高压储罐用内胆及其制造方法与流程

文档序号:21829209发布日期:2020-08-11 21:55阅读:274来源:国知局
高压储罐用内胆及其制造方法与流程

本发明涉及一种高压储罐的基部即高压储罐用内胆及其制造方法。



背景技术:

高压储罐例如被设置于燃料电池系统,储存向阳极供给的氢气。这种高压储罐具有由热塑性树脂材料等构成的树脂内胆,该热塑性树脂材料具有氢气阻隔性。这种树脂内胆例如通过将大致相同形状的内胆构成部件彼此接合而制作。

更具体而言,内胆构成部件由一端为开口端且另一端为以逐渐收敛的方式弯曲的封闭端的半圆筒形状体构成。而且,所述开口端的端面彼此对接(抵接),接着,该端面彼此接合。在日本发明专利公开公报特开2013-119924号所记载的现有技术中,通过激光焊接进行该接合。

接着,这样得到的树脂内胆例如被加强层覆盖,该加强层由在增强纤维中浸渍有树脂基材的纤维增强树脂(frp)构成。此外,增强纤维一般为碳纤维。



技术实现要素:

在高压储罐中以高压填充氢气等规定的气体。因此,要求接合部具有不会因气体的内压而发生断裂的接合强度。

本发明的主要目的在于提供一种接合部表现出优异的接合强度的高压储罐用内胆。

本发明的另一目的在于提供一种具有充分的可靠性的高压储罐用内胆。

本发明的另一目的在于提供一种用于获得上述高压储罐用内胆的高压储罐用内胆的制造方法。

根据本发明的一实施方式,提供一种高压储罐用内胆的制造方法,通过将由树脂材料构成的两个内胆构成部件接合来得到高压储罐用内胆,在该制造方法中,使用在开口端的附近具有凸缘部的部件作为所述内胆构成部件,所述凸缘部具有向直径方向外侧突出的底部和从该底部指向封闭端侧而弯折的侧部,且由所述底部和所述侧部划分出环形凹部,所述高压储罐用内胆的制造方法具有抵接工序、接合工序和切割工序,其中,在所述抵接工序中,使两个所述内胆构成部件的所述开口端的端面彼此抵接;在所述接合工序中,通过焊接将所述开口端的端面彼此接合,而得到接合部;在所述切割工序中,对所述凸缘部的所述底部和所述侧部以残留所述底部的一部分的方式进行切割,使所述凸缘部以所述接合部的接合强度成为所述树脂材料的拉伸强度以上的突出量而残留。

根据本发明的另一实施方式,提供一种高压储罐用内胆,其具有通过将由树脂材料构成的两个内胆构成部件的开口端彼此接合而形成的接合部,还具有凸缘部,该凸缘部位于所述接合部的附近,向直径方向外侧突出,所述接合部的接合强度为所述树脂材料的拉伸强度以上。

如此,在本发明中,通过使凸缘部残留,能够使接合部的厚度变大。因此,接合面积增大,相应地能够使接合强度为树脂材料的拉伸强度以上。这意味着可避免在高压气体被填充到内胆中时接合部先断裂。

即,特别是通过经过上述过程,可得到表现出优异的接合强度的接合部。因此,高压储罐用内胆、进而使用了该内胆的高压储罐具有充分的可靠性。

为了获得表现出上述那样的接合强度的接合部,例如,可以将残留的凸缘部的突出量(残留突出量)设定为满足下述条件式(1)。此外,接合部的厚度是内胆构成部件的厚度与残留突出量之和,换言之,作为合计值而求出。

接合部的厚度≥(树脂材料的拉伸强度/接合部的断裂应力)×内胆构成部件的厚度…(1)

此外,作为焊接方法,优选振动焊接、红外线加热焊接或热板焊接。在这种情况下,容易将夹具插入环形凹部进行按压,或者容易产生或赋予热量,如此使接合变得简单且容易。

若凸缘部的残留突出量过大,则在内胆上形成加强层时,担忧加强层所包含的纤维材料被凸缘部拉伸而作用局部的应力。为了消除该担忧,优选将残留突出量设定为形成加强层时的缠绕时容许的高低差以下。

另外,若隅角部为棱角部,则担忧纤维材料钩挂在隅角部而伸长,由此使纤维材料损坏。因此,优选在残留的凸缘部的隅角部形成r部或c部即倒角部。在这种情况下,由于避免了纤维材料钩挂在隅角部,因此,避免了该纤维材料的损伤。

也可以使接合部的接合强度为该接合部的内聚破坏强度以上。即,根据本发明的又一实施方式,提供一种高压储罐用内胆的制造方法,通过将由树脂材料构成的两个内胆构成部件接合来得到高压储罐用内胆,该制造方法中,使用在开口端附近具有凸缘部的部件作为所述内胆构成部件,所述凸缘部具有向直径方向外侧突出的底部和从该底部指向封闭端侧而弯折的侧部,且由所述底部和所述侧部划分出环形凹部,所述高压储罐用内胆的制造方法具有抵接工序、接合工序和切割工序,其中,在所述抵接工序中,使两个所述内胆构成部件的所述开口端的端面彼此抵接;在所述接合工序中,通过焊接将所述开口端的端面彼此接合,而得到接合部;在所述切割工序中,对所述凸缘部的所述底部和所述侧部以残留所述底部的一部分的方式进行切割,使所述凸缘部以所述接合部的接合强度为该接合部的内聚破坏强度以上的突出量而残留。

根据本发明的又一实施方式,提供一种高压储罐用内胆,其具有通过将由树脂材料构成的两个内胆构成部件的开口端彼此接合而形成的接合部,还具有凸缘部,该凸缘部位于所述接合部的附近,向直径方向外侧突出,所述接合部的接合强度为所述接合部的内聚破坏强度以上。

根据本发明,在由树脂材料构成的内胆构成部件的开口端附近设置凸缘部,形成接合部而得到内胆后,使凸缘部的一部分残留。因此,接合部的厚度增大,接合面积增大,从而使接合部的接合强度为树脂材料的拉伸强度以上,或者为接合部的内聚破坏强度以上。即,在接合部显现优异的接合强度。因此,能够得到表现出充分可靠性的高压储罐用内胆、进而得到使用了该内胆的高压储罐。

附图说明

图1是本发明的实施方式所涉及的高压储罐用内胆的概略整体俯视图。

图2是构成图1的高压储罐用内胆的内胆构成部件的概略整体俯视图。

图3是将图2所示的凸缘部的附近放大后的主要部分放大剖视图。

图4是表示将振动焊接用夹具插入形成于凸缘部的环形凹部的状态的主要部分放大剖视图。

图5是表示使内胆构成部件的开口端的端面彼此抵接的状态的主要部分放大剖视图。

图6是接着图5表示开口端附近被稍微压缩的状态的主要部分放大剖视图。

图7是表示振动焊接用夹具从环形凹部脱离并得到接合部的状态的主要部分放大剖视图。

图8是表示对凸缘部以残留其底部的一部分的方式进行切除后的状态的主要部分放大剖视图。

图9是表示内胆构成部件的开口端的端面彼此间产生位置偏移的状态的主要部分放大剖视图。

具体实施方式

下面,对于本发明所涉及的高压储罐用内胆,在该高压储罐用内胆与其制造方法的关系方面列举优选的实施方式,参照附图进行详细说明。

图1是本实施方式所涉及的高压储罐用内胆(以下,也仅记为“内胆”)10的概略整体俯视图。该内胆10通过将第1内胆构成部件12与第2内胆构成部件14接合而构成。在本实施方式中,第1内胆构成部件12和第2内胆构成部件14彼此呈大致相同的形状。

首先,对第1内胆构成部件12和第2内胆构成部件14进行说明。图2是接合前的第1内胆构成部件12的概略整体俯视图。第1内胆构成部件12是内部中空的半圆筒形状体,其一端是开口的开口端16,另一端是以逐渐收敛的方式封闭的封闭端18。在开口端16的附近形成有指向直径方向外侧而突出的凸缘部20。

图3是放大了凸缘部20附近的主要部分放大剖视图。此外,图3中的t1表示第1内胆构成部件12(主体)的侧壁的厚度。

凸缘部20呈环状,被设置在从开口端16的端面向封闭端18侧稍微偏离的位置。另外,凸缘部20由沿直径方向延伸的底部22和从该底部22向封闭端18侧弯折的侧部24构成。由上述底部22和侧部24划分环形凹部26。即,环形凹部26是形成在第1内胆构成部件12的主体侧壁与凸缘部20的侧部24之间的空间。

在通过振动焊接将第1内胆构成部件12与第2内胆构成部件14接合的情况下,环形凹部26的宽度w1和深度d1被设定为能够插入振动焊接用夹具30(参照图4)的程度即可。另外,底部22的厚度t2也为在振动焊接过程中凸缘部20不会破损的程度即可。凸缘20的初始突出量l1(从第1内胆部件12的主体侧壁的外表面至凸缘20的侧部24的外表面的距离)可设定为例如第1内胆部件12的厚度t1的1~3倍之间,典型的约为1.5倍。

在侧部24的面向环形凹部26的内表面形成有向远离环形凹部26的方向以规定角度θ倾斜的斜面32。该斜面32是用于使振动焊接用夹具30(参照图4)易于脱离的斜面,即所谓的拔模斜面。

另外,如图2所示,在侧部24上,以将该侧部24的一部分切除的方式形成有缺口部34。例如,止转用夹具与该缺口34卡合。

在一方的封闭端18上,在其顶面形成指向开口端16侧而凹陷的凹陷部40。在凹陷部40的底部设置有向远离开口端16的一侧突出而延伸的凸台部42。

如上所述,第2内胆构成部件14以第1内胆构成部件12为标准而构成。因此,对与第1内胆构成部件12的构成要素相同的构成要素标注相同的参照标记,并省略对其的详细说明。

接着,对由如上述那样构成的第1内胆构成部件12和第2内胆构成部件14得到图1所示的内胆10的本实施方式所涉及的制造方法进行说明。

第1内胆构成部件12和第2内胆构成部件14例如通过利用未图示的注射成形装置进行使用熔融树脂材料的注射成形而制作。作为树脂材料的优选例子,可以举出作为具有氢气阻隔性的热塑性树脂的高密度聚乙烯(hdpe)树脂等。此外,凸台部42和凸缘部20当然与主体一体成型。斜面32和缺口34也与该成型同时形成。

在将第1内胆构成部件12和第2内胆构成部件14设为相同形状的情况下,能够利用相同的模具制作两部件。因此,不需要制作多个模具,从而能够实现模具费用的低廉化。

使这样得到的第1内胆构成部件12和第2内胆构成部件14以开口端16的端面彼此以规定距离分离的方式相向。接着,如图4所示,在进行振动焊接的情况下将振动焊接用夹具30插入环形凹部26。根据需要,使未图示的止转用夹具卡合于形成于凸缘部20的侧部24的缺口部34。据此,第1内胆构成部件12和第2内胆构成部件14的转动被阻止,从而容易实施之后的工序,因此优选使用止转用夹具。

接着,对振动焊接用夹具30施力,将第1内胆构成部件12和第2内胆构成部件14的各凸缘部20向箭头x方向按压,使第1内胆构成部件12和第2内胆构成部件14彼此接近。据此,如图5所示,开口端16的端面彼此抵接(对接)。即,进行抵接工序,形成抵接部位。

接着,进行接合工序。即,如图5中的箭头y所示,使环形凹部26内的振动焊接用夹具30中的一方、例如上方的振动焊接用夹具30沿第1内胆构成部件12的直径方向振动。据此,在抵接部位产生摩擦热,其结果,该抵接部位软化或熔融。由于环形凹部26内的振动焊接用夹具30将第1内胆构成部件12和第2内胆构成部件14向彼此接近的方向按压,因此,如图6所示,两部件12、14以彼此接近的方式被压缩。软化或熔融的树脂材料随着该压缩而向内周壁侧或外周壁侧漏出。

此外,也可以使下方的振动焊接用夹具30沿第2内胆构成部件14的直径方向振动。另外,如果能够使振动焊接用夹具30在第1内胆构成部件12、第2内胆构成部件14的圆周方向上振动或旋转,则也可以使振动焊接用夹具30在第1内胆构成部件12、第2内胆构成部件14的圆周方向上振动或旋转。

在经过规定时间后,停止施加振动。另外,在按压经过所需的时间之后,使振动焊接用夹具30沿铅垂方向上升或下降,而使该振动焊接用夹具30从环形凹部26脱离。由于在侧部24上形成有斜面32,因此此时能够使振动焊接用夹具30易于从环形凹部26脱离。然后,软化或熔融的树脂材料被冷却而固化。即,在抵接部位处进行接合,得到接合部46。

接着,进行切割工序。在此,在现有技术中,从基端切除凸缘部20,并以原来设置有凸缘部20的部位与主体侧壁共面的方式进行面加工。即,没有残留凸缘部20。

与此相对,在本实施方式中,执行切割工序,其中,以残留凸缘部20的一部分的方式按切割线cl进行切除。在此,切割线cl的位置(凸缘部20的切割量),换言之,图7所示的残留突出量l2被设定为,使接合部46的接合强度为所述树脂材料的拉伸强度以上。此外,树脂材料的拉伸强度可以基于日本工业标准的拉伸试验使用由不具有接合部46的单一部件构成的试样求出。

为了使接合部46的接合强度比树脂材料的拉伸强度大,使用以包含接合部46的方式切出的试样进行拉伸试验,基于此时的断裂时的应力(断裂应力)来设定凸缘部20的残留突出量l2即可。此外,拉伸强度和断裂应力可以是进行多次试验而得到的平均值,也可以是从平均值减去标准偏差的4倍的值而得到的计算值。

具体而言,当设凸缘部20的残留突出量l2与主体侧壁的厚度t1之和为接合部46的厚度时,使其是满足下述式(1)的值即可。

接合部46的厚度≥(树脂材料的拉伸强度/接合部46的断裂应力)×t1…(1)

例如,当通过计算式(1)的右边而计算出的值为3.4mm时,凸缘部20的最小残留突出量l2为(3.4-t1)mm。即,用适当的切割用工具对凸缘部20的底部22,以使其从本体侧壁的外周壁突出(3.4-t1)mm的方式进行切除即可。此外,残留突出量l2优选为在形成加强层时的缠绕(winding)时容许的高低差以下。

随着上述切割,侧部24和底部22的大部分被切除而成为图8所示的状态,直至得到图1所示的内胆10。在此,如图9中放大所示那样,在端面彼此间产生些许的位置偏移的情况下,例如,与第1内胆构成部件12相比,第2内胆构成部件14的残留突出量l2"减小了位置偏移的量。即,当位置偏移量为δd时,第1内胆构成部件12的残留突出量l2'为从第2内胆构成部件14的残留突出量l2"减去δd后的值。在这种情况下,第1内胆构成部件12的厚度t1与残留突出量l2'之和为接合部46的厚度。

优选对残留的凸缘部20(底部22)的隅角部进行倒角,形成r部(圆角部)50。即,优选使底部22的残余的隅角部弯曲。

此外,设置覆盖内胆10的加强层,并且阀部被安装到凸台部42,由此来制造高压储罐。此时,若凸缘部20的残留突出量l2为所述高低差以下,则从残留的凸缘部20作用于加强层所包含的纤维材料(碳纤维等)的应力为容许范围以下。另外,若凸缘部20的隅角部为棱角部,则担忧纤维材料(碳纤维等)钩挂于棱角部而局部地伸长,由此使纤维材料损坏,但在如上述那样形成了r部50的情况下,能够消除该担忧。

在该高压储罐中,内胆10的接合部46的接合强度与作为第1内胆构成部件12、第2内胆构成部件14的母材的树脂材料的拉伸强度相等或比其大。因此,当高压气体被填充到内胆10内时,能够避免接合部46先断裂。由于内胆10的除接合部46以外的部分,由相对于填充压力具有充分的耐压性的树脂材料构成,其结果,接合部46也相对于填充压力表示出充分的耐压性。即,能够得到表现出充分的可靠性的高压储罐。

与上述相对,还可以想到在想要尽可能地减小纤维缠绕(filamentwinding)时的高低差时等,有时不容易将凸缘部20的残留突出量l2设定得较大。在这种情况下,可以将凸缘部20的残留突出量l2设定为,使得接合部46的接合强度为该接合部46的内聚破坏强度以上。通过这种结构,也能够避免当在内胆10内填充高压气体时接合部46先断裂,因此能得到表现出充分的可靠性的高压储罐。

本发明不特别限定于上述实施方式,在不脱离本发明的主旨的范围内能够进行各种变更。

例如,也可以形成c部(斜角部)来代替r部50。

另外,即使第1内胆构成部件12和第2内胆构成部件14具有不同的形状,也没有问题。

另外,也可以进行红外线加热焊接代替振动焊接,也可以将振动焊接和红外线焊接组合。在进行红外线加热焊接时,将红外线加热焊接用工具插入环形凹部26即可。或者,也可以进行热板焊接。

[附图标记说明]

10:高压储罐用内胆;12、14:内胆构成部件;16:开口端;18:封闭端;20:凸缘部;22:底部;24:侧部;26:环形凹部;30:振动焊接用夹具;32:斜面;34:缺口部;46:接合部;50:r部。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1