电容值测量电路及应用其的电子装置的制作方法

文档序号:6028861阅读:120来源:国知局
专利名称:电容值测量电路及应用其的电子装置的制作方法
技术领域
本发明涉及一种电容值测量电路与应用其的电子装置,其用于 测量4寺测电容的电容值。
背景技术
传统上,大多以机械式开关来实现使用者控制界面。由于使用 者需直4妄4妄触到传统才几械开关,传统枳4戒开关才可响应4吏用者的控 制指令而进行操作,传统机械式装置容易在使用者操作过程中发生 损坏。目前,已发展出触控式开关。触控式开关例如是电容式开关等。
为了提升使用上的便利性,已研发出触控面板(touchpanel)或显 示触控面板(同时具有显示与触控的功能)。触控面板或显示触控面 板可接受使用者的输入、点选等操作。触控面板或显示触控面板可 应用于各种电子装置中,例如移动电话中。这样,可使4吏用者直接 在触控面板或显示触控面板上点选画面来进行搡作,由此提供更为 《更捷且人性化的才喿作才莫式。触控面板或显示触控面板有多种,电容 式触控面板或显示触控面板是其中的 一种。
当使用者操作电容式触控面板、电容式显示触控面板、或电容 式开关时,其内部的待测电容的电容值会随使用者操作而发生变 化。由此,可才企测到〗吏用者的l乘作。然而,如何i殳计出可有效地才企 测待测电容的电容值变化的电容值测量电路,以提升电容式触控面
5板、电容式显示触控面板、或电容式开关的性能是本领域不断致力 的方向之一。

发明内容
本发明涉及 一种电容值测量电路,与传统电容值测量电路相 比,该电容值测量电^各可更准确地测量出待测电容的电容值与其电 容值变化量。
本发明涉及一种电子装置,其内部的触控屏幕与传感器可共享
同一个才莫拟^t字转换器(ADC),以减少该电子装置的电^各面积与 成本。
本发明提供一种电容值测量电路,包括电容式分压电3各,其 包括开关电路、第一电容与第二电容,开关电路耦接至第一与第 二电容,开关电路受控于第一时钟信号与第二时钟信号,第二时钟 信号为第一时钟信号的反相信号,开关电路的导通状态使得第一电 容的第一端的电压变化量耦合至第二电容的第一端;才莫拟数字转换 器,耦接至电容式分压电路,模拟数字转换器将第二电容的第一端 的电压转换成第一数字信号;以及处理模块,耦接至模拟数字转换 器,处理模块根据模拟数字转换器的第一数字信号与模拟数字转换 器的参数,以检测出第二电容的电容值及其变化量。
在本发明的电容值测量电^各中,在一种实施方式中,该电容式 分压电路的开关电路包括第一开关,其第一端耦接至第一电压源, 其第二端耦接至该第二电容的第一端,该第一开关的导通受控于第 一时钟信号;第二开关,其第一端耦接至第一电压源,其第二端耦 接至该第一电容的第一端,该第二开关的导通受控于第一时钟信 号;以及第三开关,其第一端耦接至第二电压源,其第二端耦接至 该第一电容的第一端,该第三开关的导通受控于该第二时钟信号;其中,该第一电容的第二端耦接至第二电容的该第一端,该第二电 容的第二端耦接至第三电压源。
本发明的电容值测量电路,在一种实施方式中,该模拟数字转
换器的参数包括该模拟数字转换器的分辨率与转换电压区间;以及 该处理才莫块进一步依据该第 一 电压源的电压值、该第二电压源的电 压值与该第一电容的电容值、该模拟数字转换器的分辨率、该模拟 数字转换器的该转换电压区间与该模拟数字转换器的第 一数字信 号,以检测出该第二电容的电容值及其变化量。
本发明的电容值测量电路,在一种实施方式中,进一步包括偏 压电^各,耦接至该电容式分压电^各与该才莫拟lt字转换器,该偏压电 路用于施加偏压至第一节点上,使得该第一节点的电压与该偏压与 该第二电容的第一端的电压有关。
本发明的电容值测量电路,在一种实施方式中,该模拟数字转 换器包括开关-取样-电容电路、操作放大器、比较器、锁存器(栓 锁器,latch )、反相器、计数器以及开关-电容电路,其中,开关-取样-电容电路具有耦接至该电容式分压电路的该第二电容的第一 端的第一输入端以及输出端,该开关-取样-电容电路受控于该第一 时钟信号与该第二时钟信号,以取样该电容式分压电^各的该第二电 容的该第一端的电压;操作放大器具有耦接至该开关-取样电容电路 的丰命出端的第一專叙入端、第二输入端、第一输出端和第二输出端; 比较器具有耦接至该操作放大器的第 一输出端的第 一输入端、耦接 至该操作放大器的第二输出端的第二输入端,以及输出第二数字信 号的输出端;锁存器,接收比较器所输出的第二数字信号,在该第 一时钟信号的触发下,该锁存器将第二数字信号输出成第三数字信 号;将第三数字信号反相的反相器;计数器,计数该第三数字信号, 以产生第一数字信号;以及开关-电容电路,其耦接至该操作放大器的第二输入端,受控于第一时钟信号、第二时钟信号、第三数字信 号与第三数字信号的反相信号。
本发明还提供一种电子装置,包括待测电容,用于输出待测 电压;传感器,用于输出感测信号;多工器,耦接至待测电容与传 感器,以输出待测电压与感测信号之一;以及才莫拟凄t字转换器,耦 接至多工器,用于将待测电压或感测信号转换成数字输出信号,数 字输出信号代表待测电容的电容值及其变化量,或者代表该传感器 的感测结果。
本发明的电子装置,在一种实施方式中进一步包括触控屏幕, 其中,该待测电容位于触控屏幕内。
为使本发明的上述内容能够更加明显易懂,下文特别列举实施 例,并结合附图,作详细i兌明如下


图1示出了根据本发明第一实施例的电容值测量电路的电路示 意图。
图2示出了图1的相关波形图。
图3示出了根据本发明第二实施例的电容值测量电路的电路示 意图。
图4示出了图3的相关波形图。
图5示出了根据本发明第三实施例的电子装置的功能模块示意图。
8
具体实施例方式
根据本发明实施例的电容值测量电路可用于测量待测电容的 电容值,并将电容值转换成数字输出信号。这样,即可检测出待测 电容的电容值是否有变化。此外,根据本发明实施例的电子装置,
其内部的触控屏幕与传感器可共享同 一个ADC ,以减少该电子装置 的电^各面积、与成本。
图1示出了根据本发明第一实施例的电容值测量电路的电路示 意图。图2示出了图1的相关波形图。
如图1所示,该电容值测量电路包括才莫拟数字转换器110、 电容式分压电路120与处理模块130。该模拟数字转换器110例如 是具有取样-保持(S/H)功能的三角积分模拟数字转换器(sigma-delta ADC)。电容式分压电路120包括开关121 123、电容Cs与Cx。 在本实施例中,VI、 V2与Vc为电压源,且,支设VKV2,且时钟 4言号phl与ph2互为反相。
开关121的一端津禹4妻至电压源V2,其另一端井禹4妻至节点nx。 节点nx的电压为Vx。开关121的导通状态受控于时钟信号phl。 比如,当时钟信号phl为高电位时,开关121为导通;反之亦然。 当开关121导通时,节点电压Vx等于V2。
开关122的一端井禹4秦至电压源V2,其另一端津禹4妻至节点ns。 节点ns的电压为Vs。开关122的导通状态受控于时钟信号phl。 比如,当时钟信号phl为高电位时,开关122为导通;反之亦然。 当开关122导通时,节点电压Vs等于V2。开关123的一端井禺4妾至电压源VI,其另一端l禺4妄至节点ns。 开关123的导通状态受控于时钟信号ph2。比如,当时钟信号ph2 为高电位时,开关123为导通;反之亦然。当开关123导通时,节 点电压Vs等于VI。
电容Cs耦接于节点ns与nx之间。电容Cs的电容值则是已知 的。电容Cx耦接于节点nx与电压源Vc之间。电容Cx的电容值 是未知的,此电容值测量电路可用于测量电容Cx的电容值。
现在请同时参照图1与图2,以了解第一实施例的电容值测量 电3各的才喿作。
当时钟信号phl为高电位时(也就是时钟信号ph2为低电位), 开关121与122均为导通,使得节点电压Vx与Vs均等于V2。
当时钟信号phl由高电位转态为低电位时(也就是时钟信号ph2 由低电位转态为高电位),开关123会导通,使得节点电压Vs等于 VI。这样,将使得电容Cs的一端(也为节点电压Vs)的电压变化为 (Vl-V2)。该电压变化量(V1-V2)将通过电容Cs而耦接至接点nx, 使得节点电压Vx发生变化。节点电压Vx的电压变化量如以下公 式(l)所示
(n-F2) &
(Cs + Cx) (1)
在时钟信号phl发生转态前的一瞬间,节点电压Vx为V2。在 时钟信号phl发生转态后的一瞬间,节点电压Vx如以下公式(2)所 示
(2)
(Cy + Cx)
10节点电压Vx经过ADC 120的取样并保持后,再转换成数字输 出值BOUT[N:l]。凄t字输出值BOUT[N:l]的十进制值表示为 DOUT。
才艮据DOUT、电容Cs的电容值、VI、 V2、 ADC120的转换电 压区间(Full Scale)及分辨率,处理模块130可计算出电容Cx的电容 值及其变化量。
例如,如果ADC 120的转换电压区间为V2至VI,其分辨率 (resolution)为n位(n为正整数),贝'J Cx、 VI、 V2、 Cs、 DOUT及n 间的关系如公式(3)所示
(Cs + Cx) 2" (3)
将公式(3)简化后可得Cx如公式(4)所示
rx = ~~2--Cs
2" (4)
这样,即可求得电容Cx的电容值。
第 一 实施例的电容值测量电3各可应用于电容式开关、电容式触 控面板、电容式显示触控面板等。当使用者操作电容式开关时,其
内部的待测电容Cx的电容值会随着使用者的操作而改变;通过电 容值测量电路来测量电容Cx的电容值与其变化量,即可得知〗吏用 者是否按下电容式开关。此外,当使用者操作电容式触控面板或电 容式显示触控面板时,其内部的待测电容Cx的电容值会随着使用 者的按下而改变;通过电容值测量电路来测量电容Cx的电容值与 其变化量,即可得知4吏用者的按压位置。
ii[第二实施例]
图3示出了根据本发明第二实施例的电容值测量电路的电路示 意图。图4示出了图3的相关波形图。
如图1所示,该电容值测量电路包括才莫拟tt字转换器 (ADC)305、电容式分压电路380与偏压电路390。该才莫拟数字转换 器(ADC)305例如是具有取样-保持(S/H)功能的三角积分模拟数字 转换器(sigma-delta ADC)。
ADC 305包括才喿作;改大器(OP)310、比较器(CMP)320、锁存 器330、反相器340、计数器350、开关361~370、电容371 375。
操作放大器310具有正输入端i叩,耦接至开关368与电容 374;负输入端inn,耦4妾至开关370与电容373;正|命出端outp, 耦接至比较器320的正输入端与电容373;以及负输出端outn,耦 接至比较器320的负输入端与电容374。
比较器320具有正输入端,耦接至操作放大器310的正输出 端outp;负输入端,l禺4妄至才喿作》支大器310的负專俞出端outn;以及 输出端,耦接至锁存器330。比较器320的输出信号C一OUT输入 至锁存器330。
锁存器330接收比较器320的输出信号C—OUT,以输出数字 信号D1。锁存器330受控于时钟信号phl。
反相器340将数字信号Dl反相成另一数字信号D1B。也就是, 婆丈字4言号Dl与D1B互为反相。
计数器350对数字信号Dl计数,以产生计数结果BOUT[N:l]。开关361的一端耦接至电压源(V1+V2)/2,其另一端耦4妄至电 容371与开关362。开关361的导通状态受控于时钟信号phl。
开关362的一端|禹*接至电压源V2,其另一端l禹4姿至电容371 与开关361。开关362的导通状态受控于时钟信号ph2。
开关363的一端耦接至电压源(V1+V2)/2,其另一端耦4妄至电 容372与开关366。开关363的导通状态受控于时钟信号phl。
开关364的一端井禹4妄至电压源VI,其另一端井馬4妄至开关365 与366。开关364的导通状态受控于数字信号D1B。
开关365的一端茅禺4妾至电压源V2,其另一端并禺4妄至开关364 与366。开关365的导通状态受控于数字信号Dl。
开关366的一端耦4妄至电容372与开关363,其另一端耦4妄至 开关364与365。开关366的导通状态受控于时钟信号ph2。开关 364 366用于一夸电压源VI与V2之一传送至电容372。
开关367的一端井禹4妄至电压源V3,其另一端井禹4妄至开关368、 电容371与372。开关367的导通状态受控于时钟信号phl。
开关368的一端耦4妄至开关367、电容371与372,其另一端 耦4妄至才喿作方文大器310的正丰俞入端inp与电容374。开关368的导 通习犬,态受4空于日寸4中4言号ph2。 ot匕夕卜,开关361~368 ^乂^电容371 372 也可称为开关-电容电路,其耦接至操作放大器310的输入端inp。 该开关-电容电路受控于时钟信号phl、时钟信号ph2、数字信号D1 与D1B。
开关369的一端津禺4妾至电压源V3,其另一端津禺4妻至节点nr。 开关369的导通状态受控于时钟信号phl。
13开关370的一端耦接至节点nr,其另 一端耦接至操作放大器310 的负输入端inn与电容373。开关370的导通状态受控于时钟信号 ph2。
电容371的一端耦4妄至开关361与362,其另一端耦接至开关 367、 368与电容372。
电容372的一端津禺4妄至开关363与366,其另一端寿禺4妄至开关 367、 368与电容371。
电容373耦接于才喿作放大器310的负输入端inn与正f命出端 outp之间,以作为回4受电^各。
电容374耦接于操作放大器310的正输入端inp与负输出端 outn之间,以4乍为回4受电路。
电容375的一端l禺4妄于节点nx,其另一端库禺4妄至开关369、370。
电容371, 372与375的电容值为Cl;而电容373与374的电
容^f直为C2。
此夕卜,电容375与开关369 370也可称为开关-取样-电容电^各, 其具有输入端,耦接至电容式分压电路380的Cs电容的一端nx; 以及输出端,耦接至操作放大器的输入端inn。该开关-耳又样-电容电 ^各受控于时新M言号phl与ph2,以取^羊电容Cx的端点电压Vx。
电容式分压电路380包括开关381-383与电容Cs与Cx。电 容式分压电^各380相同或相似于第 一 实施例的电容式分压电^各120 , 因而在本文中省略其细节。偏压电路390用于产生电荷变化量(V2-V1)C1,以将该电荷变化量耦合到节点nr上。也就是,在一个完整的时钟周期时间后,电容式分压电路380和偏压电路390会将(Vx-Vl)Cl的电荷变化量耦合至节点nr。偏压电路390包括开关391 392,以及电容393。电容393的电容^f直为Cl。
开关391的一端耦接至电压源VI,其另一端耦接至电容393。开关391的导通状态受控于时钟信号phl。
开关392的一端耦接至电压源V2,其另一端耦接至电容393。开关392的导通状态受控于时钟信号ph2。
电容393的一端井禺4秦至开关391与392,其另一端津禺4妻至节点电压Vr。
现在请同时参照图3与图4,以了解本实施例的电容值测量电路的操作。
在本实施例中,开关的切换会导致电压Vx产生变化。电压Vx输入至ADC 305以得到数字值BOUT[N:l]。由此得知待测电容Cx的电容值。
现在将说明如何得知输入至ADC 305的电压值Vx。
在时钟信号phl转态前后(也就是时钟信号ph2转态前后),节点nx的电荷应相等。因此,节点nx的电荷满足y厶式(5):
(72 - F3)C1 + (72 - F2)Cy+(F2 - Fc)Cx = (「x(s) - K3)C1 + (, - n)Cs + (啤)-Fc)Cc (5 )在公式(5)中,等式左边代表的是时钟信号phl转态前在节点
nx的电荷,而等式右边代表的是时钟信号phl转态后在节点nx的
15电荷。其中,Vx(s)代表当时钟信号ph2为致能时的电压Vx。也即,当时钟信号ph2为致能时,在本实施例中,ADC 305会对电压Vx进行取样-保持,以得到电压Vx(s)。 Vx(s)如公式(6)所表示
Fx (s) = ~^-^-
(6)
当比较器320的输出信号C_OUT为0时,数字信号Dl为非致能(低电位),且数字信号D1B为致能(高电位)。当比较器320的输出信号C—OUT为0时,在时钟信号phi转态前后(也即时钟信号ph2转态前后),操作放大器310的输入端inn的电荷应相等。因而输入端inn的电荷可表示为/^式(7):C2 + (F3 — F2)C1 + [F3 -帥)]C1
其中,voutp(i-0."与voutp(i)分别代表在第(i-0.5)个时钟与第i个时4中的节点电压voutp 。
相似地,当比较器320的输出信号C—OUT为0时,在时钟信号phi转态前后(也即时钟信号ph2转态前后),纟喿作i文大器310的输入端inp的电荷应相等。因此llr入端inp的电荷可表示为/^式(8):
「n (" + K2)]C1 +F3 —(Kl + 「2)_
_ 2 _2 _C2+ F3-、'…"C1+ 、'…"Cl=[73 - v她(/)]C2 + (73 - K2)C1 + (F3 - ")C1
(8)
其中,voutn(i-0.5)与voutn(i)分别代表在第(i-0.5)个时钟与第i个时4中的节点电压voutn。
将(7)和(8)两式相减后得到公式(9):
16<formula>formula see original document page 17</formula>
因为操:作;改大器310的差动车lr出电压vout为正l叙出电压voutp和负输出电压voutn的差值,7>式(9)可改写成7>式(10):<formula>formula see original document page 17</formula>
其中,△ vout(+)代表当D1=0时的操作放大器310的输出电压vout的电压变化量。由公式(10)可知,△ vout(+)为正值(因为Vl〉Vx(s))。也即,当D1二0时,输出电压vout会变高。
同理,可推得当Dl=l时的才喿作》文大器310的输出电压vout的电压变4匕量△ vout(-)如^^式(1 l)所示
<formula>formula see original document page 17</formula>
由7>式(11)可知,Avout(-)为负值(因为V2<Vx(s))。也即,当Dl=l时,输出电压vout会变4氐。
在k个时钟周期(k为正整数)内,若数字信号Dl为1的时钟周期数为m而Dl为0的时钟周期数为n(m+n=k, m与n均为正整数),则操作放大器310的差动输出电压vout可表示为/>式(12):
<formula>formula see original document page 17</formula>
此时操作放大器310的差动输出电压vout(k)也可表示为原始电压vout(0)力口上差《直电压 verr, 如公式(13)所示
<formula>formula see original document page 17</formula>将公式(10)和(11)代入公式(12),解公式(12)和(13)可得
<formula>formula see original document page 18</formula>
若C2 ,则Vx(s)可近4以于
<formula>formula see original document page 18</formula>
将公式(6)代入公式(15),可得待测电容Cx、已知电容Cs、 n,m和Cl的关系式力口下
附<formula>formula see original document page 18</formula>
(16)
这样,本实施例的电容值测量电路可根据数值m、 n及已知电容Cs、 Cl,而测量出待测电容Cx及其变化量。
在图4中,Tclk代表时钟信号周期,而(i-0.5)Tclk与(i)Tclk分别代表第(i-0.5)个时钟周期与第(i)个时钟周期。当时钟信号ph2为致能时,会对电压Vx进行取样。该取样结果会对操作放大器310的输出电压vout产生影响。当时钟信号ph2为致能时,电压Vx会变大,并将电荷变化量(Vx-V2)Cl耦合到节点nr,同时偏压电路390也将电荷变化量(V2-V1)C1耦合到节点nr上。也就是,节点nr在一个完整的时钟周期时间后^皮耦合的电荷变化量为(Vx-Vl)Cl。因为Vl〉Vx,所以,节点nr的节点电荷变^匕量为负^"直,电压Vr会变小。因而,当时钟信号ph2为致能时,输出电压vout会有正积分效应(也即升高)以维持节点nr的电荷守恒,如图4的时序点410与420
18所示。时序点410代表对电压Vx进4亍取才羊,而时序点420则代表输出电压vout^皮升高(其电压变化量为Avout(+))。
当操作放大器310的输出电压vout高于临界值(0V)时,将使得比较器320的输出信号C—OUT变为1,如时序点430所示。由于比较器320的输出信号C—OUT变为1,所以,锁存器的输出信号Dl也会变为l,如时序点440所示。由于输出信号Dl为l(输出信号D1B为0),如上述那样,输出电压vout会降低(其电压变化量为Avout(-)),且会小于O,如时序点450所示。
由于在时序点450时,l俞出电压vout会小于0,所以,随后,比较器320的输出信号C—OUT会转态为0而数字信号Dl也转态为0,使得输出电压vout再次被正积分。依此方式,即可得知数字信号Dl为1的时钟周期数与数字信号Dl为0的时钟周期数,并乂人而4,出电容Cx的电容<直。
第二实施例的电容值测量电路可应用于电容式开关、电容式触控面板、电容式显示触控面板等。当使用者操作电容式开关时,其内部的待测电容Cx的电容值会随着使用者的操作而改变;通过电容值测量电路来测量电容Cx的电容值变化,即可得知使用者是否按下电容式开关。此外,当使用者操作电容式触控面板或电容式显示触控面板时,其内部的待测电容Cx的电容值会随着使用者的按下而改变;通过电容值测量电路来测量电容Cx的电容值变化,即可得知使用者的按压位置。
此外,在本发明第一与第二实施例中,由于三角积分ADC具有耳又样-保持的功能,因而,在本发明第一与第二实施例的电容值测量电路中,并不需要取样-保持电^各。然而,本发明并不局限于此。如果电容值测量电i 各所用的ADC并不具有:f又样-保持的功能,则在电容值测量电路中,需要取样-保持电路。该取样-保持电路对电压
Vx(或是电压Vl-Vx)取样-保持后,将取样-保持结果送至ADC。
此外,在本发明第一与第二实施例中,由于操作放大器为差动
;故大器,因此可抑制共才莫,噪声(common noise)。 [第三实施例]
图5示出了根据本发明第三实施例的电子装置的功能模块示意 图。该电子装置例如但不局限于,具有触控屏幕的凄t码相才几。该电 子装置包括传感器510、多工器520与ADC530。
传感器510例如但不限于,光传感器、倾斜传感器(tilt sensor)、 温度传感器与湿度传感器。传感器510可感测外界环境,并将其转 换为模拟电压。该模拟电压通过ADC530转换成数字信号,再由后 端的处理才莫块判断该如何依据ADC的输出信号来控制电子装置。
例如,传感器510包括光传感器。如果光传感器感测到外界光 源为黑暗,则后端处理模块可令电子装置进入低耗量模式。但当光 传感器感测到外界光源为明亮时,光传感器的输出电压有变化,因 此,后端处理一莫块可使电子装置进入正常操作模式。
再例如,传感器510包括倾斜传感器。如果倾斜传感器感测到 电子装置被倾斜/旋转某个角度(比如,使用者将电子装置倾斜/旋转 90度),则其所输出的电压会有所变化,则后端处理4莫块可^f吏电子 装置的屏幕显示画面配合该倾斜/旋转角度,以方使/使用者观看屏幕 显示画面。
20又例如,传感器510包括温度传感器或湿度传感器。根据温度 传感器或湿度传感器对外界环境的感测结果,后端处理模块可令电 子装置进行最佳化调整。
可根据需要,将所需的传感器加入到电子装置内。这样,电子 装置具有智能(smart)操作的优点。
多工器520用于从电压Vx或传感器的输出信号中择一地输出 给ADC 530。
ADC 530可相同或相似于第一实施例或第二实施例的ADC, 因而在此不重述其细节。在第三实施例中,Vx即为第一或第二实 施例的待测电容Cx的电压,其可用于检测使用者的触控点位置。 在本发明第三实施例中,由于触控屏幕与传感器共享ADC,因而, 电子装置具有电路面积缩小的优点。
此夕卜,第 一 实施例或第二实施例的电容值测量电路的内部元件 可根据情况需要而加入至第三实施例的电子装置内,这些均在本发 明范围内。
综上所述,虽然本发明已以实施例纟皮露如上,然而其并非用于 限定本发明。本发明所属技术领域中普通技术人员,在不脱离本发 明的精神和范围内,应当可作各种变化与4奮改。因此,本发明的保 护范围应当以所附权利要求限定的范围为准。
主要组件符号说明
110:模拟数字转换器 120:电容式分压电路
121 123:开关 130:处理才莫块
21Cs、 Cx: 电容 310:,喿作^:大器 330:锁存器 350:计数器 371~375:电容 381 383:开关 391 392:开关 410 450:时序点 520:多工器
305:模拟数字转换器 320:比纟交器 340:反相器 361-370:开关 380:电容式分压电3各 390:偏压电路 393:电容 510:传感器
530: ADC。
权利要求
1.一种电容值测量电路,包括电容式分压电路,包括开关电路、第一电容与第二电容,所述开关电路耦接至所述第一电容与所述第二电容,所述开关电路受控于第一时钟信号与第二时钟信号,所述第二时钟信号为所述第一时钟信号的反相信号,所述开关电路的导通状态使得所述第一电容的第一端的电压变化量耦合至所述第二电容的第一端;模拟数字转换器,耦接至所述电容式分压电路,所述模拟数字转换器将所述第二电容的第一端的电压转换成第一数字信号;以及处理模块,耦接至所述模拟数字转换器,所述处理模块根据所述模拟数字转换器的第一数字信号与所述模拟数字转换器的参数,以检测出所述第二电容的电容值及其变化量。
2. 根据权利要求1所述的电容值测量电路,其中,所述电容式分 压电路的所述开关电路包括第一开关,其第一端耦接至第一电压源,其第二端耦接 至所述第二电容的第一端,所述第一开关的导通受控于所述第 一时钟信号;第二开关,其第一端耦接至所述第一电压源,其第二端 耦接至所述第一电容的第一端,所述第二开关的导通受控于所 述第一时钟信号;以及第三开关,其第一端耦接至第二电压源,其第二端耦接 至所述第一电容的第一端,所述第三开关的导通受控于所述第 二时钟信号;其中,所述第一电容的第二端耦接至所述第二电容的第 一端,所述第二电容的所述第二端耦接至第三电压源。
3. 根据权利要求2所述的电容值测量电路,其中所述模拟数字转换器的参数包括所述模拟数字转换器 的分辨率与转换电压区间;以及所述处理才莫块进一步依据所述第一电压源的电压值、所 述第二电压源的电压值与所述第 一 电容的电容值、所述冲莫拟数 字转换器的分辨率、所述模拟数字转换器的转换电压区间与所 述模拟数字转换器的第一数字信号,以检测出所述第二电容的 电容值及其变化量。
4. 根据权利要求1所述的电容值测量电路,进一步包括偏压电^各,耦接至所述电容式分压电^各与所述才莫拟凄t字 转换器,所述偏压电路用于施加偏压至第一节点上,使得所述 第 一节点的电压与所述偏压与所述第二电容的第 一端的电压 有关。
5. 根据权利要求1所述的电容值测量电路,其中,所述模拟数字 转换器包括开关-取样-电容电路,具有第一输入端,耦接至所述电 容式分压电if各的所述第二电容的第一端;以及输出端;所述开 关_取样_电容电路受控于所述第一时钟信号与所述第二时钟信号,以取样所述电容式分压电路的所述第二电容的第一端的 电压;操作放大器,具有第一输入端,耦接至所述开关-取样 电容电^各的llr出端;第二llr入端;第一llr出端与第二l餘出端;比较器,具有第一输入端,耦接至所述操作放大器的 第一输出端;第二输入端,耦接至所述操作放大器的第二输出 端;以及输出端,输出第二数字信号;锁存器,接收所述比较器所输出的所述第二数字信号, 在所述第一时钟信号的触发下,所述锁存器将所述第二数字信 号输出成第三数字信号;反相器,将所述第三数字信号反相;计数器,计数所述第三数字信号,以产生所述第一数字 信号;以及开关-电容电路,耦接至所述操作放大器的第二输入端, 受控于所述第一时钟信号、所述第二时钟信号、所述第三数字 信号与所述第三数字信号的反相信号。
6. —种电子装置,包括待测电容,用于输出4寺测电压; 传感器,用于输出感测信号;多工器,耦接至所述待测电容与所述传感器,以输出所 述待测电压与所述感测信号之一;以及模拟数字转换器,耦接至所述多工器,用于将所述待测 电压或所述感测信号转换成数字输出信号,所述数字输出信号 代表所述待测电容的电容值及其变化量,或者代表所述传感器 的感测结果。
7. 根据权利要求6所述的电子装置,进一步包括触控屏幕,其中,所述待测电容位于所述触控屏幕内。
全文摘要
本发明涉及一种电容值测量电路,包括电容式分压电路、模拟数字转换器(ADC)与处理模块。电容式分压电路包括开关电路、已知电容与待测电容。开关电路受控于第一与第二时钟信号。开关电路的导通状态使得已知电容的第一端的电压变化量耦合至待测电容的第一端。模拟数字转换器将待测电容的第一端的电压转换成数字信号。处理模块根据模拟数字转换器的数字信号与模拟数字转换器的参数,以检测出待测电容的电容值及其变化量。本发明还涉及应用该电容值测量电路的电子装置,其用于测量待测电容的电容值。
文档编号G01R27/26GK101666830SQ20081021397
公开日2010年3月10日 申请日期2008年9月1日 优先权日2008年9月1日
发明者宇 光 申请人:瑞鼎科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1