科里奥利质量流量测量仪表的制作方法

文档序号:6096421阅读:120来源:国知局
专利名称:科里奥利质量流量测量仪表的制作方法
技术领域
本发明涉及一种科里奥利质量流量计/密度计,其用于管道中流动的特别是两相或多相介质,本发明还涉及一种用于产生代表质量流量的测量值的方法。
在过程测量及自动化技术中,为了测量管道中流动的流体的物理参数,例如质量流量、密度和/或粘度,经常使用这种测量仪表,其利用插入引导流体的管道中且在操作中由流体流经的振动型测量变送器以及与其相连的测量及操作电路影响流体中的反作用力,例如对应于质量流量的科里奥利力、对应于密度的惯性力或对应于粘度的摩擦力等,测量仪表从这些力得到代表流体的当前质量流量、当前粘度和/或当前密度的一个或多个测量信号。这种类型的振动型测量变送器例如在以下文献中有所说明WO-A 03/076880、WO-A 02/37063、WO-A01/33174、WO-A 00/57141、WO-A 99/39164、WO-A 98/07009、WO-A95/16897、WO-A 88/03261、US 2003/0208325、US-B 65 13 393、US-B65 05 519、US-A 60 06 609、US-A 58 69 770、US-A 57 96 011、US-A 5602 346、US-A 53 01 557、US-A 52 59 250、US-A 52 18 873、US-A 50 69074、US-A 50 29 482、US-A 48 76 898、US-A 47 33 569、US-A 46 60 421、US-A 45 24 610、US-A 44 91 025、US-A 41 87 721、EP-A 553 939、EP-A1 001 254或EP-A 1 281 938。
为了引导流体,测量变送器包括至少一个测量管,其容纳在例如管状或盒状支持框架中。测量管具有弯曲或直的管段,在操作期间由电机激励装置令该管段振动,以产生上述反作用力。为了检测特别是入口端和出口端的管段振动,测量变送器还具有对管段的运动有所反应的电物理传感器设置。在用于管道中流动的介质的科里奥利质量流量计的情况中,质量流量的测量是这样实现的例如允许介质流经插入管道中的测量管并且在操作中振动测量管,从而使介质受到科里奥利力。这使得测量管的入口端和出口端区域彼此相移地振荡。相移大小用作质量流量的量度。因此,测量管的振荡被利用前述传感器设置的沿测量管的长度彼此分离的两个振荡传感器检测并且被转换为振荡测量信号,由它们之间的相移而得出质量流量。
上述的US-A 41 87 721已经提到,流动介质的瞬时密度通常也可以利用科里奥利质量流量测量仪表测量,并且实际上基于由传感器设置发送的至少一个振荡测量信号的频率。另外,介质的温度通常也以合适的方式直接测量,例如利用设置在测量管上的温度传感器。于是可以假设,在任何情况中,利用现代科里奥利质量流量测量仪表还能够测量介质的密度和温度,特别是考虑到这些测量通常可以用于补偿由于波动的流体密度而引起的测量误差;关于这一点,特别地参见WO-A 02/37063、WO-A 99/39164、US-A 56 02 346或WO-A 00/36379。
然而,已经发现在振荡型测量变送器的使用中,在非均匀介质的情况中,特别是在两相或多相流的情况中,从测量管的振荡得到的振荡测量信号特别是还有所述的相移都受到可观的波动,尽管单独流体相的粘度和密度以及质量流量实际上是恒定的并且/或者已经被得到合适的考虑,从而如果没有补救措施则这些信号将完全不能用于测量期望的物理参数。这种非均匀介质可以是例如液体,在给料或灌注过程的情况中管道中存在的气体特别是空气不可避免地被引入其中,或者溶解的流体例如二氧化碳从该液体中排出并起泡。潮湿或饱和的蒸汽是这种非均匀介质的另一个例子。
在US-A 45 24 610中,对于振动型测量变送器的操作,给出了这种问题的一种可能的原因,即,非均匀性诸如气泡被流体夹带进入测量管,沉淀在其内壁上并且因而可以在一定程度上影响振荡特性。为了避免这个问题,还提出这样安装测量变送器,使得直测量管基本垂直延伸,以防止这种干扰的特别是气态的非均匀性的沉淀。然而,这是个非常特殊的解决方案,它只能在非常有限的情况中实现,特别是在工业过程中的测量技术中。一方面,在这个情况中,测量变送器要安装入其中的管道可能必须被固定至变送器而不是反过来,这将是用户所不期望的。另一方面,正如已经提到的,测量管可能是弯曲的,从而通过改变安装的定向不能解决问题。另外,很明显,通过使用垂直安装的直测量管实际上没有显著地避免所提到的测量信号的恶化。另外,以这种方式避免在流动流体的情况中这样产生的测量信号的波动的进一步努力都是不成功的。
在确定质量流量的情况中类似的原因以及它们对于测量精度的影响例如已经在JP-A 10-281846、WO-A 03/076880、US-A 52 59 250、US-A50 29 482或US-B 65 05 519中有所讨论。然而,为了降低两相或多相流中的测量误差,WO-A 03/076880提出了在实际流量测量之前进行流体调节,JP-A 10-281846和US-B 65 05 519都优选根据振荡测量信号校正流量测量,特别是质量流量测量。这个校正例如使用对于振荡测量信号的预训练的甚至可能是自适应的分类器。分类器可以例如被设计为Kohonen映射或神经网络,并且或者基于操作中测量的若干参数特别是质量流量和密度以及由此得到的其它特征,或者还利用包含一个或多个振荡周期的振荡测量信号的时间间隔,而执行校正。
使用这种分类器与现有的科里奥利质量流量计/密度计相比,例如具有对测量变送器几乎无需改变的优点,这里,改变涉及机械结构、激励装置或者驱动它的操作电路,它们都特别地匹配特定应用。
然而,这种分类器的一个显著缺点是,与现有科里奥利质量流量测量仪表相比,在产生测量值的区域中需要相当大的改变,尤其是使用的模数转换器以及微处理器。实际上,正如在US-B 65 05 519中所公开的,例如在约80Hz振荡频率的振荡测量信号的数字化中,这种信号分析需要约55kHz或更高的采样率,以达到足够的精度。换言之,必须使用远远大于600∶1的采样率采样振荡测量信号。除此之外,在数字测量电路中存储和执行的固件相应地变得复杂。
这种分类器的另一个缺点是,对于测量变送器操作期间实际存在的测量条件,必须训练和相应地确认特别是对于安装位置、待测流体以及它通常变化的特性或者其它影响测量精度的因素。由于所有这些因素的交互作用的高度复杂性,训练及其确认通常只能在线进行并且对于每一测量变送器单独进行,这引起测量变送器启动花费升高。另外,已经发现,这种分类算法一方面由于高度复杂另一方面由于通常不确切存在具有技术相关或可理解参数的合适的物理数学模型,所以分类器具有很低的透明度并且因而经常难以连通。当然,与此相关联的是,在顾客部分可以有可观的保留,当使用的分类器是自适应的,例如是神经网络时,这种接受问题特别地发生在顾客部分。
本发明的一个目的是提供一种相应的科里奥利质量流量计,其能够测量质量流量,即使是在非均匀流体特别是多相流的情况中。另一个目的是提供一种用于产生测量结果的相应方法。
为了达到这些目的,本发明提出一种科里奥利质量流量计,特别是科里奥利质量流量/密度计,用于测量管道中流动的特别是两相或多相介质的质量流量,该科里奥利质量流量计包括-至少一个插入管道中的测量管,其在操作中由介质流经;-支持装置,其固定至测量管的入口端和出口端并因而可振荡地夹持测量管;-激励装置,其在操作中令测量管执行机械振荡,特别是弯曲振荡;-振荡传感器,用于产生-第一振荡测量信号,其代表测量管的入口侧振荡,以及-第二振荡测量信号,其代表测量管的出口侧振荡;和-测量及操作电子装置,其发送--驱动激励装置的激励电流,和--质量流量测量值,其代表待测质量流量,
-其中测量及操作电子装置--产生从振荡测量信号得到的对应于待测质量流量的第一中间值,并产生用于第一中间值的校正值,并且--利用第一中间值和校正值,确定质量流量测量值,-其中测量及操作电子装置通过使用至少一个第二中间值而产生校正值,--该第二中间值是从至少一个振荡测量信号和/或从激励电流得到的,并且--该第二中间值代表介质相部分的比例,-其中测量及操作电子装置--具有表存储器,其中数字存储多个对于校正值的离散预设值,并且--为了确定校正值,使用预设值之一,该预设值是基于第二中间值而从表存储器中读出的。
另外,本发明提供了一种方法,用于利用科里奥利质量流量计,特别是科里奥利质量流量/密度计生成代表管道中流动的介质的物理测量变量的测量值,特别是代表质量流量的质量流量测量值,该方法包括以下步骤-在介质所流经的科里奥利质量流量计测量管中引起振荡,特别是弯曲振荡;-检测测量管的振荡,并生成代表入口侧振荡的第一振荡测量信号和代表出口侧振荡的第二振荡测量信号;-通过使用两个振荡测量信号,得到对应于物理测量变量特别是质量流量的第一中间值;-特别是利用两个振荡测量信号中的至少一个,确定第二中间值;-利用代表介质相部分比例的第二中间值,产生对于第一中间值的校正值;以及-利用校正值校正第一中间值;
-其中通过使用第二中间值和使用表存储器而这样确定校正值,即基于第二中间值识别瞬时用于校正值的预设值并从表存储器中读取该预设值,其中表存储器中数字存储多个对于校正值的离散预设值。
根据本发明的科里奥利质量流量计的第一实施例,分析电子装置发出质量流量测量值,其代表介质的质量流量并且是从第一和/或第二振荡测量信号得到的。
在本发明的科里奥利质量流量计的第二实施例中,-分析电子装置发出密度测量值,其代表介质的密度并且是从第一和/或第二振荡测量信号得到的,并且-分析电子装置还利用密度测量值确定校正值。
根据本发明的科里奥利质量流量计的第三实施例,分析电子装置基于第二中间值确定表存储器中存储的用作瞬时校正值的预设值的存储器地址。
在本发明的科里奥利质量流量计的第四实施例中,第二中间值是基于至少对于预定的时间间隔确定的激励电流的幅度、振荡测量信号的幅度、振荡测量信号的振荡频率、测量密度和/或第一中间值的分散度而确定的。
根据本发明的方法的第一实施例,该方法还包括以下步骤-根据测量信号得到代表介质密度的第二测量值;以及-使用第二测量值得到校正值。
在本发明的方法的第二实施例中,该方法还包括以下步骤-允许激励电流流经与测量管机械耦合的电机激励装置,以引起测量管振荡;和
-通过考虑激励电流而确定第二中间值。
在本发明的方法的第三实施例中,第二中间值代表至少一个分散度,其是在特定时间间隔中对于管道中流动的介质确定的测量值,特别是测量的质量流量、测量密度、测量粘度而确定的分散度,和/或在预定时间间隔中科里奥利质量流量计的工作参数,特别是振荡测量信号的幅度或振荡测量信号的振荡频率而确定的分散度。
本发明的一个优点是,用于校正第一中间值的校正值暂时代表质量流量并且基本上是以现有的方法确定的,该校正值一方面可以在最初相对简单但非常精确地确定,另一方面,该校正值可以非常迅速地适应待测介质中改变的条件,特别是适应改变的浓度比,因为对于它的确定仅需要很少的计算。于是,本发明的科里奥利质量流量计与现有科里奥利质量流量计相比,只有在常用的数字分析电子装置上略有改变并且改变基本上仅限于固件,而在测量变送器的情况中以及在生成及预处理振荡测量信号中,几乎不需要改变。于是,例如振荡测量信号仍可以像以前一样以常用的远低于100∶1,特别是约10∶1的采样率被采样。
本发明的进一步的优点在于,特别是与US-B 65 05 519中说明的科里奥利质量流量测量仪表相比,由于本发明的分析方法可以通过重复重新从表存储器中选择当前最适合的系数而以非常简单的方式适应瞬时流动条件,所以本发明在实际中总是可以执行相同的分析方法来确定测量值,即使在测量管中流动条件显著变化,例如暂时的两相或多相介质和/或暂时由多种成分组成的介质甚至或者各个相和/或成分的浓度变化。
现在将根据附图中给出的实施例,详细解释本发明及其进一步的优选实施例。相同的部件在所有附图中具有相同的标记;为了清楚,已经提到的附图标记在后面的附图中被省略。


图1以侧视图透视地显示了用于生成质量流量测量值的科里奥利质量流量测量仪表,图2以框图示意性显示了适用于图1的科里奥利质量流量测量仪表的测量仪表优选实施例,图3以第一侧视图透视地显示了适用于图1的科里奥利质量流量测量仪表的振动型测量变送器的实施例的部分截面示例,图4以第二侧视图透视地显示了图3的测量变送器,和图5显示了图3的测量变送器的电机激励装置的实施例。
图1透视地显示了科里奥利质量流量测量仪表1,其用于检测管道中流动的两相或多相介质的物理测量变量(这里是质量流量m)并形成瞬时代表这个测量变量(这里是质量流量)的测量变量(这里是质量流量)测量值Xm;为了清楚起见,没有画出管道。介质实际上可以是任何可流动材料,例如液体、气体或蒸汽,其中除了主要或载体介质还引入了非均匀性,即,与载体介质的相容性有偏差的其它介质的不可溶部分,例如液体中的固体颗粒和/或气泡。为了测量质量流量,科里奥利质量流量测量仪表1振动型测量变送器10以及图2所示的与测量变送器10电连接的测量仪表电子装置50。为了安置测量仪表电子装置50,还提供电子装置外壳200,其安装在测量变送器10外部。
为了检测质量流量m,借助于在操作中由测量仪表电子装置50激励振动的测量变送器10在其中流动的流体中产生科里奥利力,科里奥利力依赖于质量流量m并且可以在测量变送器10上测量,即可以由传感器检测并且可以被电子分析。除了生成质量流量测量值Xm,科里奥利质量流量测量仪表还用于测量流动介质的密度ρ以及确定瞬时代表密度ρ的密度测量值Xρ。
优选地,测量仪表电子装置50还被这样设计,使得它可以在科里奥利质量流量测量仪表1工作期间经由数据传输系统与上级测量值处理单元交换测量和/或其它操作数据,所述测量值处理单元例如是可编程逻辑控制器(PLC)、个人电脑和/或工作站,所述数据传输系统例如是现场总线系统。另外,还这样设计测量仪表电子装置50,使得它可以由外部能量源供电,例如甚至经由前述现场总线系统。对于提供振动测量仪表用于耦合至现场总线的情况,特别是可编程的测量仪表电子装置50具有相应的通信接口用于数据通信,例如用于将测量数据发送至上级可编程逻辑控制器或上级过程控制系统。
图3和4显示了用作测量变送器10的振动型物理电子换能器设置的一个实施例。这种换能器的结构和功能是本领域技术人员已知的并且例如在US-A 60 06 609中有详细说明。
为了引导待测流体,测量变送器10包括至少一个具有入口端11、出口端12的测量管13,其具有可预定的在工作期间可以弹性变形的测量管内腔13A并且具有可预定的额定宽度。这里,测量管内腔13A的弹性变形意味着,为了产生流体内部的表征流体的科里奥利力,测量管内腔13A的空间形状和/或空间位置在测量管13的弹性范围内以可预定的方式循环地特别是周期性地改变;例如参见US-A 48 01 897、US-A 56 48 616、US-A 57 96 011和/或US-A 60 06 609。另外,这里还应当注意的是,尽管实施例中的测量变送器仅包括一个直测量管,但是为了实现本发明,这种振动型测量变送器也可以使用实际上现有技术所说明的任何科里奥利质量流量测量变送器,特别是具有完全或至少部分以弯曲振荡模式振动的弯曲或直测量管的这种弯曲振荡型变送器。特别适合的例如是具有由待测介质流经的两个平行弯曲测量管的振动型测量变送器,诸如在以下文献中详细说明的EP-A 1 154 243、US-A 53 01 557、US-A 57 96 011、US-B 65 05 519或WO-A 02/37063。这种用作测量变送器10的换能器设置的其它合适实施例可以例如在以下文献中得到WO-A 02/099363、WO-A 02/086426、WO-A 95/16897、US-A 56 02 345、US-A 55 57 973或US-A 53 57 811。作为所使用的测量管13的材料,例如钛合金特别合适。然而,代替钛合金,可以使用其它这种特别是弯曲测量管通常使用的材料,例如,不锈钢、钽或锆等。
测量管13以常见的方式在其入口侧和出口侧与引入或引出流体的管道相通,该测量管被可振荡地夹钳在刚性的特别是抗弯曲及扭曲的支持框架14中。代替这里显示的盒状支持框架14,当然也可以使用其它合适的支持装置,诸如与测量管平行或同轴延伸的管道。
支持框架14在其入口侧利用入口板213在其出口侧利用出口板223固定至测量管13,这些板被测量管13的相应延伸而穿透。另外,支持框架14具有第一侧板24和第二侧板34,两个侧板24、34分别固定至入口板213和出口板223,使得它们基本上平行于测量管13延伸并且与其相距设置,且彼此相距;参见图3。以这种方式,两个侧板24、34的相互面对的侧表面同样彼此平行。纵向棒25被固定至侧板24、34,与测量管13相距,以用作吸收测量管13的振荡的平衡质量。如图4所示,纵向棒25基本上平行于测量管13的整个可振荡长度延伸;然而这并不是必需的,因为纵向棒25也可以根据需要而做得较短。于是,具有两个侧板24、34、入口板213、出口板223和纵向棒25的支持框架14具有基本上平行于虚拟连接入口端11和出口端12的测量管中心轴线13B的纵向重力线。
图3和4中以螺钉头部指示,上述的将侧板24、34固定至入口板213、出口板223以及纵向棒25可以通过旋接连接而实现;然而,也可以使用本领域已知的其它合适的紧固类型。
对于测量变送器10要被可松开地与管道组装的情况,在测量管13的入口侧形成第一法兰19并且在出口侧形成第二法兰20,如图1所示;然而,代替法兰19、20,可以形成其它管道连接件用于可松开地与管道相连,诸如图3中示出的所谓三向夹扣(triclamp)连接。然而,如果需要,测量管13还可以例如利用焊接或铜焊等直接与管道相连。
为了产生所述的科里奥利力,在测量变送器10工作期间,由耦合至测量管的电机激励装置16以可预定的振荡频率特别是自然谐振频率驱动测量管13以所谓的有用模式振动,并且然后测量管13被以可预定的方式弹性形变,其中自然谐振频率也依赖于流体的密度。在所述的实施例中,正如在弯曲振荡型换能器设置的情况中所常见的,振荡的测量管13在空间上特别是横向地偏移静态静止位置。对于其中一个或多个弯曲测量管围绕相应虚拟连接入口和出口端的纵向轴线执行悬臂振荡的换能器设置基本上也是同样的;或者对于其中一个或多个直测量管仅执行在单一振荡平面中的弯曲振荡的换能器设置也是同样的。
激励装置16用于通过转换从测量仪表电子装置50提供的电激励功率Pexc,而产生作用在测量管13上的激励力Fexc。激励功率Pexc基本上仅用于补偿由于机械和流体内部摩擦而从振荡系统中除去的功率部分。为了获得尽可能高的效率,尽可能精确地调节激励功率Pexc,使得测量管13的振荡基本上被保持在有用模式,例如为基本谐振频率。
为了将激励力Fexc传递到测量管13上,如图5所示,激励装置16具有刚性的电磁和/或电动驱动的杠杆设置15,其包括悬臂154和磁轭163,其中悬臂抗弯曲地固定在测量管13上。磁轭163同样被抗弯曲地固定在悬臂154与测量管13相距的末端上,并且使得它设置在测量管13上方并且与其横向。悬臂154可以例如是金属垫圈,其将测量管13容纳在孔中。对于杠杆设置15的其它合适实施例,已经提到的US-A60 06 609被全部合并在这里作为参考。杠杆设置15是T形的并且被这样设置,参见图5,使得它在入口和出口端11、12之间基本一半的点作用于测量管13,从而管13在工作期间在中部具有其最大横向偏移。
为了驱动杠杆设置15,如图5所示,激励装置16包括第一激励线圈26和与其关联的第一永磁电枢27,以及第二激励线圈36和与其关联的第二永磁电枢37。两个具有优点地串联电连接的激励线圈26、36被特别是可松开地在磁轭163之下的测量管13的两侧上固定在支持框架14上,使得它们在工作期间以它们各自的电枢27和37相互作用。如果需要,两个激励线圈26、36当然也可以彼此并联连接。如图3和5所示,两个电枢27、37以这样的方式彼此相距地固定至磁轭163,使得在测量变送器10工作期间,电枢27基本由激励线圈26的磁场穿透并且此电枢37基本由激励线圈36的磁场穿透。于是,电枢由于相应的电动和/或电磁力作用而移动。利用激励线圈26、36的磁场而产生的电枢27、37的移动被磁轭163和悬臂154传递到测量管13上。这样构造电枢27、37的这些运动,使得磁轭163交替地在侧板24的方向上或侧板34的方向上从其静止位置偏移。杠杆设置15与所述测量管中心轴线13B平行的相应旋转轴可以例如经过悬臂154。
另外,支持框架14包括电机激励装置16的支架29,其特别是可松开地与侧板24、34相连,特别是用于支持激励线圈26、36以及可能的下面将要讨论的电磁制动器设置217的各个部件。
最后,测量变送器1具有围绕测量管和支持框架的测量变送器外壳100,以保护它们免受有害的外部影响。测量变送器外壳100具有颈状过渡件,其上固定容纳测量仪表电子装置50的电子装置外壳200,参见图1。
在所述实施例的测量变送器10的情况中,在入口端11和出口端12牢固夹钳的振动测量管13的横向偏转同时导致其测量管内腔13A的弹性形变,这个变形基本上在测量管13的整个长度上形成。另外,由于杠杆设置15作用在测量管13上的扭矩,在测量管13上至少部分地与横向偏转同时产生围绕测量管中心轴13B的扭曲,从而测量管13基本上以混合的弯曲振荡扭转模式振荡,该模式用作有用模式。在这种情况中,测量管13的扭曲可以这样形成,使得悬臂154与测量管13相距的末端的横向偏转与测量管13的横向偏转或者同向或者反向。于是,测量管13可以在对应于同向情况的第一弯曲振荡扭转模式中执行扭转振荡;或者在对应于反向情况的第二弯曲振荡扭转模式中执行扭转振荡。于是,在测量变送器10的实施例中,例如900Hz的第二弯曲振荡扭转模式自然基本谐振频率大于是第一弯曲振荡扭转模式的二倍。
对于测量管13应当在工作期间仅执行第二弯曲振荡扭转模式的振荡的情况,基于涡流原理的电磁制动器设置217被集成在激励装置16中,用于稳定所述旋转轴的位置。于是,利用电磁制动器设置217,可以保证测量管13总是以第二弯曲振荡扭转模式振荡,并且因此在测量管13上可能的外部干扰影响不会导致自发转变到另一种特别是第一弯曲振荡扭转模式。这种电磁制动器设置的细节在US-A 60 06 609有具体说明。
这里应当注意,当测量管13以第二弯曲振荡扭转模式发生偏转时,虚拟测量管中心轴13B轻微变形,并且因而在振荡期间没有生成平面,而是生成略微扭曲的曲面。另外,在这个曲面中测量管中心轴的中点的轨迹在测量管中心轴的所有点的轨迹中具有最小曲率。
为了检查测量管13的形变,测量变送器10还包括传感器设置60,其借助于至少一个对测量管13的振动有所反应的第一传感器17产生代表该振动的第一特别是模拟振荡测量信号s1。传感器17可以例如利用永磁电枢而构造,该永磁电枢固定在测量管13上并与支持框架14上支撑的传感器线圈交互作用。对于传感器17,特别适合的是基于电动原理检测测量管13的偏转速度。然而,也可以使用加速度测量电动传感器,或者甚至使用偏转距离测量或光学传感器。当然,也可以使用本领域所熟知的适用于检查这种振动的其它传感器。传感器设置60还包括第二传感器18,特别地它与第一传感器17相同。第二传感器18发送同样代表测量管13的振动的第二振荡测量信号s2。在这个实施例中,两个传感器17、18沿测量管13彼此分离地设置在测量变送器10中,特别地距离测量管13的中点距离相等。这样设置传感器17、18,使得传感器设置60本地地检测在测量管13的入口侧和出口侧的振动,并且将这些振动分别反映为相应的振荡测量信号s1或s2。第一测量信号s1以及如果需要的话还有第二测量信号s2通常各表示与测量管13的瞬时振荡频率对应的一个信号频率,这两个信号被送入测量仪表电子装置50,如图2所示。
为了令测量管13振动,向激励装置16馈送具有可调幅度和可调激励频率fexc的同样振荡的激励电流iexc,使得激励线圈26、36在工作期间被电流流经,并且以相应的方式生成移动电枢27、37所需的磁场。激励电流iexc可以是例如正弦的或矩形的。优选地在所述测量变送器实施例中这样选择并调节激励电流iexc的激励频率fexc,使得横向振荡的测量管13尽可能只以第二弯曲振荡扭转模式振荡。
为了生成并调节激励电流iexc,测量仪表电子装置50包括相应的驱动电路53,其由代表待调节的激励频率fexc的频率调节信号yFM以及代表待调节的激励电流iexc幅度的幅度调节信号yAM控制。驱动电路可以例如利用压控振荡器和下游连接的压流转换器实现;然而,代替模拟振荡器,还可以使用数字控制的数字振荡器用于调节激励电流iexc。
为了产生幅度调节信号yAM,可以例如使用集成在测量仪表电子装置50中的幅度控制电路51,其基于两个传感器信号s1、s2中的至少一个的瞬时幅度以及相应的恒定或可变的幅度参考值W1而实现幅度调节信号yAM;如果需要,也可以参考激励电流iexc的瞬时幅度用于生成幅度调节信号yAM。这种幅度控制电路同样对于本领域技术人员是已知的。关于这种幅度控制电路的例子,再次参考“PROMASS I”系列科里奥利质量流量计。其幅度控制电路具有优点地这样实现,使得测量管13的横向振荡被控制为恒定幅度,即与密度ρ无关。
关于频率调节信号yFM,它可以从相应的频率控制电路52中得到,其例如至少基于传感器信号s1以及基于用作相应的频率参考值W2且代表频率的直流电压而实现。
具有优点地,频率控制电路52和驱动电路53一起连接在锁相环中,锁相环用于以本领域所熟知的方式,基于在传感器信号s1、s2中至少之一和待调节的或测量的激励电流iexc之间测得的相位差,而将频率调节信号yFM固定调谐至测量管13的瞬时谐振频率。这种用于将测量管以它们的机械谐振频率运行的锁相环的结构和使用例如在US-A 4801 897中有详细说明。当然,也可以使用本领域熟知的其它频率控制电路,例如在US-A 45 24 610或US-A 48 01 897中所说明的。另外,考虑到所述类型的测量变送器的这种频率控制电路的使用,参考已经提到的“PROMASS I”系列。可以采用适用于驱动电路的其它电路,例如US-A 58 69 770或US-A 65 05 519。
在本发明的另一实施例中,利用在测量仪表电子装置50中提供的数字信号处理器DSP和相应实施并在其中运行的程序代码,实现幅度控制电路51和频率控制电路52。程序代码可以持续或甚至永久地存储在例如控制和/或监控信号处理器的微计算机55的非易失性存储器EEPROM中,并且可以在信号处理器DSP启动时载入例如在信号处理器DSP中集成的测量仪表电子装置50的易失性数据存储器RAM中。适用于这种应用的信号处理器例如是可以在市场上从TexasInstruments Inc.公司得到的型号TMS320VC33。
实际上,很明显利用相应的模数转换器A/D,可以至少将传感器信号s1以及可能的传感器信号s2转换为相应的数字信号,用于在信号处理器DSP中处理;关于这一点,参见EP-A 866 319。如果需要,从信号处理器发出的调节信号,例如幅度调节信号yAM或频率调节信号yFM也可以被以相应的方式数模转换。
如图2所示,振荡测量信号xs1、xs2还被馈送至测量仪表电子装置的测量电路21。测量电路21可以是任何一种现有的特别是数字测量电路,基于振荡测量信号xs1、xs2确定质量流量;关于这一点,特别参见上述的WO-A 02/37063、WO-A 99/39164、US-A 56 48 616、US-A 50 69074。当然,本领域已知的其它适用于科里奥利质量流量测量仪表的测量电路也可以使用,这些电路测量并合适地分析在振荡测量信号xs1、xs2之间的相位和/或时间差。具有优点的,测量电路21可以同样利用信号处理器DSP实现。
测量电路21至少部分实施为流体计算器,用于以本领域已知的方式基于两个振荡测量信号xs1、xs2之间检测的相位差而确定对应于待测质量流量的测量值,其中两个振荡测量信号根据需要可以预先被合适地调节。正如上面已经提到的,流动介质中的非均匀性,例如液体中存在的气泡和/或固体颗粒,可以导致以现有方式假定为均匀介质而确定的测量值不足够精确地与实际质量流量一致,即,测量值需要被合适地校正;于是,在最简单的情况中,这个预先确定的暂时代表质量流量或至少对应于质量流量的测量值可以是在振荡测量信号xs1、xs2之间存在并被检测的相位差,该测量值在下面被指定为第一中间值X’m。分析电子装置21最终由该第一中间值X’m得到质量流量测量值Xm,它足够精确地代表质量流量。
关于这一点,在现有技术中已经讨论了,依赖于测量原理,这种非均匀性显示为在由流动介质测量的密度中的变化。然而,发明人的进一步调查令人吃惊地发现,与现有技术中的解释相反,中间值X′m的校正一方面可以通过使用很少的非常简单确定的校正因数执行,这些校正因数可以从科里奥利质量流量计作为测量结果确定的流动参数,特别是测量的密度和/或这里是临时的测量质量流量而得到和/或从由科里奥利质量流量计在工作中通常直接测量的工作参数,特别是测量的振动幅度、振动频率和/或激励电流而得到。另一方面,校正可以使用预先确定的密度测量值Xρ以及预先确定的中间值X’m执行,而与之前提到的较为复杂的计算方法相比计算工作相当小。
为了精确测量质量流量,分析电子装置2从中间值X’m得到相应的校正值XK,并且对于中间值X’m使用校正值XK而特别是数字地计算质量流量测量值Xm。例如,可以基于以下公式对于基本上以现有方法确定的中间值X′m进行校正Xm=(1+XK)·Xm′。
(1)根据本发明,为了确定合适的瞬时校正值XK,在工作期间确定第二中间值X2。这个第二值代表在介质中存在的例如气相或液相百分比或相对部分并且/或者它代表待测液体与理想的均匀性的偏差或者非均匀程度。于是,从在作中测量的或者发送给科里奥利质量流量测量仪表的非均匀浓度,得到校正值XK。
根据本发明,分析电子装置从中间值X2开始基本上直接确定校正值XK,因为在分析电子装置中在实际中间值X2和与其对应的校正值XK之间映射特别是编程唯一的关系。为此,分析电子装置2还具有表存储器56,其中存储许多预先确定的数字校正值Xk,i,它们例如在标定科里奥利质量流量测量仪表时预先确定。测量电路使用利用瞬时有效的第二中间值X2得到的存储器地址,直接访问合适的校正值Xk,i。表存储器56可以例如使用可编程只读存储器,即,RPGA(现场可编程门阵列)、EPROM或EEPROM。在这种情况中,校正值Xk,i可以例如以简单的方式确定,将瞬时确定的中间值X2与在表存储器中对于中间值X2预存储的相应值比较,并且为了分析电子装置2中的进一步计算而读出与中间值X2最接近的预存储值相对应的校正值Xk,i。这种用于查询校正值XK的表存储器的使用具有以下优点运行时间计算了中间值X2之后可以非常迅速地利用校正值Xk。
除了确定校正值XK,还可以具有优点地使用中间值X2用于例如在线或在远程控制室中以可视方式发出信号表示流体的非均匀度或由此得到的测量值,例如流体中的空气成分百分比或者流体中夹带的固体颗粒的体积、数量或质量部分。
根据对于以预定方式扰动的液体执行的测量得到的多条振荡测量信号以及激励电流iexc的幅度-时间曲线的分析,还发现激励电流iexc和振荡测量信号xS1、xS2一方面可以随时间明显波动,尽管条件基本保持恒定,即在恒定密度和粘度且夹带的气泡部分基本保持恒定的稳定流动液体的情况中。然而,另一方面还确定,实际上不可预测的波动激励电流iexc、振荡测量信号xS1、xS2,特别是它们的幅度能够具有根据经验的标准偏差或经验分散度sp,其与非均匀度有很大的相关性。因此,在本发明的一个实施例中,将中间值X2确定为对于实际应用选择的流动和/或工作参数的分散度sp的函数X2=f(sp)。 (2)在这种情况中,中间值X2可以基于单个流动和/或工作参数例如激励电流的分散度以及基于多个流动和/或工作参数的组合而确定。
为了确定中间值X2而计算特定分散度sp可以在科里奥利质量流量测量仪表1操作期间基于所选择的流动参数或工作参数的m个测量值ai的采样AF而根据以下公式进行,其中流动参数例如是中间值XK或密度测量值Xρ,工作参数例如是激励电流iexc或振荡测量信号xs1,xs2之一或其它sp=1m-1Σi=1m(ai-a‾)2,...(3)]]>其中,a对应于对于采样AF估计的平均值。为此,单个测量值ai可以被数字存储在例如易失性数字存储器RAM中。在需要时,用于确定分散度sp的采样AF可以例如是模拟测量的工作参数的幅度曲线的采样序列,例如激励电流iexc的数字化的包络线的一部分或者以相应方式存储的振荡测量信号xS1、xS2之一。
调查显示,为了足够精确地估计分散度s,仅需要较小尺寸的采样AF,例如约100~1000个测量值ai,其中单个测量值也仅需要在大约1~2秒的非常窄的采样窗或时间间隔中被采样。相应地,大约几千赫兹,例如约1~5kHz的较低采样频率就将足够。
进一步发现,对于许多应用,中间值XK可以被确定为以中间值作为参数的简单(特别是线性或二次)函数的解,从而很少的一些湿标定(即使用合适的测试流体)测量点就足以确定要存储的对于中间值XK的预设值,以能够在这些通过标定实验例如使用最小二乘方方法确定的已知点之间通过简单的内插和/或外插方法完成表存储器,而无需对剩余的预设值进一步的标定测量。然而,对于某些应用,已经证明将中间值XK的预设值作为反正切函数或正弦函数的解计算是具有优点的。为了减少标定成本,中间值XK的预设值的确定可以具有优点地在类型标定的框架中执行,其中对于相同类型的科里奥利质量流量测量仪表采用很少的实际测量的并且(如果需要的话)计算的预设值。
在本发明的进一步发展中,分析电子装置基于密度测量值Xρ并基于预先确定的或同时测量的参考密度值Kρ而确定介质的密度ρ与预定参考密度的偏差Δρ,其中Kρ可以例如在科里奥利质量流量计启动期间作为恒定值存储或者在工作期间从外部传递至科里奥利质量流量计。为了生成校正值XK,这样确定的偏差Δρ被根据以下函数关系与第二中间值X2结合XK=Δρ·X2(4).
参考密度值Kρ可以基于对于待测流体的了解而手动输入,例如在线输入或从远程控制室输入,或者它可以被例如经由现场总线而从外部密度计发送至测量仪表电子装置。
然而,如果流体是单相的或者至少大部分是均匀的,可以预先利用分析电子装置21对于流体直接确定Kρ。相应地,根据本发明的另一实施例,使用同样存储在测量仪表电子装置中的密度测量值Xρ,0确定参考密度值Kρ,其中存储的密度测量值Xρ,0代表在均匀介质中或者假定为均匀的介质中测量的介质密度。在本发明的这个实施例的进一步发展中,作为参考密度值Kρ存储的密度测量值Xρ,0用于先前在非均匀介质中确定的中间值X’m的后续校正。本发明的这个实施例可以以特别具有优点的方式例如在给料或灌注过程的情况中使用,其中,一方面在一次装料之内在短时间中测量管内存在显著不同的流动条件,特别在测量管没有被完全填充的情况中,并且另一方面,感兴趣的是通过整个装料得到总的质量流量,并且特别关注实际填充的介质的总质量。
由公式(1)~(4)表示的上述函数用于生成质量流量测量值Xm,这些函数可以至少部分地在测量仪表电子装置50的分析级54中实现。分析级54可以具有优点地例如同样利用信号处理器DSP或例如利用上述微计算机55而实现。相应算法对应于前述等式或者代表幅度控制电路51、频率控制电路52的功能并且将它们翻译为这种信号处理器中可执行的程序代码,这些算法的构造和实施这些都是本领域技术人员所熟知的技术并且因而不需要详细解释。当然,上述等式也可以由在测量电子装置50中相应离散组装的模拟和/或数字计算电路而完全或部分实现。
权利要求
1.科里奥利质量流量计,特别是科里奥利质量流量/密度计,用于测量管道中流动的两相或多相介质的质量流量,该科里奥利质量流量计包括-至少一个插入管道中的测量管(11),其在操作中由介质流经;-支持装置(12),其固定至测量管(11)的入口端和出口端并因而可振荡地夹持测量管;-激励装置(13),其在操作中令测量管(11)执行机械振荡,特别是弯曲振荡;-振荡传感器(141,142),用于产生--代表测量管(11)入口侧振荡的第一振荡测量信号(xS1),以及--代表测量管(11)出口侧振荡的第二振荡测量信号(xS2);和-测量及操作电子装置(2),其发送--驱动激励装置(13)的激励电流(iexc),和--代表待测质量流量的质量流量测量值(Xm),-其中测量及操作电子装置(2)--产生从振荡测量信号(xS1,xS2)得到的对应于待测质量流量的第一中间值(X’m)以及用于第一中间值(X’m)的校正值(XK),并且--利用第一中间值(X’m)和校正值(XK)确定质量流量测量值(Xm),-其中测量及操作电子装置(2)通过使用至少一个第二中间值(X2)而产生校正值(XK),--该第二中间值是从至少一个振荡测量信号(xS1,xS2)和/或从激励电流(iexc)得到的,并且--该第二中间值代表介质的一个相部分的比例,-其中测量及操作电子装置(2)--具有表存储器(56),其中数字存储多个对于校正值(XK)的离散预设值,并且--为了确定校正值(XK)而使用预设值之一,该预设值是使用第二中间值(X2)而从表存储器(56)中读出的。
2.根据权利要求1的科里奥利质量流量计,-分析电子装置(2)发出密度测量值(Xρ),其是从第一和/或第二振荡测量信号(xS1,xS2)得到的并且代表介质的密度,并且-分析电子装置(2)还利用密度测量值(Xρ)确定校正值(XK)。
3.根据前述任一权利要求的科里奥利质量流量计,其中分析电子装置(2)利用第二中间值(X2)确定表存储器中用作瞬时校正值(XK)的预设值的存储器地址。
4.根据前述任一权利要求的科里奥利质量流量计,其中第二中间值(X2)是基于至少对于预定的时间间隔确定的以下参数的分散度而确定的激励电流(iexc)的幅度、振荡测量信号(xS1,xS2)的幅度、振荡测量信号(xS1,xS2)的振荡频率、测量密度和/或第一中间值(X′m)。
5.根据前述任一权利要求的科里奥利质量流量计,其中分析电子装置(2)基于以下函数关系确定质量流量测量值(Xm)Xm=(1+XK)·Xm′.
6.一种方法,用于利用科里奥利质量流量计,特别是科里奥利质量流量/密度计生成代表管道中流动的介质的物理测量变量的测量值(Xm),特别是代表质量流量的质量流量测量值,该方法包括以下步骤-令介质所流经的科里奥利质量流量计测量管(11)振荡,特别是弯曲振荡;-检测测量管(11)的振荡,并生成代表入口侧振荡的第一振荡测量信号(xS1)和代表出口侧振荡的第二振荡测量信号(xS2);-使用两个振荡测量信号(xS1,xS2)得到特别是对应于质量流量的第一中间值(X’m);-特别是利用两个振荡测量信号(xS1,xS2)中的至少一个,确定第二中间值(X2);-利用代表介质的一个相部分的比例的第二中间值(X2),产生对于中间值(X’m)的校正值(XK);以及-利用校正值(XK)校正中间值(X’m);-其中通过使用第二中间值(X2)和使用表存储器而这样确定校正值(XK),即基于第二中间值(X2)识别瞬时用于校正值(XK)的预设值并从表存储器中读取该预设值,其中表存储器中数字存储多个对于校正值(XK)的离散预设值。
7.根据权利要求6的方法,还包括以下步骤根据测量信号(xS1,xS2)得到用作测量值(Xm)的质量流量测量值,其代表介质的质量流量。
8.根据权利要求6或7的方法,还包括以下步骤-根据测量信号(xS1,xS2)得到代表介质密度的第二测量值(Xρ);以及-使用第二测量值(Xρ)得到校正值(XK)。
9.根据权利要求6~8之一的方法,还包括以下步骤-令激励电流(iexc)流经与测量管(11)机械耦合的电机激励装置(13),以引起测量管(11)振荡;和-通过考虑激励电流(iexc)而确定第二中间值(X2)。
10.根据权利要求6~9之一的方法,其中第二中间值(X2)代表至少一个分散度,其是在预定时间间隔中对于管道中流动的介质确定的测量值,特别是测量质量流量、测量密度、测量粘度而确定的分散度,和/或在预定时间间隔中对于科里奥利质量流量计的工作参数,特别是振荡测量信号(xS1,xS2)的幅度或振荡测量信号(xS1,xS2)的振荡频率而确定的分散度。
全文摘要
科里奥利质量流量/密度计,包括至少一个测量管(11),其在操作中由两相或多相介质流经。科里奥利质量流量/密度计的支持装置(12)固定至测量管(11)的入口端和出口端并因而可振荡地夹持测量管。测量管(11)在操作中借助于激励装置(13)而机械振荡,特别是弯曲振荡。科里奥利质量流量/密度计还包括装置(141,142),用于产生代表测量管(11)的入口侧和出口侧振荡的测量信号(x
文档编号G01F25/00GK1894561SQ200480036981
公开日2007年1月10日 申请日期2004年12月7日 优先权日2003年12月12日
发明者克里斯蒂安·马特, 阿尔佛雷德·文格尔, 迈克尔·富赫斯, 沃尔夫冈·德拉姆 申请人:恩德斯+豪斯流量技术股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1