用于检测容器预定填充界面的传感器的制作方法

文档序号:5824367阅读:209来源:国知局
专利名称:用于检测容器预定填充界面的传感器的制作方法
技术领域
本发明涉及一种用于检测容器预定填充界面的传感器。
这种传感器例如适合检测一个容器变空和必须用满容器更换的时刻。在半导体工业中,电容传感器和芯片接合一起使用,以监测充满着环氧树脂的注射器的液面,并且一旦注射器被排空到超过预定的数量就给出一个警报信号。这种传感器例如可按照牌号KI-3015-BPKG从IMF公司买到。
这种传感器存在固有的严重缺点。其直径较大,约为10mm,所以当更换排空的注射器时,大量昂贵的环氧树脂仍然留在注射器中。此外,传感器信号会经受大波动,即,每当更换注射器以后,必须以某种方式重新调整传感器的转换阈值。
从US 4'002'996专利可知,一种用于测量容器液面的电容传感器具有三个电容电极,它们使电容器排成两排,并且粘合于容器上。从两个电容器的差分信号形成液位信号。此外,在这种传感器情况下,液位还位于离容器出口较远处,仍有较大数量的材料留在容器中。
本发明之目的在于提出一种用于检测注射器液面的传感器,注射器装有用于模片接合的环氧树脂,传感器能够检测很低液面的注射器,从而只有极小数量的材料留在注射器中,并且容易处理。进一步之任务在于提出一种电子电路,它能够操作传感器而不必调整。
根据本发明,借助权利要求1的特征实现上述的任务。有利的进一步的发展是从属权利要求的主题。
根据本发明,用于检测容器预定液面的传感器具有三个电容电极,它们构成第一和第二电容器。在三个互相平行布置的平面中,安置这三个电容电极。穿过这三个电容电极的一个钻孔接纳该容器。第一电容器最好是第一RC元件的一部分和第二RC元件的第二电容器部分,使两个RC元件具有不同的时间常数,测量两个时间常数的相对变化,能够操作传感器而无需任何调整。
在下文中,根据附图更详细地描述本发明的一个实施例,在附图中

图1示出传感器的截面图,传感器用于检测装有粘合剂的容器的预定液面;图2示出传感器的平面图;图3示出另一种传感器;图4示出用于操作传感器的电子电路;图5示出传感器的输出信号;和图6示出电绝缘传感器的电极的示意图。
图1未按比例示出,它示出一个注射器1形式的容器,例如把粘合剂2施加到基片上的模片粘合器可采用注射器1。粘合剂2最好借助压缩空气分批地穿过注射器1的孔3。用全部类型的环氧树脂,特别是含有银粉或银片的环氧树脂,作粘合剂2。对于容器1预定填充界面的检测,传感器4和三个电容电极5-7一起使用,形成两个串联的电容器8和9。这些电极如图1所示,在一些互相平行地布置的平面中安置。最好从具有三个导电层的多层印刷电路板10制作传感器4,这些导电层由两个不导电层11和12隔开。印刷电路板10具有圆形钻孔13,它穿过三个电容电极5-7,用于接纳注射器1,从而电容电极5-7完全围绕注射器1。钻孔13的直径最好相应于注射器1的直径。电容电极5-7不再象现有技术那样平行地延伸,而是垂直于注射器1的表面延伸。因此,粘合剂2处于电容电极5-7的漏泄场中。在图中,粘合剂2的液面处于两个上部电容电极5与6之间,从而注射器的更换是相当简单的。一般说来,各个不导电层11和12约为0.2-2mm厚,各个导电层约为30-50μm厚,从而传感器4约为0.5-2mm厚。电容电极5-7例如为环形(见图2),而中间电容电极6实际上遍布印刷电路板10的整个区域。
为了便于传感器4操作,在其部件14上安装一个电子电路,多层印刷电路板10装于其一侧或两侧。在用常规方式制作印刷电路板10时,构成三个导电层,从而在一面形成电容电极5-7,而在另一面形成用于连接部件14的印刷导线。适当的镀敷通孔可用于把电容电极5-7连接到部件14上。
除了某种间隙以外,当全部电容电极5-7直接接触注射器1时,从电容电极5-7出来的电场的场力线都以最佳方式流过注射器1的内侧。
任何温度或湿度的波动皆改变在电容电极5与6之间的距离,但其改变程度相同于在电容电极6与7之间的距离,从而电容器8和9的电容也以相同的程度变更。
然而传感器4能够用任何高度定位于注射器1上,尤其是引向孔3的狭颈上。因此,根据本发明的传感器4实际上能够在注射器1的更换被指示之前,使注射器1完全被排空。
图2示出传感器4的平面图。电子部件14被安排成紧邻于电容电极5。
图3示出另一种传感器4,其中由三个平行地安排的金属板形成三个电容电极5-7,每个板都有一个把注射器1插过其中的圆形钻孔13。安放由介电材料制作的物体,用作诸板之间的隔块。
图4示出一个特别适合于传感器4操作的电路,它具有一个振荡器15,一个带有两个输入端的信号检测器16,和一个由电阻器17,18和电容器19形成的积分器20。此外,该电路具有一个微处理器21,它带有一个集成的A/D变换器22和一个或者进位逻辑“0”或者进位逻辑“1”的输出端23。逻辑“0”意味着注射器1仍装有粘合剂,而逻辑“1”,意味着必须更换注射器1。在其输出端,振荡器15发送一个涉及到接地m的预定频率的矩形交流电压信号U1,该频率通常处于200-400KHz范围内。选择该频率,使由电容器8和9建立的电场,只要仍有粘合剂2,就透入粘合剂2中。电容器8和电阻器24以低通形式形成第一RC元件,而电容器9和电阻器25以低通形式形成第二RC元件。
当电容电极6处于接地m时,把从振荡器送出的交流电压信号U1施加到两个低通元件上。在两个低通元件输出端呈现的交流电压信号U2和U3,被直接地或通过耦合电容器26引导到信号检测器16的两个输入端。信号检测器16在其输出端发送一个矩形电压U4,U4’的占空因数取决于交流电压U2和U3的形状。借助积分器20校平电压U4,并且或者直接作为电压U5,或者间接地作为直接从U5得到的U6,把U4送到微处理器21的A/D变换器22。
电容传感器4应当发送一个能够容易地区分下述三种情况的信号。
情况1在钻孔13中没有注射器1。
情况2在钻孔中有一个装满粘合剂2的注射器1。
情况3情况3是一种动态的情况,当注射器1变空并且传感器4指示应当更换注射器1时发生此种情况。在钻孔13中安放注射器1。粘合剂2的液面降至最上面电容电极5以下,但仍高于第二个电容电极6的液面。
在操作中,两个电容器8和9通过交流电压U1连续地充电和放电。两个低通元件的时间常数τ1和τ2确定两个电容器8和9的充电反向速度。信号检测器16用于把一个来自电容器8或9的充电反向时间的信号转向,从而能够自动地区分上述三种情况。因此,按照本发明,选定两个低通元件的大小,使它们具有不同的时间常数τ1和τ2。根据方程τ1=R1×C1和τ2=R2×C2,能够得出会影响时间常数τ1和τ2的各种可能性,式中R1表示电阻器24的数值,R2表示电阻器25的数值,C1表示电容器8的电容值,和C2表示电容器9的电容值。下面较详细地说明三个实例实例1电容电极5和7具有相同的几何形式。从而两个电容器8和9在相同情况下具有相同的电容值。两个电阻器24和25的电阻值R1和R2被选择成不同,例如R2=50×R1。
实例2电容电极5和7具有不同的几何形式。从而两个电容器8和9在相同情况下具有相同的电容值。两个电阻器的电阻值R1和R2被选择成相同或不同。
实例3电容电极5和7具有相同的几何形式。一个附加的电容器被并联地连接于电容器9。两个电阻器的电阻值R1和R2被选择成相同或不同。
现在较详细地说明一个例如特别适用的电子电路。信号检测器16用于从两个交流电压信号U2和U3中提取含于时间常数τ1和τ2中的信息,并使它呈现于信号U4中。为此,最好使用商用的PLL部件(例如莫托罗拉公司的MC1406或国家半导体公司的CD4046)。这种PLL部件包含一个振荡器以及通常有好几个的相位检波器,后者被制成XOR(专用OR)元件。最好使用被作成XOR元件的相位检波器作信号检测器16。信号U2被送别XOR元件的一个输入端,而信号U3被送到其另一输入端。众所周知,XOR元件在相同的逻辑信号施加于两个输入端时就在其输出端携带逻辑“0”信号,而在不同的逻辑信号施加于两个输入端时就携带逻辑“1”信号。由时间常数τ1限定的交流电压信号U2的上升时间,可确定一个时刻;在此时刻,在XOR元件的相应输入端的信号从逻辑“0”变到逻辑“1”,或者从逻辑“1”,变到逻辑“0”。由时间常数τ2限定的交流电压信号U3的上升时间,可类似地确定XOR元件的另一输入端的转换时刻。因此,当两个时间常数τ1和τ2中的至少一个发生变化时,交流电压信号U4和电压U5也发生变化。
为了可以测量时间常数τ1和τ2的变化,时间常数τ1和τ2必须和交流电压信号U1的频率f的振荡周期T=1/f相差不大。这就意味着频率f应当大于两个低通元件的截止频率。其缺点在于这些低通元件是作为交流电压信号U1滤波器而工作的,从而使交流电压信号U2和U3的振幅较小。结果是,交流电压信号U2的振幅充分大,而交流电压信号U3的振幅太小,必须予以放大。XOR元件的一个输入端已有一个电路,它自动地放大一个施加的交流电压信号,直至它的电平大到足以启动XOR元件中的转换操作为止。为此,通过耦合电容器26把交流电压信号U3送到XOR元件的这个输入端。因此,不需要单独的放大器。
虽然这个电路可满意地工作,但结果是当用积分器20的输出端的电压U5去控制振荡器15的频率时,三种情况的可区分性是更好的。因此,最好把电压U5送入放大器28的反馈回路27中,在此它按预定的系数放大,按固定的正向电压分量在电平上漂移,和被送到振荡器15,用作频率控制电压U6。
下面是实例1中电子电路的性能情况1根据两个低通元件的不同时间常数τ1和τ2,这导致电压U6的最大值为4.5V,交流电压信号U1的频率为3600KHz左右。
情况2和情况1的电容值相比,两个电容器8和9的电容值C1和C2以相同的程度变化。时间常数以不同的程度变化。对于电压U6,这导致约2V的较低值,和交流电压信号U1的频率下降到约310KHz。
情况3电容器8的电容C1和从而时间常数τ1,随粘合剂2的液面而变化。电容器9的电容C2和从而时间常数τ2,并不变化。电压U6随着电容器8的电容C1和从而随着时间常数τ1的变化的增加而增加。当粘合剂2的液面已经到达第二电容电极6的液面时,电压U6的数值达到2.6V左右,并且交流电压信号U1的频率值约为323KHz。
把电压U6供给微处理器21的A/D变换器22。微处理器21连续地询问A/D变换器22,并且在实例1中的工作如下-若U6大于4V,则微处理器21的输出端23载带逻辑“1”。
-若U6小于2.6V,则微处理器21存储U6值,用作值Z0。然后微处理器21的输出端23载带逻辑“0”。
-若U6小于2.6V和小于Z0,则微处理器21存储U6值,用作新值Z0。微处理器21的输出端23载带逻辑“0”。
-若U6小于2.6V和大于Z0+ΔZ,在此ΔZ表示0.4V(或0.5V)左右的预定阈值,则微处理器21的输出端23被设置成逻辑“1”,以指示注射器1是空的,必须变换。
图5说明U6随时间t的变化过程。可以清楚地看到两个电压电平一个相当于情况1=“没有注射器1”,另一个相当于情况2=“注射器1装满粘合剂”,还看到在情况3=“注射器1变空”期间从时间t0点开始增加电压U6。在时间t1点,电压U6达到值Z0+ΔZ,此时微处理器21指示注射器1的变化,和注射器1的进一步变空被停止。电压U6会经历轻微的波动,因为有外部影响,例如注射器1的温度,粘合剂Z的温度,环境温度等影响。然而这些影响小于ΔZ。情况2的电压U6的电平还取决于粘合剂2本身的情况。传感器4自动地自己适应不同的粘合剂。既不需要在更换粘合剂以后重新调整传感器4,又不需要在更换注射器以后重新设置传感器4。
有可能预期,用高通元件取代低通元件作RC元件,即,在电路中,换出一侧的电容器8和电阻器24和另一侧的电容器9和电阻器25。
图6示出另一传感器4的电极的截面示意图。传感器4具有5个平行地安排的电极5,6,7,29,30。主要是,两个外电极29和30用于屏蔽内电极5,6和7。它们被直接地(如图所示)或通过耦合电容器电气连接于中电极6。在这种传感器4的情况下,一方面是测量灵敏区被加倍,另一方面是导致它们被接地,两个外电极29和30屏蔽中间电极5,6和7,以防外部影响。两个外电极29和30还能够成为外壳部分。
权利要求
1.一种用于检测容器的预定填充界面的传感器,它具有构成第一和第二电容器(8,9)的三个电容电极(5-7),其特征在于三个电容电极(5-7)被安置于三个互相平行地布置的平面中,并且一个穿过三个电容电极(5-7)的钻孔(13)可用于接纳容器。
2.根据权利要求1的传感器(4),其特征在于第一电容器(8)和第一电阻器(24)形成第一RC元件部分,第二电容器(9)和第二电阻器(25)形成第二RC元件部分,和在于两个RC元件具有不同的时间常数。
3.根据权利要求2的传感器(4),其特征在于第二RC元件的第二电阻器(25)至少比第一RC元件的第一电阻器(24)大10倍。
4.根据权利要求1至3中之一的传感器,其特征在于三个电容电极(5-7)是由多层印刷电路板(10)的被两个不导电层(11)和(12)隔开的三个导电层构成的。
5.根据权利要求1至4中之一的传感器,其特征在于可预期添加两个另外的电容电极(29,30),它们或者直接地或者通过一个耦合电容器连接于中间电极(6)。
全文摘要
一种用于检测容器预定液面的传感器具有三个构成第一和第二电容器(8,9)和电容电极(5—7)。这些电极(5—7)被安置于三个互相平行地布置的平面中。一个穿过三个电容电极(5—7)的钻孔(13)接纳该容器。最好第一电容器(8)是第一RC元件部分和第二电容器(9)是第二RC元件部分,使两个RC元件具有不同的时间常数。测量两个时间常数的相对变化,能够操作传感器而无需任何调整。
文档编号G01F23/26GK1297140SQ0012855
公开日2001年5月30日 申请日期2000年11月17日 优先权日1999年11月19日
发明者托马斯·冈瑟, 尤金·马哈特 申请人:Esec贸易公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1