利用磁性珠纯化生物学组分的微流体装置的制作方法

文档序号:6122904阅读:216来源:国知局
专利名称:利用磁性珠纯化生物学组分的微流体装置的制作方法
技术领域
本发明涉及生物学样品中感兴趣组分的分离。更具体说,本发朋的实 施方式是在微流体装置中纯化制备生物学样品中的感兴趣组分,以作进一 步加工。发明背景微流体装置指一套包括使流体在至少一个内腔直线尺寸(如深度或半径)不到lmm的多个通道中流动的技术装置。有可能在微流体装置通道内 建立台式实验室设备如烧杯、移液器、培养箱、电泳槽和分析仪器的微小 同等装置。由于一个微流体装置也可能组合几种部件的功能,因而一个微 流体装置可执行通常需要采用几种实验室设备才能进行的全部分析。设计 用于执行全部化学或生化分析的微流体装置通常称为micro-Total Analysis System(y-TAS,微量全面分析系统)或"lab-on-achip,芯片实验室"。芯片实验室类型的微流体装置可简称为"芯片",在仪器中通常用作 可替换性部件,如筒件或盒件。芯片和仪器组成了完整的微流体系统。可 设计仪器与用于执行不同试验的微流体装置接口,从而赋予此系统广泛功 能。例如,可简单在仪器中安置相应类型的芯片,从而将市售的Agilent (安 杰伦)2100生物分析系统构建成与四种不同类型的试验一 即DNA (脱氧核 糖核酸)、RNA (核糖核酸)、蛋白质和细胞试验一接口相连的形式。在一典型的微流体系统中,所有的微流体通道都在芯片的内部。此仪 器可与执行多种不同功能的芯片接口从而提供驱动力推进流体流过芯片 中的通道,监测和控制芯片中的条件(如温度),收集芯片发出的信号, 引导流体流入流出芯片,和可能的其它许多功能。此仪器通常由计算机控 制,使其能通过编程与不同类型的芯片接口相连,和与特定芯片接口相连 的方式应能进行所需分析。设计用于执行复杂分析的微流体装置常常具有复杂的交叉通道网络。 在这种芯片上进行所需试验常常涉及分别控制流体流经某些通道,和选择 性引导流体从某些通道流入通道交叉点。可通过在芯片中构建显微泵和阀 门,或通过向通道施加联合的驱动力实现流体流过复杂的互连通道网络。具有组装泵和阀门的微流体装置的例子描述可见美国专利6,408,878 ,此专 利是加州技术学院的Stephen Quake博士的工作。加州南旧金山的福卢德母 公司(Fluidigm Corporation)将Quake博士的技术商品化。采用多道电驱动力 来控制流体流经微流体装置中的复杂的交叉通道网络的描述可参见美国专 利6,010,607,此专利是J. Michael Ramsey博士在Oak Ridge国家实验室中 进行的工作。采用多道加压驱动力来控制流体流经微流体装置中的复杂交 叉通道网络的描述可参见美国专利6,915,679,此专利是马萨诸塞州霍普金 顿(Hopkinton, MA)的凯里伯生命科学公司(Caliper Life Sciences)开发的技 术。采用多道电驱动力或加压驱动力来控制流体在芯片上流动就不需要在 芯片本身中制作阀门和泵,从而简化了芯片设计和降低了芯片成本。芯片实验室类型的微流体装置本身具有许多优于常规实验室加工的优 点,例如可减少样品和试剂的消耗,易于自动化,表面容积比大,反应时 间较快速。因此,微流体装置有潜力更快、重复性更好地执行诊断试验, 成本比常规装置低。早在开发微流体技术时就认识到微流体技术在诊断应 用中具有优点。宾夕法尼亚州立大学的Peter Wilding和Larry Kricka博士 在美国专利5,587,128中描述了能执行复杂诊断试验的一些微流体系统。例 如Wilding和Kricka描述的微流体系统中,可在一块芯片上进行样品制备、 PCR (聚合酶链式反应)扩增和分析检测。对于大部分样品,基于微流体技术的诊断系统不能达到它们的潜力, 因此目前市场上只有少数这类系统在销售。目前微流体诊断装置的二个主 要缺点是成本高和样品制备困难。提出成本相关问题是因为加工成芯片的 材料,如常用的聚合物不贵,但它们不一定是足以适合诊断应用的化学惰 性材料或透光材料。为解决成本问题,已开发了技术使较昂贵材料制作的 微流体芯片可重复使用,从而降低每次应用的成本。参见美国公开的申请 号2005/0019213。然而可发生交叉污染先前加工样品的问题,但如果每块芯片只用一次可完全消除这些问题,因此提出最好的解决办法可能是克服 目前可购买到的聚合物材料的局限性,从而制作足够便宜的芯片一次性使 用后丢弃。在微流体中加工原始生物学样品如血液或其它体液,可能是个问题。 例如,原始生物学样品可能阻塞微流体装置中的狭窄通道,特别是通道中 也存在小珠时。因此,在现有技术的微流体装置中,在将样品引入该装置 前常常要求先处理原始生物学样品。改进的微流体诊断系统将完全自动化, 由此系统制备样品,由此系统完全自动执行试验。如果样品中感兴趣组分的浓度低也可能有困难。因为微流体通道的横 截面积小,样品通过微流体通道流动的体积流速低。因此,如果需要加工 大体积的样品来提取足量的低浓度样品,这种提取加工可能非常费时。原 始生物学样品中存在的感兴趣遗传物质浓度常很低,因此在微流体装置中 提取样品的足够遗传物质作PCR扩增极其费时,有时需要数小时。已采用购得的磁珠在微流体系统(如试管、小瓶和微量滴定板)中提 取原始生物学样品的感兴趣组分。已良好建立了基于这些样品纯化系统的 原理。此样品纯化系统中的磁珠含有磁核,该磁核用能特异性结合感兴趣 组分的配体包被。因此将原始生物学样品加入装有磁珠的微量滴定板孔或 小瓶中后,感兴趣组分粘附在珠外面。因为珠有磁性,可用永磁或电磁体 产生的磁场将它们原位保持在小瓶或孔中。这样含感兴趣组分的磁珠维持 在小瓶或孔中,而除去样品中不要的组分。有许多供应商,例如英杰公司(Invitrogen)的代钠(Dynal )生物技术分 公司(Biotech division)销售磁珠样品纯化试剂盒。代钠⑧生物技术公司营 销品牌名为代钠珠(Dynabeads)DNA DIRECTtm的一系列磁珠,此种磁珠能 分离各种原始生物学样品,包括血液、漱口水、口颊刮液、尿液、胆汁、 粪便、脑脊液、骨髓、白细胞层和冻存血液中的易于进行PCR的DNA (PCR-ready DNA)。设计在装有强永磁体的专门适配容器中安置的各种 标准尺寸试管中采用代钠⑧生物技术公司的代钠珠产品进行样品纯化加工, 所述强永磁体能将磁珠原位保持在试管中。也已将磁珠与微流体装置联用。M.A.M.Gijs关于磁珠在微流体装置中应用的最近综述显示,在微流体装置中采用磁珠的最常用方法是在流过装 置通道的流体中输送磁珠,和从周围流体中将感兴趣组分捕获在珠上。参见M.A.M. Gijs,芯片上的磁珠操作分析应用的新机遇(Magnetic bead handling on-chip: new opportunities for analytical applications) , Microfluid Nanofluid (2004) 1 :22-40。 一旦感兴趣组分被珠捕获,即用磁场捕获珠本身。 将捕获的珠移动到芯片中可检测感兴趣组分的区域,或使感兴趣组分从珠 上释放的区域作进一步加工。在另一篇参考文献PCT公开号WO 2004/078316中,Gijs描述了采用永磁或电磁体在微流体装置中捕获和转移 珠的装置。虽然己在微流体装置中采用磁珠来提取样品中感兴趣的组分,但当样 品是原始生物学样品时这种提取方法存在上述问题。的确,微流体装置中 存在的珠进一步使流经通道横截面的有效液流变狭窄,从而加剧了上述阻 塞和流体体积流速低所产生的问题。另外,控制原始样品流经微流体通道有困难,因为通常不知道原始样品的流动性能。Liu等描述了一种用磁珠提取初始生物学样品(如血液)DNA的装置。 Liu等.,"自身含有的完全集成生物芯片的样品制备、聚合酶链式反应扩增 和DNA微阵列检测 (Self-Contained, Fully Integrated Biochip for Sample Preparation, Polymerase Chain Reaction Amplification, and DNA Microarray Detection) " , Anal. Chem. 2004, 76, 1824-1831 。在Liu的文章中,磁珠包 被了能特异性吸附样品中特定类型细胞的配体。Liu的DNA提取过程开始 是混合磁珠与原始生物学样品,使样品/磁珠混合物流过"生物芯片装置" 中的通道到该装置中的腔室,在那里通过施加永磁体产生的磁场捕获这些 磁珠。在该腔室中,细胞粘附在珠上经进一步加工步骤纯化和提取细胞的 DNA。 Liu克服了采用微型泵和阀门使原始样品流经微流体装置的相关困 难。因此本发明的一个目的是采用微流体装置对原始生物学样品进行制备。本发明的另一目的是提供采用在微流体装置中的磁珠提取原始生物学 样品中感兴趣组分的方法。本发明还有一目的是解决使原始样品流过微流体装置的问题,而不需 要求助于利用微型泵和阀门的复杂微流体系统的那些方法。通过阅读以下公开内容和附件权利要求书不难明白本发明的这些和其 它目的。发明概述执行提取原始生物学样品中感兴趣组分的方法采用的微流体装置包含至少一个接受原始生物学样品的?L和至少一个将流体引入孔和排出流体的 通道。同时将多个包被有对感兴趣组分具有亲和力的配体的磁珠与原始生 物学样品一起引入该孔。操纵原始生物学样品使之在磁珠附近释放感兴趣 组分,使该感兴趣组分结合于磁珠上的配体。然后用磁场将磁珠保留在孔 中同时除去孔中生物学样品的上清液部分。然后在孔中加入能使磁珠释放 该组分的洗脱液。最后将含感兴趣组分的洗脱液引入微流体装置的通道中。附图的简要说明图l是可实施本发明方法的典型微流体装置的总体描述。图2A —2E显示可用作本发明微流体装置部件的覆盖层。图3是通过图2A直线A — A的横截面视图。图4A — 4G描述了本发明一种实施方式的各步骤。图5A—5G描述了本发明第二种实施方式的各步骤。图6A — 6D描述了本发明第三种实施方式的各步骤。图7是本发明微流体装置的俯视图。发明详述如上所述,本发明的实施方式涉及用磁珠提取原始生物学样品中感兴 趣组分的方法。本发明采取在微流体装置中制备样品的方法。

图1是可实施本发明方法的典型微流体装置的总体描述。图1上部显 示由二块平面基板102,110组成的装置100的分解图,图1下部显示这二块 平面基板102,110已粘合在一起的组装好的装置100的侧视图。通过在一块基板110的表面112上制作沟和槽114图案,和将另一块基板102的相应 表面104粘合在图案112表面上,即在组装好的微流体装置110内部形成 了通道和腔室结构。当二块基板粘合在一起后就密封了沟和槽114,从而在 组装好的装置110内部形成了通道和腔室。通过在上基板102中制作孔形 成的开口 106提供了进出这些通道和腔室的出入口。这些开口的位置可与 通道的特定位点连通。例如,开口 106的位置可与封闭沟槽114形成的通 道末端连通。开口 106可用于向装置100的通道引入流体或引出提取的流 体,或将驱动力如电驱动力或压力施加于这些通道以控制流体在通道和腔 室网络中的流动。可采用各种基板材料来制作微流体装置,如图1所示的装置100。通 常由于某些结构,如沟或槽的直线尺寸小于lmm,故需要采用与已知的制 作技术,如光蚀刻、化学湿刻、激光消蚀、反应性离子刻蚀(RIE)、气体 磨蚀技术、注模、LIGA法、金属电铸或压印法相容的基板材料。选择基板 材料时要考虑的另一因素是该材料是否与接触微流体装置时的所有条件, 包括极端pH、温度、盐浓度和施加的电场相容。还要考虑的另一因素是材 料的表面性能。通道内表面的性质决定了这些表面如何与流经通道的物质 发生化学作用,那些性质也影响到施加横跨通道长度的电场产生的电渗流 量。由于通道表面的性能如此重要,已开发了技术来化学处理或包被通道 表面,使这些表面具有所需的性能。用于处理或包被微流体通道表面的方 法例子可参见美国专利5,885,470; 6,841,193; 6,409,900;和6,509,059。使 二块基板粘合在一起形成完整微流体装置的方法也是本领域知道的,例如 可参见美国专利6,425,972和6,555,067。常釆用与半导体工业通常相关的材料作为微流体基板,因为已完好建 立了那些材料的制作技术。那些材料的例子有玻璃、石英和硅材。以半导 体材料例如硅材为例,常常需要提供绝缘的包衣或包被层,如二氧化硅层 覆盖在基板材料上,特别是向该装置或其成分施加电场的那些应用。安杰 伦生物分析仪(Agilent Bioanalyzer)2100系统所用的微流体装置是用玻璃或 石英制作的,因为那些材料容易显微制作,还因为那些材料通常对许多生 物化合物而言是惰性的。微流体装置也可用聚合材料如聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯、聚四氟乙烯(TEFLON )、聚氯乙烯(PVC)、聚二甲基硅氧垸 (PDMS)、聚砜、聚苯乙烯、聚甲基戊烯、聚丙烯、聚乙烯、聚偏l,l-二氟乙烯、ABS (丙烯腈-丁二烯-苯乙烯共聚物)、环烯烃聚合物(COP) 和环烯烃共聚物(COC)。这些聚合基板材料与上述许多显微制作技术相 容。由于聚合材料制作的微流体装置制造成本低,加工如注模时的容量高, 故微流体聚合物装置制作的费用可能低于用半导体制作技术制造的装置。 然而微流体装置釆用聚合材料也有一些相关的困难。例如,某些聚合物表 面与生物物质相互作用,某些聚合材料不能完全透过激发或检测常用于监 测生物系统的荧光标记的光线波长。因此即使可用各种材料制造微流体装 置,但需权衡与各选择材料的关系。为实施本发明方法,可在微流体装置的孔中放置多个磁珠。在本文公 开内容中,孔是一种装流体的与该装置内部的一个或多个通道经开口相连 通的贮存室。在操作微流体装置时,这些孔或可作为引入通道网络流体的 来源,或可作为将流体排出网络的流体容器。通常可从芯片的外部进入这 些孔。可用许多不同方式构建微流体装置上的孔。例如,在图1所示的微流 体装置中,幵口 106本身可起着孔的功能。那些孔106的容积由上层基板 102的厚度和形成该孔的圆形开口 106的直径所确定。典型的玻璃基板厚度 范围为0.5-2mm。因此,例如形成开口 106的洞直径范围为0.5-3mm,开口 形成的孔容积范围为0.1-15u 1。可在微流体装置上附加覆盖层,使覆盖层 中的孔眼对齐开口 106,从而形成容积更大的孔。可用于与本发明实施方式 相容的微流体装置的覆盖层的详细描述可参见美国专利6,251,343。图2A —2E显示用于图1所示微流体装置的覆盖层200。图2A是覆盖 层200的俯视图,2B是截面图,2C是底视图,2D是上侧透视图,2E是底 侧透视图。设计覆盖层200,使其在底部的安装区域容纳芯片100,该安装 区域是由4个从覆盖层200底部凸出的隆脊212描绘的。图3显示通过图2A的直线A — A的横截面图。在图3中,微流体装置 100固定在覆盖层200的底部。可看见覆盖层中的孔眼206与微流体装置中的开口 106对齐,每个孔眼206与开口 106联合形成一个孔,其总容积等 于该孔眼的容积和该开口的容积。可在各种各样的微流体装置,不只是在图1 —3所示装置上实施本发明 的方法。与实施本发明相容的微流体装置的明确特征只是该装置含有一个 孔,流体进出该孔可用与该微流体装置接口的仪器控制。因此,例如可在 二个以上基板层形成的微流体装置上实施本发明的方法。这类多层微流体 装置的例子可参见美国专利6,408,878和6,167,910。另夕卜,虽然与本发明相 容的微流体装置通常是基本平坦的,但此微流体装置的主要表面不一定是 长方形或正方形。可能与本发明实施方式相容的圆形微流体装置的例子可 参见美国专利6,884,395中。制造微流体装置的材料对实施本发明不重要,只要该材料不会污染或 不被实施本发明涉及的试剂、样品或反应所干扰。此外,孔结构的细节, 如其横截面形状、是否全部形成在一块基板上、多块基板中、或基板与覆 盖层中对实施本发明也不重要,只要该孔与微流体通道网络接口相连,只 要该孔足够大能容纳足以获得所需量感兴趣组分的原始样品和磁珠。例如, 如果该孔由微流体装置的开口和覆盖层的孔眼联合形成,那么孔眼和开口 的形状、大小和深度不一定要相同,只要孔眼和开口联合确定的容积能用 作流体贮存室即可。对本发明的进一步理解参见图4。图4中的小图A — G为在本发明样品 纯化各步骤中含有与通道411流体沟通的孔400的微流体装置一部分的截 面示意图。该微流体装置必须与可控制流经通道411流体的仪器接口相连。 在某些实施方式中,可利用本领域已知能控制流体流经微流体通道的任何 方法来控制流经通道411的流体。例如与本发明实施方式相容的美国专利 6,010,607所述的动电学流动控制法;美国专利6,915,679所述的压力控制法; 美国专利6,408,878所述的机械方法。如上所述,可用与该装置接口相连的 仪器(未显示)来控制流经包括孔400的微流体装置通道的流体。不论采 用何种具体液流控制系统,必须先控制通道411中的液流使孔400所含的 流体不会流入通道411。图4阐述的纯化过程要求在样品中加入磁珠和一些试剂。用能特异性结合样品中感兴趣组分的配体包被磁珠。制备磁珠和用配体包被磁珠的方 法是本领域熟知的。用磁珠纯化样品所需的试剂包括从结合于珠上配体 的感兴趣组分中除去污染物的洗涤缓冲液;从珠上释放感兴趣组分的洗脱 缓冲液;和在某些情况下使样品中的细胞释放其内部遗传物质的裂解试剂。在购得的商品化试剂盒中装有对各种不同样品和感兴趣组分实施样品 纯化加工所需的磁珠和试剂。不同供应商,如英杰公司(Invitrogen)的代钠⑧ 生物技术分公司、安捷科生物科学公司(Agencourt Bioscience Corporation)(贝克曼计数器公司(Beckman Coulter)的全资子公司)、科马基生 物聚合物技术公司(Chemagen Biopolymer-Technologie AG)(德国)和恰基公 司(Qiagen)(荷兰)销售这类试剂盒。以下说明性实施例采用代钠⑧生物技术公司的代钠珠DNA DIRECTtm 通用产品试剂盒来提取血液样品中的DNA。选择该产品是因为该销售的试 剂盒装有实施本发明样品纯化过程所需的所有试剂,还因为其实施方案是 一步方案,不涉及离心步骤。采用代钠珠DNA DIRECTTM通用产品详细方 案的描述可参见代钠⑧生物禾斗技公司网站(www.dynalbiotech.com)禾口 DNA DIRECTtm通用产品附带的产品说明书。代钠⑧生物技术公司也提供了使用 DNA DIRECTTM通用产品的方法,该产品能分离各种原始生物学样品,包 括血液、漱口水、口颊刮液、尿液、胆汁、粪便、脑脊液、骨髓、白细胞 层和冻存血液中易于进行PCR的DNA。按照产品说明书,DNA DIRECT 通用产品可从30微升血液样品中提取到足够量的DNA,进行30 —50轮PCR 扩增。其产品说明书指出提取可工作量的DNA所需的样品体积可少至5微 升。用代钠珠提取DNA的标准方法需要200微升的珠悬浮缓冲液。当然所 述孔的容积必须足够大方能在样品纯化过程中不仅容纳样品,而且容纳珠 和所用的试剂。因此,图4所示实施方式中的孔容积通常至少约为250微 升。本领域技术人员知道,对于图l一3所示类型的微流体装置结构,可通 过改变开口 106的容积,如改变形成孔的开口大小,或改变上层基板102 的厚度和/或改变覆盖层中孔眼206的容积,改变形成该孔眼开口的大小, 改变覆盖层200的厚度来操纵孔的容积。"图4A显示制备原始生物学样品方法的第一步骤,将多个磁珠412和试剂放置入孔400中。生物学组分中可能悬浮有感兴趣的组分,因此它可与 珠表面相互反应,或它可能包含在生物结构如细胞中,必须裂解细胞才能 使感兴趣组分与珠表面相互反应。DNA DIRECTTM通用产品试剂盒中装的试剂包括可使原始生物学样品 中细胞内部的遗传物质如DNA释放的裂解液。磁珠412包被有配体,如与 感兴趣DNA组分互补的DNA,它能特异性结合该感兴趣组分。磁珠包被 的配体能特异性结合各种不同的生物材料,包括细胞、DNA、 mRNA和蛋 白质,这是本领域知道的。回到图4A,原始血液样品中血细胞释放的DNA 将粘附于磁珠上的包被配体,从而提取到原始样品的DNA。用代钠珠提取 血DNA的标准方法需要将磁珠与样品在室温下培育5分钟。培育期间不需 要搅拌。经过所需的培育期后,向孔施加磁场以将磁珠412保持在孔400的底 部,见图4B所示。可用永磁体或电磁体来产生磁场。永久的稀土磁体,如 钕-铁-硼制作的磁体可产生足够强的磁力将珠412保持在孔400的底部。本 领域也知道电磁体装置能产生足够强的磁场保持或转移微流体装置中的磁 珠。参见例如PCT公开号WO 2004/078316和WO 03/061835。永磁体或电 磁体产生的磁场可将磁性颗粒412保持在孔400的底部,如图4B中的磁体 413所显示的那样。 —由于施加的磁场将磁珠412保持在孔400的底部,故可除去该孔中的 流体或向其中加入流体而无须转移珠。这样可除去孔400中原始样品的上清液部分,在孔400中反复加入洗涤缓冲液和除去该缓冲液,除去原始样 品中不想要的部分,只留下与珠结合的感兴趣组分。图4C为除去和加入流 体的步骤的示意图。在一些实施方式中,可采用标准的液体操作设备加入和除去孔中的流 体。可用于本发明实施方案的市售自动液体处理设备的例子有替康集团 有限公司(Tecan Group , Ltd.瑞士 )销售的吉尼斯(Genesis )和自由 EVO(Freedom EVO)产品,和贝克曼计数器有限公司(Beckman Coulter)(力口州 富勒敦(Fullerton, CA))销售的百默克(Biomek )FX和百默克 (Biomek⑧)2000产品。在图4C显示的实施方式中,与含有孔的微流体装置接口相连的仪器能控制流经进口管414和出口管415的液流。如图4C所示 的实施方式中,将合适的洗涤缓冲液通过入口 414引入孔400中,然后通 过出口 415排出洗涤缓冲液,从而使洗涤缓冲液通过孔400循环流动。注 意,由于结合有感兴趣组分的磁珠通过磁力保持在孔400的底部,故在洗 涤缓冲液循环流过孔时不会不经意地将磁珠412从孔400中冲走。洗涤缓冲液从孔400中除去原始样品中不需要的组分后,可洗脱保留 在磁珠上的感兴趣组分。图4D和4E显示引入洗脱缓冲液使感兴趣组分从 磁珠412释放的二种替代方法。图4D中,将洗脱缓冲液从微流体装置外部 引入孔中。如用洗涤缓冲液那样,可用标准的流体处理设备或通过入口管 414(具体见图4D所示)将洗脱缓冲液引入孔400中,所述入口管414中的 液流受到与含有该孔的微流体装置接口相连的仪器控制。或者,如图4E所示,可将洗脱缓冲液通过通道411引入孔400中。在 图4E的实施方式中,洗脱缓冲液存放在微流体装置的另一孔(未显示)中, 与微流体装置接口相连的仪器引导流体通过通道411流入孔400中。图4E 显示的说明性实施方式是特别有吸引力的,因为洗脱缓冲液通过珠412滤 出,但磁珠被磁力保持在孔410的底部。为了帮助洗脱缓冲液释放最大量的结合于珠的组分,在洗脱步骤中可 搅拌珠。如图4F所示,可通过操作磁体413产生的磁场移动孔内的珠,从 而搅拌珠。例如,图4F说明了将产生磁场的磁体413再定位,以使磁性颗 粒412移动到孔412的一侧。按照标准的代钠珠方法,洗脱所需的时间在5分钟左右。 一旦完成洗 脱,洗脱缓冲液中存在的感兴趣组分形成悬浮液或溶液。如图4G所示,可 用与微流体装置接口相连的仪器中流动控制系统将含感兴趣组分的洗脱液 引入通道411中。注意此时磁场仍施加于磁珠412,因此磁珠维持在孔400 中。 一旦将含感兴趣组分的流体引入通道411,该流动控制系统可引导流体 流入微流体装置的其它区域,在那儿进行后续加工步骤如PCR扩增和/或检在另一实施方式中,图4F和4G所示的洗脱步骤可用如图4E所示的 洗脱缓冲液在压力下流入孔400的洗脱方法代替,而施加于横跨通道411全长的电场,从而使从珠上洗脱到通道411的本来带负电荷的DNA分子的运动方向与洗脱缓冲液流动方向相反。这种替代的洗脱方法是根据例如美国已公开的专利申请号2003/0230486中所述的选择性离子提取技术。图5A—5G显示将洗涤缓冲液和洗脱缓冲液通过一个或多个微流体通 道引入孔中的另一种实施方式。在图5A—5G的实施方式中, 一个通道511 连接于二孔,即含洗涤缓冲液的孔和含洗脱缓冲液的孔。图5A显示的起始 状况与图4A显示的状况相同即将原始样品与磁珠悬液引入孔500中,同 时流动控制系统维持通过通道511的流速为零。在此示范性实施方式中, 原始生物学样品仍是血液,用于提取原始样品中感兴趣组分(DNA)的试 剂和珠是市售的代钠珠DNA DIRECTTM通用产品试剂盒中的组分。在此实 施方式中,磁珠512悬浮在含裂解剂的缓冲液中。培育适当时间后,如图5B所示磁珠512仍然以相同方式保持在孔500 的底部。图5B所示的步骤与上述实施方式图4B所示的步骤基本上相同。 然而,图5C所示步骤与图4C所示步骤不同。图5C中,洗涤缓冲液通过 通道511引入孔500中。实施此步骤是利用与微流体装置接口相连的仪器 (未显示)中的流动控制系统引导流体从含洗涤缓冲液的孔(未显示)通 过通道511流入孔500中。相反,在图4C显示的上述实施方式中,洗涤缓 冲液从微流体装置外部来源引入孔500中。在图5C所示实施方式中,将洗 涤液体引入孔500的底部,原始样品的上清液部分与洗涤缓冲液混合不均 可引起孔底部的上清液样品被流入的洗涤缓冲液置换。如图5C所示,可将 足够量的洗涤缓冲液引入孔500中,使孔400底部的珠512完全浸没在洗 涤缓冲液中。此时,可能需要重新安置磁体513以操纵施加于珠的磁场而 搅拌洗涤缓冲液中的珠。图5D所示的此搅拌步骤可提高洗涤缓冲液除去珠 512附近原始样品中不想要部分的效率。如同图4A — 4G所示的实施方式,在图5A—5G所示的实施方式中, 洗涤步骤后引入洗脱缓冲液。如图5E所示,此实施方式中,通过通道511 引入洗脱缓冲液。实施此步骤是利用与微流体装置接口相连的仪器(未显 示)中的流动控制系统引导流体从含洗脱缓冲液的孔(未显示)通过通道 511流入孔500中。仍然是,洗涤脱缓冲液与洗脱缓冲液混合不均将导致流入的洗脱缓冲液置换孔500底部的洗涤缓冲液。图5E显示孔500中引入足 量的洗脱缓冲液以置换珠512附近的洗涤缓冲液后孔500的情况。如图5F 所示,可搅拌珠以促进珠表面与洗脱缓冲液接触。完成此洗脱步骤后,可 将含感兴趣组分的洗脱缓冲液通过通道511从孔500中抽出,见图5G所示。不出所料,可采用本文所述方案的其它变化形式来实施本发明方法。 本发明的第三种实施方式的示意图见图6A — 6D和图7。在此实施方式中, 孔600由覆盖层620中的一个孔眼(以覆盖层620上表面中的开口 625为 边界)和该孔眼包含的微流体装置主体610中的二个开口 615构成。图6A 一6D说明的微流体装置俯视图可参见图7,覆盖层中的孔眼开口 625包含 位于其下方的微流体装置主体的二个开口 615、 616。图6A — 6D实施方式 的步骤类似于图5A — 5G实施方式的步骤,主要差别是图6A — 6D的孔600 与二个通道611、 617而不只是一个通道(如511)流体沟通。图6A — 6D 实施方式中存在的第二通道使得可除去孔600中不需要的物质,如上清液 样品和用过的洗涤缓冲液。图6A显示磁珠612与原始样品液培育后磁体613施加的磁场将磁珠 612收集到一个开孔615中,使原始样品中的细胞裂解释放细胞的感兴趣组 分,然后此感兴趣组分结合于磁珠表面的配体。如上所述,如果采用市售 的磁珠试剂盒,可采用试剂盒规定的标准裂解和结合条件。如图6B所示,磁珠保留在开孔615界定的孔600中后,通过通道611 向该孔引入洗涤缓冲液,并通过通道617排出孔600中的缓冲液。排出孔 600中用过的洗涤缓冲液有助于除去珠612附近不需要的物质。完成图6B的洗涤步骤后,如图6C所示通过通道611引入洗脱缓冲液。 如图7所示,通道611与装有洗涤缓冲液的孔750和装有洗脱缓冲液的孔 760流体沟通。可用控制微流体装置中流体流动的已知方法选择性引导流体 通过通道611从孔750或孔760流入孔600。在图7所示实施方式中,用流 动控制系统通过通道617将流体从孔600抽到由开孔771和孔眼772组成 的废液孔中。经过洗脱所需培育时间后,如图6D所示,可通过通道611抽出孔600 的含感兴趣组分的洗脱缓冲液。如图7示意性说明图所示,可将流体从通道611引入通道780中,在通道780中进一步加工感兴趣组分。例如,孔 785和786可含当感兴趣组分通过通道780流向废液孔790时可与之反应的 试剂。当感兴趣组分是遗传物质如DNA时,样品纯化后进一步加工常包括 PCR扩增该DNA。因此,例如可对用本发明方法纯化的样品进行美国公开 专利申请号2002/0197630中所述的PCR过程。在本发明的方法中,提取即纯化感兴趣组分的整个过程都在微流体装 置的孔中进行。因为这些方法不需要将样品引入微流体装置内部的通道或 腔室中,就完全消除了与原始样品通过这些通道或腔室流动相关的问题。 然而,因为所述孔与装置中的微流体通道网络相连,仍可研究探索微流体 技术所提供的集成和自动化优点。可以其它特定形式实施本发明而不背离本发明的思路或基本特征。因 此认为提供的实施方式在所有方面是阐述而非限制,本发明的范围由所附 权利要求书而非以上描述限定,符合该权利要求书含义和范围的所有改变 都应包括在其包括的范围内。
权利要求
1.一种通过从生物学样品中提取在其中发现的生物组分而纯化该生物组分的方法,所述方法在具有至少一个用于接受所述生物学样品的孔和至少一个用于引入与排出流体的通道的微流体装置中进行,所述方法包括提供含有对所述生物组分有亲和力的因子的多个磁珠;将所述磁珠与所述生物学样品一起引入所述孔中;操纵所述生物学样品使之在所述磁珠附近释放所述生物组分;用磁力将所述磁珠隔离在所述孔中;除去所述孔中的所述生物学样品;在所述孔中引入所述生物组分的洗脱液;和取出所述孔中的所述洗脱液和生物组分。
2. 如权利要求l所述的方法,其特征在于,在引入所述洗脱液之前, 从所述生物组分包被的所述磁珠上洗掉所述生物样品。
3. 如权利要求l所述的方法,其特征在于,所述因子和所述生物组分 包含DNA。
4. 如权利要求l所述的方法,其特征在于,施加于所述孔外部的磁力 可导致所述磁珠偏离到所述孔的一个侧壁上。
5. 如权利要求l所述的方法,其特征在于,通过所述孔引入和排出洗 涤液,从而操纵所述生物学样品释放所述生物组分后,除去所述孔中的所 述生物学样品。
6. 如权利要求5所述的方法,其特征在于,当所述洗涤液与所述磁珠 接触时搅拌所述磁珠。
7. 如权利要求l所述的方法,其特征在于,当所述洗脱液与所述磁珠 接触时搅拌所述磁珠。
8. 如权利要求l所述的方法,其特征在于,当所述洗脱液流入所述孔 中实施所述方法时,通过磁力操纵使所述磁珠聚集在用于引入所述洗脱液 的至少一个所述通道附近。
9. 如权利要求8所述的方法,其特征在于,当通过至少一个通道除去 所述孔中的所述洗脱液时,通过磁力操纵从所述至少一个通道附近区域取 出所述磁珠。
10.如权利要求1所述的方法,其特征在于,当所述洗脱液与所述磁 珠接触时向磁珠施加电场。
11 . 一种通过从生物学样品中提取在其中发现的生物组分而纯化该生物组 分的方法,所述方法在具有用于接受所述生物学样品的孔和用于引入与排出流 体的通道的微流体装置中进行,所述方法包括提供含有对所述生物组分有 亲和力的因子的多个磁珠;将所述磁珠与所述生物学样品一起引义所述孔 中;操纵所述生物学样品使之在所述磁珠附近释放所述生物组分;用磁力 将所述磁珠隔离在所述通道附近;通过所述通道向所述孔引入洗涤液以从 所述磁珠洗掉所述生物学样品和在所述磁珠与生物学样品之间保持一定体 积的洗涤液;从所述通道引入所述生物组分的洗脱液;使所述洗脱液停留 在所述洗涤液附近并与所述生物学样品隔开;和通过所述通道取出所述孔 中的所述洗脱液和生物组分。
12. 如权利要求ll所述的方法,其特征在于,所述因子和所述生物组 分包含DNA。
13. 如权利要求ll所述的方法,其特征在于,施加于所述孔外部的磁 力可导致所述磁珠偏离到所述孔的一个侧壁上。,
14. 如权利要求11所述的方法,其特征在于,当所述洗脱液与所述磁 珠接触时搅拌所述磁珠。
15. 如权利要求ll所述的方法,其特征在于,当通过所述通道除去所 述孔中的洗脱液时,通过磁力操纵从所述通道附近区域取出所述磁珠。
16. —种通过从生物学样品中提取在其中发现的生物组分而纯化该生物组 分的方法,所述方法在具有用于接受所述生物学样品的孔和用于在所述孔中引 入与排出流体的第一和第二通道的微流体装置中进行,所述方法包括提供 含有对所述生物组分有亲和力的因子的多个磁珠;将所述磁珠与所述生物 学样品一起引入所述孔中;操纵所述生物学样品使之在所述磁珠附近释放 所述生物组分;用磁力将所述磁珠隔离在所述第一通道附近;通过所述第 一通道引入洗涤液,通过所述第二通道排出所述孔中的洗涤液和生物学样 品;通过所述第一通道将所述生物学样品的洗脱液引入所述磁珠附近;通 过所述第一通道取出所述孔中的所述洗脱液和生物组分。
17.如权利要求16所述的方法,其特征在于,所述因子和所述生物组分包含DNA。
全文摘要
一种通过从生物学样品中提取在其中发现的生物组分而纯化该生物组分的方法。采用含有至少一个用于接受所述生物学样品的孔和用于引入与至少一个排出流体的通道的微流体装置实施该方法。将多个含有对所述生物组分有亲和力的因子的磁珠与合适的生物学样品一起引入所述孔中。操作该生物学样品,使之在磁珠附近释放生物组分,然后将所述磁珠隔离在孔中,同时除去所述生物学样品。在所述孔中引入所述生物组分的洗脱液,随后同时抽出所述孔中的洗脱液和所述生物组分。
文档编号G01N35/00GK101273258SQ200680035662
公开日2008年9月24日 申请日期2006年10月2日 优先权日2005年9月30日
发明者J·穆勒, P·福曼 申请人:卡钳生命科学股份有限公司;佳能美国生命科学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1