一种稻田表层土壤净碳储量估算方法

文档序号:5942877阅读:231来源:国知局
专利名称:一种稻田表层土壤净碳储量估算方法
技术领域
本发明涉及农田土壤碳储量技术领域,更具体涉及一种稻田表层土壤净碳储量估算的方法,适合于全球变化领域中农田(稻田表层)土壤碳储量估算。
背景技术
稻田碳储量是陆地生态系统中重要的碳库之一,而稻田耕层土壤碳储量是其中变化最大的部分,耕层土壤碳储量对施肥等农作措施、气候变化的响应受到生态环境和全球变化等研究领域的广泛关注,而对稻田表层土壤碳储量的精确估算是以上研究的基础。目前表层土壤碳储量的估算主要有①固定层次法,是基于假设试验前后表层土壤厚度(Hfd) 固定不变条件下的估算方法,估算公式如下:CUFD = ConCiXBDiXHfdX 10,式中Hfd是假设的固定表层土壤厚度,Ci,FD是Hfd厚度表层土壤的碳储量(t hm_2),ConCi是Hfd厚度表层土壤有机碳含量(kgt—1),BDi是Hfd厚度土壤容重(t m_3)。但随着稻田的长期耕作、施肥,表层土壤容重会产生升高或降低的趋势,随之表层土壤厚度也呈现出相对应的变化,而采用固定层次估算法忽略了这种表层土壤厚度变化现象,直接导致试验前后统计的表层土壤重量不一致,将产生较大的系统估算误差。②变化土壤层次法,根据土壤容重变化情况或调查的表层土壤厚度情况,统一增加或减少表层土壤厚度值,虽然在一定程度上提高了估算精度, 但是该方法忽略了容重变化的差异性,减小试验处理间碳储量变化的差异性。因此,有必要设计新的估算方法,需要同时考虑土壤容重及表层土壤厚度变化对表层土壤净碳储量估算的影响,进一步校正净碳储量变化值。

发明内容
本发明的目的是在于提供一种稻田表层土壤碳储量估算的方法,方法易行,操作简便。该方法依据试验前后表层土壤质量守恒原理,区分相同厚度表层土壤质量变化,结合土壤容重变化特征,通过校正这部分质量变化的表层土壤碳储量,达到提高表层土壤净碳储量估算精度目的,为稻田表层土壤碳储量研究提供科学估算方法。为了实现上述目的,本发明采用以下技术措施以试验开始时稻田表层土壤厚度为基准统计厚度,采用质量守恒的原理,计算试验第i年时与试验开始时(第O年)基准统计厚度内表层土壤的质量差值,该质量差值为土壤容重变化带来的基准统计厚度内的土壤质量的变化,再利用该质量的土壤碳储量来校正第i年表层土壤净碳储量变化值。一种稻田表层土壤碳储量估算的方法,其步骤是A、本方法中是根据试验前后同一厚度内的表层土壤作基准进行研究的。需要首先确定实验前表层土壤基准统计厚度,用Htl表示,同时需要获得该厚度内试验开始时的数据, 如土壤容重(BDtl)、土壤有机碳含量(ConCtl),下标用。表示。本方法以试验开始时的表层土壤厚度为基准统计厚度(Htl),该厚度内表层土壤质量(Mtl)和土壤碳储量(Cckfd)分别利用公式 Mtl = BD0XH0XlO4 和公式 CQ,ro = conc0XM0X IO^3 进行计算。
B、其次,确定试验进行i年时土壤的基本数据,为了比较的一致性,测定实验第i 年时基准统计厚度(Htl)内的表层土壤容重(BDi)、有机碳含量(ConCi),下标用i表示。但是还需要对Htl层次内的数据进行校正,这也是本方法的关键点,需要测定下层土壤的数据,即基准统计厚度Htl 2倍基准统计厚度Htl内的土壤有机碳含量(concib),concib为第i年下层(b) 土壤有机碳含量,下标用ib表示。第i年时基准统计厚度(Htl)内土壤质量(Mi)和土壤碳储量(Ci,FD)分别利用公式Mi = BDiXHtlX IO4和公式Ci,FD = ConCiXMi X 10_3计算。C、根据质量守恒原理,计算同一基准统计厚度(Htl)内表层土壤试验i年后的土壤质量与实验开始时的土壤质量的差值,计算公式为Miittoange = M0-Mio 土壤质量M0是实验开始时Htl厚度内的表层土壤质量,Mi是实验i年时Htl厚度内的表层土壤质量,Mijcange是两者的差值。D、通过计算基准统计厚度(Htl)内变化的表层土壤质量(Muange)的碳储量来获得碳储量校正值(Ciidiange)。依据Miidiange大小,校正值(Cuhange)有3种校正情况(I)在土壤质量Mi, ^ange = O条件下,试验前后土壤容重没有发生变化,Htl厚度内土壤净碳储量校正值(Cuhange)为0,即Cuhange = O ;(2)在土壤质量Mi, change > O条件下,试验第i年时土壤容重降低,H0厚度内土壤碳储量校正值(Cuhange)为正值,计算公式为Cuhange = concibXMijchangeX IO-3 ;(3)在土壤质量Mi, change < O条件下,试验第i年时土壤容重升高,H0厚度内土壤碳储量校正值(Cuhange)为负值,计算公式为Cuhange = ConCi XMijchangeX IO-3 ;E、根据公式Cuquiv = CijFD+CijChange计算等质量的表层土壤试验第i年时的碳储量; 根据公式Cuquiv = Ci, FD+Ci,^angei-Cci, FD,计算表层土壤试验第i年时净碳储量值;其中=Ci, equiv为表层土壤净碳储量值,Ci, FD为实验第i年时Htl厚度内土壤碳储量值,Cijchange为第i年时表层土壤碳储量校正值,C0jfd为试验开始时基准统计厚度(Htl)内土壤碳储量值。本发明具有以下优点根据表层土壤试验前后质量守恒原理,同时考虑了土壤容重及表层土壤厚度变化对表层土壤净碳储量估算的影响,只需获取试验前后土壤容重及有机碳数据即可对表层土壤碳储量进行校正,方法简便,易于操作。该等质量法在土壤容重降低的情况下,通过增加净碳储量的校正方法来提高估算精度及处理间差异敏感性;该等质量法在土壤容重升高的情况下,通过等质量法减少净碳储量的校正方法来提高估算精度。


下面结合附图和实施例对本发明进一步说明。图I为一种表层土壤容重降低的碳储量估算示意图。图2为一种表层土壤容重升高的碳储量估算示意图。图3为一种表层土壤容重不变的碳储量估算示意图。图4为一种长期不同施肥稻田表层土壤净碳储量估算结果图。
具体实施例方式下面结合附图对本发明进一步详细描述实现本发明的方法的示意图如图I、图2和图3所示。实施例I :(在稻田土壤容重降低的情况下,实现本发明方法的示意图如图I)一种稻田表层土壤碳储量估算的方法,其步骤是A、以试验开始时稻田表层土壤厚度作为基准统计厚度Htl,测定试验开始时该厚度 HO内的土壤容重(BDtl)、土壤有机碳含量(ConCtl)和试验第i年时该该厚度Htl内的土壤容重(BDi)和有机碳含量(ConCi)。同时在试验第i年时测量基准统计厚度H0 2倍基准统计厚度Htl厚度内土壤有机碳含量(concib)。B、根据公式Ci,FD = ConCiXMiX 10_3和公式Mi = BDiXH0X IO4计算第i年基准统计厚度H0内土壤的碳储量(U,根据公式C。,FD = ConCtlXMciX 10_3和公式M0 = BD0XH0XlO4 计算试验开始时基准统计厚度Htl内土壤的碳储量(Cckfd)。式中Mi和M0分别是第i年和试验开始时基准统计厚度Htl内的土壤质量(thm_2), CijFD和Cckfd分别是第i年和试验开始时该厚度内的土壤碳储量(t hnT2) ,ConCi和concQ是第i年和试验开始时该厚度内土壤有机碳含量(kg t—1),BDi和BDtl是第i年和试验开始时该厚度内的土壤容重(t m_3),10_3和IO4是单位转化系数。C、依据质量守恒原理,根据公式Mi, change = M0-Mi计算试验第i年与试验开始时基准统计厚度Htl内的土壤质量差值。D、根据土壤质量差值(Mi, change)的计算结果确定表层土壤碳储量的校正方法,本实施例中土壤容重降低,即土壤质量Mi, ^ange > O,即在试验第i年时基准统计厚度Htl内的土壤质量降低的情况下,表层土壤碳储量校正值为Ci, ehange;,计算公式为CiMhange ConCibXMi,
change ^。E、根据公式(^,_ν = CijFD+CijChange计算等质量的表层土壤试验第i年时的碳储量; 根据公式Cuquiv = Ci, H^CuhangerCtl, FD,计算表层土壤试验第i年时净碳储量值;其中=Ci, equiv为表层土壤净碳储量值,Ci, FD为实验第i年时Htl厚度内土壤碳储量值,Cijchange为第i年时表层土壤碳储量校正值,C0jfd为试验开始时基准统计厚度(Htl)内土壤碳储量值。实施例2 (在稻田土壤容重升高的情况下,实现本发明方法的示意图如图2)一种稻田表层土壤碳储量估算的方法,其步骤是A、以试验开始时稻田表层土壤厚度作为基准统计厚度Htl,测定试验开始时该厚度 H0内的土壤容重(BDtl)、土壤有机碳含量(ConCtl)和试验第i年时该厚度Htl内的土壤容重 (BDi)和有机碳含量(ConCi)。B、根据公式Ci,FD = ConCiXMiX 10_3和公式Mi = BDiXH0X IO4计算第i年基准统计厚度H0内土壤的碳储量(U,根据公式C。,FD = ConCtlXMciX 10_3和公式M0 = BD0XH0XlO4 计算试验开始时基准统计厚度Htl内土壤的碳储量(Cckfd)。式中Mi和M0分别是第i年和试验开始时基准统计厚度Htl内的土壤质量(thm_2), CijFD和Cckfd分别是第i年和试验开始时该厚度内的土壤碳储量(t hnT2) ,ConCi和concQ是第i年和试验开始时该厚度内土壤有机碳含量(kg t—1),BDi和BDtl是第i年和试验开始时该厚度内的土壤容重(t m_3),10_3和IO4是单位转化系数。C、依据质量守恒原理,根据公式Mi, change = M0-Mi计算试验第i年与试验开始时基准统计厚度Htl内的土壤质量差值。
D、根据土壤质量Miiehange的计算结果确定土壤碳储量的校正方法,本实施例中土壤容重升高,即土壤质量Muhange < O,即在试验第i年时基准统计厚度Htl内的表层土壤质量升高的情况下,表层土壤碳储量校正值为Ciidiange,计算公式为Ciidiange = ConCiXMijchangeX IO^30E、根据公式Ci,_v = CijFD+CijChange计算等质量的表层土壤试验第i年时的碳储量; 根据公式Cuquiv = Ci, H^CuhangerCtl, FD,计算表层土壤试验第i年时净碳储量值;其中=Ci, equiv为表层土壤净碳储量值,Ci, FD为实验第i年时Htl厚度内土壤碳储量值,Cijchange为第i年时表层土壤碳储量校正值,C0jfd为试验开始时基准统计厚度(Htl)内土壤碳储量值。实施例3 (在稻田土壤容重不变的情况下,实现本发明方法的示意图如图3)在稻田土壤容重不变的情况下,在土壤质量Mi, ^ange = O条件下,试验前后土壤容重没有发生变化,净碳储量校正值为Cuhange = 0,即在本条件下表层净碳储量变化值不需要校正。表层土壤碳储量估算的方法,其步骤是A、以试验开始时稻田表层土壤厚度作为基准统计厚度Htl,测定试验开始时该厚度 H0内的土壤容重(BDtl)、土壤有机碳含量(Conctl)和试验第i年时该该厚度Htl内的土壤容重 (BDi)和有机碳含量(ConCi)。B、根据公式Ci,FD = ConCiXMi X 10_3和公式Mi = BDiXH0X IO4计算第i年基准统计厚度H0内土壤的碳储量(U,根据公式C。,FD = ConCtlXMciX 10_3和公式M0 = BD0XH0XlO4 计算试验开始时基准统计厚度Htl内土壤的碳储量(Cckfd)。式中Mi和M0分别是第i年和试验开始时基准统计厚度Htl内的土壤质量(thm_2), CijFD和Cckfd分别是第i年和试验开始时该厚度内的土壤碳储量(t hnT2) ,ConCi和concQ是第i年和试验开始时该厚度内土壤有机碳含量(kg t—1),BDi和BDtl是第i年和试验开始时该厚度内的土壤容重(t m_3),10_3和IO4是单位转化系数。C、根据公式CiMuiv = CijFD-C0jFD计算表层土壤试验第i年时净碳储量值;其中=Ci, equiv为表层土壤净碳储量值,Ci, FD为实验第i年时Htl厚度内土壤碳储量值,Cckfd为试验开始时基准统计厚度(Htl)内土壤碳储量值。试验例I :选用中国科学院桃源农业生态试验站稻田长期定位试验(1990年开始)的8个处理进行研究20年后(2010年)表层土壤碳储量的变化,8个处理分别为①不施化肥,收获物全部移出系统(CK);②不施化肥,收获物中养分循环利用(C) 施化肥N,收获物移出系统(N);④在施化肥N的基础上,收获物中养分循环利用(N+C) 施化肥N、P,收获物移出系统(NP);⑥在施化肥N、P的基础上,收获物中养分循环利用(NP+C) 施化肥N、P、K,收获物移出系统(NPK);⑧在施化肥N、P、K的基础上,收获物中养分循环利用(NPK+C)。收获物中养分循环利用简称C。大田试验每处理3次重复,随机区组排列。有“C”处理冬季种植紫云英(Astragalus sinicus L.),春耕时将紫云英翻压入泥作早稻基肥;早晚稻稻草全部直接还田;生产稻谷的50% (1994年以前为80% )以及全部空秕谷粉碎后喂猪,猪粪尿作为第二年的早稻基肥。供试化肥为尿素(N 45% )、过磷酸钙(P2O5 12% )和氯化钾(K2O 60% ) ο 施肥情况1990 1996 年为 N262. 5kg hnT2、P39. 3kg hnT2、K137. Okg hnT2 ;1997 2006 年为 N182. 3kg hnT2、P39. 3kg hnT2、K197. 2kg hnT2。试验开始时(1990年)土壤耕层厚度(H0)为O. 20m, 土壤容重(BD0)为I. 25t πΓ3,土壤有机碳量cone。为15. Og kg_2。以1990年稻田表层土壤厚度O. 20m为基准统计厚度 H。,测定第20年(2010年)时各处理O O. 20m表层土壤容重BD2tl和有机碳值con2(l,同时测量各处理O. 20 O. 40m内土壤有机碳值con2(lb。试验开始时O. 20m 土壤质量为M。,计算公式为M0 = BD0XO. 20 X 104。根据土壤碳储量计算公式M2Q= BD20XO. 20 X IO4 和 C2(l, FD = conc20XM20X 1(Γ3 计算各施肥处理基准统计厚度(O. 20m)内土壤的碳储量。采用质量守恒原理,根据公式M2tl = BD20XO. 20 X IO4和公式M2(l,ehange = M0-M2tl,计算试验2010年基准统计厚度(O. 20m)内土壤质量M20与1990年该厚度内土壤质量M0的差值
^20,change °本实例中8个处理的土壤容重都显著降低,Mi, change > O,即在2010年O. 20m的表
层土壤重星变小的情况下,土壤碳储星校正值为C2(l,ehange = COnc20b X M20j change ^lO 3 ο根据公式C2(l, equiv = C20j fd+C20j change计算试验20年时等质量的表层土壤碳储量值, 式中C2tl,FD为基准统计厚度O. 20m内的表层土壤碳储量,C2c^hange为表层土壤碳储量校正值。根据公式C2(l,e_= C20jFD+C20jChange-C0jFD计算2010年与1990年相比表层土壤净碳储量的变化值。计算结果比较见图4。采用等质量法估算的8种施肥方式第20年表层土壤碳储量值变化范围为4. 6 21. 2t hm_2(均值为11.4t hnT2),而采用固定层次法(固定层次为 O. 20m)计算表层土壤碳储量值变化范围为-I. I 10. 4t hm_2 (均值为3. 5thm_2)。等质量法估算的平均净碳储量是固定层次法估值的2. 2倍,且处理间的差异性比较的灵敏性更高, 即处理间净碳储量值在统计学上差异性加大。试验例2 选用中国科学院桃源农业生态试验站常规稻田(2004年开始),研究2004 2009 年表层土壤碳储量变化。稻田常规管理,收获物全部移出稻田,种植制度为双季稻,冬季休闲;小机械进行耕作。供试化肥为尿素(N 45% )、过磷酸钙(P2O5 12% )和氯化钾(K2O 60% ) ο 每年化肥施用量相同,N230. Okg hnT2、P20591. 5kghnT2、K20242. Okg hnT2。2004 年大田耕层土壤厚度为O. 20m,土壤容重(BDtl)和土壤有机碳含量(conc。)分别为I. 27t m_3和 15. 2g kg-2, 2009 年土壤容重值(BD6)、有机碳含量(Conc6)分别为 I. 35t πΓ3 和 15. 7g kg'以2004年稻田表层土壤厚度O. 20m为基准统计厚度H。,根据公式CQ,FD = ConCtlXMtlX 10_3和公式Mtl = BDtlXHtlX IO4计算试验开始时基准统计厚度Htl内土壤的碳储量 (01,^)),根据公式(6,^) = dconc6XM6Xl(T3 和公式 M6 = BD6XO. 20 X IO4 计算第 6 年(2009 年)基准统计厚度HO内土壤的碳储量(C6,FD)。依据质量守恒原理,根据公式M6, change = M0-M6计算试验第6年与试验开始时基准统计厚度Htl内的土壤质量差值。根据土壤质量M6,ehange的计算结果确定土壤碳储量的校正方法,本实施例中土壤容重升高,即土壤质量M6, change < 0,即在2009年O. 20m的表层土壤重量升高的情况下土壤碳储量校正值 C6,ehange 为负值,计算公式为 C6,ehange = ConC6XM6,ehangeX10_3。根据公式C6, equiv = C6, FD+C6, change计算等质量的表层土壤试验第6年时的碳储量; 根据公式C6,_iv = C6,ZCf^hange-Ctl,FD,计算表层土壤试验第6年时净碳储量值;计算结果CQ,FD 值为 38. 6t hnT2, C6,FD 值为 42. 4t hnT2, C6jchange 值为 _2. 5t hnT2。即按固定层次法估算第6年表层土壤净碳储量变化值=C6, FD+C6, change-C0, FD,净储量值为I. 3t hm_2,可见在土壤容重升高的情况下,等质量法中的校正值为负值,通过降低表层土壤净碳储量变化值来达到提高估算精度。
权利要求
1.一种稻田表层土壤碳储量估算的方法,其步骤是A、以试验开始时稻田表层土壤厚度作为基准统计厚度Htl,测定试验开始时该厚度Htl内的土壤容重(BDtl)、土壤有机碳含量(cone。)和试验第i年时该该厚度H。内的土壤容重(BDi) 和有机碳含量(Conci),同时在试验第i年时测量基准统计厚度Htl 2倍基准统计厚度Htl 厚度内土壤有机碳含量(Concib);B、根据公式Ci,FD= ConCiXMiXlO^3和公式Mi= BDiXH0XlO4计算第i年基准统计厚度 H0内土壤的碳储量(CijFD),根据公式C0,FD = ConC0XM0X I(T3和公式M0 = BD0XH0X IO4计算试验开始时基准统计厚度Htl内土壤的碳储量(Cckfd);式中Mi和M0分别是第i年和试验开始时基准统计厚度Htl内的土壤质量(thm_2),Ci, FD 和Cckfd分别是第i年和试验开始时该厚度内的土壤碳储量(t hnT2), ConCi和ConCci是第i 年和试验开始时该厚度内土壤有机碳含量(kg t—1),BDi和BDtl是第i年和试验开始时该厚度内的土壤容重(t m_3),IO-3和IO4是单位转化系数;C、依据质量守恒原理,根据公式Mi,change = M0-Mi计算试验第i年与试验开始时基准统计厚度Htl内的土壤质量差值;D、根据土壤质量差值(Muhange)的计算结果确定表层土壤碳储量的校正方法,本实施例中土壤容重降低,即土壤质量Mi, change > O,即在试验第i年时基准统计厚度Htl内的土壤质量降低的情况下,表层土壤碳储量校正值为Cuhange,计算公式为Cuhange = ConCib×Mi,change×10 -3 E、根据公式Ci,equiv = Ci, ^+C,, change计算等质量的表层土壤试验第i年时的碳储量;根据公式Cuquiv = Ci, H^CuhangerCtl, FD,计算表层土壤试验第i年时净碳储量值;其中Kiiraiuiv为表层土壤净碳储量值,Ci,FD为实验第i年时Htl厚度内土壤碳储量值,Ci, Change为第i年时表层土壤碳储量校正值,Cckfd为试验开始时基准统计厚度(Htl)内土壤碳储量值。
全文摘要
本发明公开了一种稻田表层土壤碳储量估算的方法,其步骤A、确定表层土壤的基准统计厚度,计算该厚度内表层土壤质量和土壤碳储量;B、测定试验第i年时基准统计厚度内表层土壤容重、有机碳含量及2倍基准统计厚度内土壤有机碳含量,计算试验第i年时基准统计厚度内土壤质量和土壤碳储量;C、根据质量守恒原理,计算试验i年前后基准统计厚度内表层土壤质量的差值;D、通过表层土壤质量差值和容重变化情况来确定碳储量校正方法;E、根据公式计算试验第i年时等质量表层土壤的碳储量值及表层土壤净碳储量值。方法易行,操作简便,通过质量守恒原理对质量变化的表层土壤碳储量进行校正,达到提高表层土壤净碳储量估算精度。
文档编号G01N5/00GK102590007SQ20121004433
公开日2012年7月18日 申请日期2012年2月24日 优先权日2012年2月24日
发明者朱捍华, 谢小立, 陈安磊, 陈春兰, 魏文学 申请人:中国科学院亚热带农业生态研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1