并省略对此的详细说明。

如图5所示,在本实施方式中,在延长部3的外周面(图5中的上侧面)上形成有多个外侧齿18、18…,多个外侧齿18、18…由沿带宽方向延伸且向带外侧方向突出的凸条构成。在此,能够任意设定各外侧齿18的形状、外侧齿18、18之间的间距,也可以构成为与内周侧的齿11相同。也就是说,在相邻的外侧齿18之间设置有向与外侧齿18的突出方向相反的方向凹嵌下去的凹槽部,并且,各外侧齿18的突出方向上的前端部和各凹槽部的底部都由截面呈圆弧状的曲面形成,并且凹槽部底部的截面形状的曲率半径比齿前端部的截面形状的曲率半径大。其它结构则与第一实施方式相同。

在该情况下,也能够得到与上述实施方式相同的效果。此外,通过形成外侧齿18、18、…,从而能够使接受来自带轮凹槽21的侧壁23的压力的面积进一步增大,能够进一步提高针对该压力的带刚性。

(其它实施方式)

在上述第一及第二实施方式中构成为,齿11的前端部12与和该齿11相邻的凹槽部13的底部14通过平面15连接,但并不是特别局限于此,也可以构成为,齿前端部12与凹槽部底部14直接连接。

上述第一实施方式构成为,只在带s的内周面上设置了齿11、11…,而上述第二实施方式构成为,在带s的内周面上设置了齿11、11…并且在外周面上设置了外表面齿18、18…,但并不是特别局限于此,也可以如下,在沿带宽方向延伸的多个齿以在带长方向上相隔开一定的间隔而并排的状态只设置在带s的外周面上的构成方式中,在相邻的齿之间设置有向与齿的突出方向相反的方向凹嵌下去的凹槽部,并且,各齿的突出方向上的前端部和各凹槽部的底部由截面呈圆弧状的曲面形成,并且凹槽部底部的截面形状的曲率半径大于齿前端部的截面形状的曲率半径。

在上述第一实施方式中,传动系统是将带s缠绕在两个带轮t、t上而构成的,但并不是特别局限于此,也可以为,将带s缠绕在三个以上的多个带轮t、t上而构成传动系统。

实施例

下面,对本发明的具体实施例进行说明。

(实施例1~4)

对于带的厚度为15mm、齿11、11之间的凹槽部13的深度为6mm、齿11、11之间的间距为13mm的结构与上述第一实施方式相同的齿带s而言,将凹槽部底部14的截面形状的曲率半径r2固定在3.5mm以后,使齿前端部12的截面形状曲率半径r1发生了变化。将半径r1与相交角度a之间的关系示于图8中,相交角度a是平面15、15之间的相交角度。需要说明的是,由于齿带s的结构,因而将相交角度a设在20°以上。接下来,进行了以下的解析。

(带刚性的解析)

如图6所示,对上述的改变了相交角度a的各带s进行了fem(有限要素法)解析,该fem(有限要素法)解析如下:用由v带轮构成的带轮t的带轮凹槽21夹住上述带s后,用带长方向上的按压杆u(图中以半缺状态示出)按压各带s的外周面的宽度方向中央部而做成3点弯曲状态,根据在该状态下产生的反作用力和挠曲量求出刚性g(单位n/mm)。将该解析结果示于图9中。

在此,解析条件如下,带轮t的有效直径为405mm、带轮凹槽21的v形槽角度为26°、按压杆u的直径为10mm,将带s模型化为六面体元素,将带轮t和按压杆u模型化为刚体。

(对弯曲抗力的解析)

如图7所示,对上述的改变了相交角度a的带s进行了fem解析,fem解析如下:在用带轮t的带轮凹槽21夹住上述带s后,求出边向带长方向施加规定的张力边将带s缠绕在带轮t上时的弯曲抗力m(单位n·mm)。将该解析结果示于图10中。

在此,解析条件如下,带轮t的有效直径为405mm、带轮凹槽21的v形槽角度为26°、带张力为350n、与相邻的两个齿11之间的间距相应的带缠绕角b为0.0566rad,将带s模型化为六面体元素,将带轮t和按压杆u模型化为刚体。

(解析结果)

如图9和图10所示,作为实施例1,设为相交角度a=20°的情况下,得到了r1=3.0mm、带刚性g=70n/mm、弯曲抗力m=312n·mm这样的结果。

作为实施例2,设为相交角度a=30°的情况下,得到了r1=2.88mm、带刚性g=69.8n/mm、弯曲抗力m=317.5n·mm这样的结果。

作为实施例3,设为相交角度a=40°的情况下,得到了r1=2.7mm、带刚性g=69.3n/mm、弯曲抗力m=321n·mm这样的结果。

作为实施例4,设为相交角度a=50°的情况下,得到了r1=2.33mm、带刚性g=68.3n/mm、弯曲抗力m=323.5n·mm这样的结果。

(比较例)

对齿前端部12的半径r1比凹槽部底部14的半径r2大(r1=3.0mm、r2=1.5mm)的现有齿带,进行了与上述说明同样的解析。其结果是,带刚性=103n/mm,弯曲抗力=790n·mm。

(对解析结果的分析)

与比较例相比,实施例1~实施例4的弯曲抗力均被抑制至40%左右。另一方面,带刚性则下降了65%左右。也就是说,能够以抑制带刚性下降的形式使弯曲抗力下降。由此,明确可知:通过本发明,能够既维持带的刚性又提高弯曲性。

在此,根据图8可知,若使相交角度a增大,则r1变小,从而带侧面的面积减小。伴随于此,根据图9可知,带刚性g会下降。另外,根据图10可知,若使相交角度a增大,则弯曲抗力m反而增加。

由此,要既抑制带刚性下降又确保弯曲性,则优选为,相交角度a在20°~30°。

-产业实用性-

综上所述,本发明对于带齿v带及使用了该带齿v带的传动系统而言是非常有用的。

-符号说明-

s带齿v带

t带轮

v传动系统

1芯线埋设部

2压缩部

3延长部

4帆布

7芯线

8黏合橡胶层

11齿

12前端部

13凹槽部

14底部

15平面

16对称面

18外侧齿

21带轮凹槽

22旋转轴

23侧壁

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1