一种被动合成孔径目标信号检测和分辨方法及系统的制作方法

文档序号:6160086阅读:180来源:国知局
一种被动合成孔径目标信号检测和分辨方法及系统的制作方法
【专利摘要】本发明提供了一种被动合成孔径目标信号检测和分辨方法及系统,所述的方法包含:步骤101)构造在拖线阵移动下对目标信号的运动多普勒接收模型;步骤102)依据被动合成孔径声纳算法利用阵列在固定的时间间隔发生相继两次运动时,分别对空间位置上重叠部分的水听器接收的目标信号做互相关平均,然后对不同时间段各阵元接收的目标信号进行频域波束形成处理;步骤103)对频域波束形成后的输出分频带进行能量积分得到各时间段波束输出;步骤104)按多普勒接收模型对时间延迟及空间位置移动进行相位估计,依据位估计获取相位修正因子;步骤105)将分时间段各次相位修正因子用于补偿所述波束输出,对补偿后的波束输出相干组合累加并采用时间方位历程图实现对目标的检测。
【专利说明】一种被动合成孔径目标信号检测和分辨方法及系统
【技术领域】
[0001]本发明涉及水声被动声纳信号检测方法和拖线阵被动合成孔径声纳(PassiveSynthetic Aperture Sonar, PSAS)技术用于目标信号检测和分辨的算法,尤其涉及一种运动非重叠孔径拖线阵被动合成孔径信号检测方法及系统。
【背景技术】
[0002]近年来,被动声纳系统对低噪声目标的检测变得越来越重要,且越来越困难,其检测能力随着安静型目标的出现和迅猛发展而受到严重挑战。纵观声纳发展史,高分辨和高增益一直是声纳领域追求的目标,为提高声纳探测距离,其工作频段越来越低,而低频条件下提高方位分辨力意味着更长的水听器阵列,但由于拖曳过程中的稳定性和机动性的限制,把基阵长度增加到太大的量级是不现实的,被动合成孔径算法是解决此问题的一种重要手段,其通过拖曳线列阵运动合成得到比实际孔径大得多的合成孔径阵列,依靠短阵的机动突破阵列孔径的限制,获得更高的增益和更高的方位分辨力。依据水下舰船等目标特性分析得知螺旋桨的桨叶切割海水产生单频信号分量等线谱成分为合成一个比物理孔径大得多的有效孔径提供了可能,被动合成孔径声纳技术实现方法为在阵列相继两次运动时,对空间位置上重叠部分的水听器接收信号做互相关平均,作为后此未重叠水听器接收信号的相位修正因子,将此相位修正因子用于运动阵相继位置上的波束输出的相干组合可得到扩展的拖线阵等效长度。由于实际水下复杂环境下介质和路径扰动引起的阵列移动偏差,常规被动合成孔径声纳算法相位修正补偿在间隔时间固定的两个连续位置上,阵元孔径前后不完全重合,使得相位估计因子出现误差甚至错误,即PSAS算法如扩展拖线尺寸算法进行阵列扩展中存在有重叠阵元位置约束问题,导致不能有效检测和分辨水下目标信号。重叠阵元(孔径)被动合成孔径声纳算法一般用于理想情况下目标信号的检测和分辨,考虑水声信道等复杂因素影响,实际应用中拖线阵维持恒定速度以保证连续测量时重叠水听器的空间位置相同难以满足,不具有可行性、通用性及实用性,使被动合成孔径声纳常规信号检测和分辨方法不能在工程合理得到应用。

【发明内容】

[0003]本发明的目的在于,被动声纳拖曳线列阵应用较短的基阵获得几倍到几十倍的实际物理孔径阵的增益和分辨力,实现对水下弱目标信号的有效检测,并使得被动合成孔径技术有效应用到工程实际中,即本发明提供了一种被动合成孔径目标信号检测和分辨方法及系统。
[0004]为了实现上述目的,本发明提供了一种被动合成孔径目标信号检测和分辨方法,该方法应用被动合成孔径技术实现对水下弱目标信号进行有效检测,所述的方法包含:
[0005]步骤101)构造在拖线阵移动下对目标信号的运动多普勒接收模型;
[0006]步骤102)依据被动合成孔径声纳算法利用拖线阵阵列在固定的时间间隔发生相继两次运动时,分别对空间位置上重叠部分的水听器接收的目标信号做互相关平均,即将接收的目标信号进行分时间段处理,分析每相邻两次时间段的接收信号,然后对不同时间段各阵元接收的目标信号进行频域波束形成处理;
[0007]步骤103)对频域波束形成后的输出分频带进行能量积分得到各时间段波束输出;
[0008]步骤104)按拖线阵移动下构建的多普勒接收模型,分别对时间延迟及空间位置移动进行相位估计,并依据得到的相位估计获取相位修正因子;
[0009]步骤105)将分时间段各次相位修正因子用于补偿步骤103)的波束输出,对补偿后的波束输出相干组合累加进而获得时间方位历程图,读出目标所在方位,将其方位记录进行处理及判别,实现对目标的检测。
[0010]上述技术方案中,所述重叠部分的水听器的具体重叠数目为拖线阵阵元总个数的一半。
[0011]上述技术方案中,所述相位修正因子为时间延迟估计和空间位置移动相位估计的和。
[0012]上述技术方案中,所述步骤102)进一步包含如下子步骤:
[0013]步骤102-1)依据被动合成孔径声纳算法利用拖线阵阵列在固定的时间间隔发生相继两次运动时,分别对空间位置上重叠部分的水听器接收信号做互相关平均,即将接收信号进行分时间段处理,分析每相邻两次时间段的接收信号;
[0014]其中,该步骤还包含采用线谱检测策略检测接收的目标信号中的有用的信号;
[0015]步骤102-2)然后对不同时间段各阵元接收信号进行频域波束形成处理。
[0016]上述技术方案中,所述步骤105)进一步包含如下子步骤:
[0017]步骤105-1)依据步骤104)得到的“相位估计获取相位修正因子”及步骤103)中“各时间段波束输出”,分时间段处理,将各时间段的相位修正因子与对应时间段波束输出进行相乘等处理,即完成对“分时间段各次相位修正因子用于补偿步骤103)的波束输出”;
[0018]步骤105-2)将上述各时间段的信号进行叠加,即对补偿后的波束输出进行相干组合累加进而获得时间方位历程图;
[0019]步骤105-3)再对时间方位历程图波束输出进行检测,得到目标波束对应方位,具体为:将不同频带内目标波束对应的检测方位进行记录,将各频带内存储的方位进行二次拟合,根据计算结果计算方位估计方差,将计算的方位估计方差与设定的检测方差门限进行比较,若小于门限,则检测到的水声目标信号结果属实,接收到水下目标信号确实含有水声目标信号,否则检测结果为虚警,接收到的信号中不含目标信号,综完成目标信号的检测和定位。
[0020]基于上述方法本发明提供了一种被动合成孔径目标信号检测和分辨系统,该系统应用被动合成孔径技术实现对水下弱目标信号进行有效检测,所述的系统包含:
[0021]接受模型建立模块,用于构造在拖线阵移动下对目标信号的运动多普勒接收模型;
[0022]第一处理模块,用于依据被动合成孔径声纳算法利用拖线阵阵列在固定的时间间隔发生相继两次运动时,分别对空间位置上重叠部分的水听器接收信号做互相关平均,即将接收信号进行分时间段处理,分析每相邻两次时间段的接收信号,然后对不同时间段各阵元接收信号进行频域波束形成处理;[0023]第二处理模块,用于对频域波束形成后的输出分频带进行能量积分得到各时间段波束输出;
[0024]时空相位修正因子获取模块,用于按拖线阵移动下构建的多普勒接收模型,分别对时间延迟及空间位置移动进行相位估计,并依据得到的相位估计获取相位修正因子;和
[0025]运动相位误差补偿及检测结果输出模块,用于将分时间段各次相位修正因子用于补偿所述的波束输出,对补偿后的波束输出进行相干组合累加进而获得时间方位历程图,再由其时间方位历程图得到目标波束对应方位,完成目标信号的检测和定位。
[0026]上述技术方案中,所述重叠部分的水听器的具体重叠数目为拖线阵阵元总个数的一半。
[0027]上述技术方案中,所述相位修正因子为时间延迟估计和空间位置移动相位估计的和。
[0028]上述技术方案中,所述第一处理模块进一步包含如下子模块:
[0029]分时间段处理子模块,用于依据被动合成孔径声纳算法利用拖线阵阵列在固定的时间间隔发生相继两次运动时,分别对空间位置上重叠部分的水听器接收信号做互相关平均,即将接收信号进行分时间段处理,分析每相邻两次时间段的接收信号;和
[0030]频域波束形成子模块,用于对不同时间段各阵元接收信号进行频域波束形成处理。
[0031]上述技术方案中,所述运动相位误差补偿及检测结果输出模块进一步包含如下子模块:
[0032]运动相位误差补偿子模块,用于将分时间段各次相位修正因子补偿波束输出;
[0033]相干组合处理子模块,用于对补偿后的波束输出进行相干组合累加;和
[0034]检测结果输出子模块,用于由时间方位历程图得到目标波束对应方位,完成目标信号的检测和定位。
[0035]其中,上述技术方案中时间方位历程图观测是水声信号检测中常用方法,无需赘述,简要描述如下:时间方位历程图通过对连续的采样数据进行短时傅里叶变换而构成,将原始信号的米样序列进行分巾贞处理(如分为100巾贞,每巾贞2000个点),巾贞间相互重叠50%,分别对各帧信号进行波束形成处理,得到各帧对应目标方位,将各帧的时间联合即得到时间方位历程图。总之,采用一张时间方位历程图可以读出目标所在方位,将其方位记录进行后续拟合处理及门限判别,可以实现对目标的有效检测。
[0036]综上所述,本发明提供了一种提出一种基于运动非重叠孔径拖线阵被动合成孔径目标信号的检测和分辨方法,该方法避免由于复杂水声环境影响而使拖曳线阵列难以维持恒定速度,继而不能保证连续测量时重叠水听器的空间位置相同,提出的非重叠孔径PSAS算法在相邻时间间隔两次移动前后阵元不用完全重合,分别利用时延及空间位置移动等相位修正因子能够精确补偿运动相位误差。所述的方案包括对水下舰船等目标辐射噪声的特性分析及拖线阵移动下运动多普勒接收信号模型的构建,考虑目标信号可利用线谱检测技术检测到有用信号,所述方法可利用频域波束形成予以处理,通常针对宽频带信号进行分析,提取该频率范围内信号,继而得到波束输出,同时由于阵列运动接收时目标频率会发生多普勒频移,具体考虑线列阵接收信号时多普勒频域带来的误差,所述运动非重叠孔径拖线阵被动合成孔径信号检测方法可以直接用于相位延时补偿,不用考虑阵元相互完全重叠。
[0037]与现有技术相比,本发明所提出的一种基于运动非重叠孔径拖线阵被动合成孔径目标信号的检测和分辨方法具有以下优点:
[0038]一方面,该方法无需知道信号源的方位角、确切频率和准确的拖曳阵速度,通过相位估计补偿修正即能合成水听器的接收数据,无需确保阵元位置必须完全重合,通过时间延迟及空间位置移动可获得相位修正补偿因子,被动合成孔径算法应用于信号检测不受孔径位置的约束限制,在波束域代替其在阵元域上进行相位修正,直接用于相位修正补偿;
[0039]另一方面,结合对水下舰船等目标辐射噪声特性的分析及拖线阵移动下运动多普勒接收信号模型的构建,其中分析舰船噪声特性不仅为水下螺旋桨切割形成线谱信号的被动合成孔径技术奠定基础,而且为后续信号检测对拖船噪声抵消等技术提供理论参考;阵列移动的多普勒接收信号模型构建对信号形成、阵元移动接收等作清晰认识,更加明确被动合成孔径的合成阵列接收信号形成及相位修正补偿方法;
[0040]其次,在所述方案中含线列阵接收信号时多普勒频域带来的误差,综合考虑其时间延迟、空间位置移动、多普勒频移等影响因子带来的相位不一致,由于时间延迟及空间位置移动只要保证相邻时间间隔移动前后两次阵列有超过阵列长度一半的孔径长度重合即可对其做修正补偿,不必细化考虑阵列移动重合位置,更不必要求阵列孔径完全重合,避免由于阵元位置移动偏差孔径未完全重合而导致的检测信号目标方位不精确,拖线阵移动中接收信号分时间段处理,对不同时间段拖线阵基阵各阵元接收信号进行频域波束形成处理,并对频域波束形成后的输出分频带进行能量积分即可得到波束输出;
[0041]最后,由于孔径非重叠运动拖线阵被动合成孔径信号检测方法可以直接用于相位延时补偿,不用考虑阵元相互完全重叠,应用较短的基阵获得几倍到几十倍的实际物理孔径阵的增益和分辨力,对水下弱目标信号的检测能力优异,速度较快,其具有一定的工程实用性。
【专利附图】

【附图说明】
[0042]图1是本发明利用水平线列阵对水下目标的辐射噪声进行噪声检测的简图;
[0043]图2是本发明的基于运动拖线阵阵元移动重叠(孔径未完全重叠)被动合成孔径原理图;
[0044]图3是运动非重叠孔径拖线阵被动合成孔径信号检测及分辨方法流程图【具体实施方式】
[0045]下面结合附图和具体实施例,详细阐述此方法在孔径未完全重叠时相位修正补偿的工作流程。
[0046]本发明提出一种基于运动非重叠孔径拖线阵被动合成孔径目标信号的检测和分辨方法,避免由于复杂水声环境影响而使拖曳线阵列难以维持恒定速度,继而不能保证连续测量时重叠水听器的空间位置相同,即提出的非重叠孔径PSAS算法不必要求相邻时间间隔两次移动前后阵元完全重合,分别利用时间延迟及空间位置移动等时空联合相位修正能够精确补偿运动相位误差。本发明提供一种被动合成孔径算法可以直接用于相位延时补偿,不用考虑阵元相互完全重叠,对水下弱目标信号的检测能力优异,速度较快,其具有一定的工程实用性。
[0047]为了实现上述目的,本发明提供了一种运动非重叠孔径拖线阵被动合成孔径目标信号检测和分辨方法,其特征在于综合考虑实际水声复杂水声环境中拖线阵运动不规则导致阵元孔径不完全重叠的情况下,能够对水下弱目标信号进行有效检测,所述方法包含如下步骤:
[0048]步骤(1)以水下舰船等目标辐射噪声特性分析为基础构造信号在拖线阵移动下运动多普勒接收模型;
[0049]步骤(2)在构建信号接收模型的基础上,考虑将拖线阵移动中实际接收信号进行分时间段处理,对不同时间段拖线阵基阵各阵元接收信号进行频域波束形成处理;
[0050]步骤(3)对步骤(2)频域波束形成后的输出分频带进行能量积分得到波束输出;
[0051]步骤⑷分别对步骤⑵和步骤(3)中由于分时间段处理引起的时间延迟及由于空间位置移动进行相位估计;
[0052]步骤(5)将步骤(4)中分时间段的各次相位修正因子用于步骤(3)波束输出补偿,相干组合输出得到目标波束对应方位,实现对目标信号的有效检测。
[0053]上述技术方案中,所述步骤(2)和步骤(3)还考虑线列阵接收信号时多普勒频域带来的误差,综合考虑时间延迟、空间位置移动、多普勒频移等影响因子带来的相位不一致,由于时间延迟及空间位置移动只要保证相邻时间间隔移动前后两次阵列有超过阵列长度一半的孔径长度重合即可对其做修正补偿,不必细化考虑阵列移动重合位置,更不必要求阵列孔径完全重合,避免由于阵元位置移动偏差孔径未完全重合而导致的检测信号目标方位不精确。
[0054]上述技术方案中,所述步骤(1)进一步包含对水下舰船噪声的分析及拖线阵移动下运动多普勒接收信号模型的构建:其中分析舰船噪声特性不仅为水下螺旋桨切割形成线谱信号的被动合成孔径技术奠定基础,而且为后续信号检测对拖船噪声抵消等技术提供理论参考;阵列移动的多普勒接收信号模型构建对信号形成、阵元移动接收等作清晰认识,为被动合成孔径的合成阵列接收信号分析及相位补偿指明思路。
[0055]船体的机械噪声、螺旋桨噪声以及水动力噪声是舰船船噪声的三种主要来源,其中机械噪声和螺旋桨噪声是舰船噪声的主要声源。机械噪声是航行或行业舰船上的各种机械振动,通过船体向水中辐射而形成的噪声,由于各种机械运动形式的不同,其产生的水下辐射噪声性质也就不同,此噪声可以看成是强线谱和弱连续谱的迭加;螺旋桨噪声是由旋转着的螺旋桨所辐射的噪声,包括螺旋桨空化噪声和螺旋桨叶片振动所产生的噪声,往往是舰船辐射噪声高频段的主要部分;水动力噪声由不规则的、起伏的海流流过运动船只表面而形成,是水流动力作用于舰船的结果,在强度方面一般被机械噪声和螺旋桨噪声所掩
至Jhl o
[0056]水下舰辐射噪声谱特性与频率、航速、深度有关,低航速时谱的低频端主要为机械噪声和螺旋桨叶片速率 谱线,随着频率增高,该谱线不规则地降低;航速较高时螺旋桨空化噪声的连续谱更为重要,掩盖了很多线谱。舰船辐射噪声信号的总的功率谱可以写成宽带连续谱与线谱的和:
[0057]G (t, f) =Gs (f) +Gl (f) +2m (t) m (f) Gs (f)
[0058]式中Gs(f)表示平稳连续功率谱,Gl(f)表示线谱部分,〗!!^!:)!]!^#^;^表示非平稳时变谱,m(t)和m(f)分别为调制函数和调制深度谱。对于舰船辐射噪声而言,给定的航速和深度下,谱的主要成分与临界频率有关,通常的舰船临界频率约在100-?000Ηζ之间,低于此频率时,谱的主要成分时船的机械和螺旋桨的线谱,高于此频率时,谱的主要成分则是螺旋桨空化的连续噪声谱。依据研究表明,舰船辐射噪声的频域特性是宽带连续谱与窄带线谱的迭加,窄带谱线主要集中在IkHz以下,而宽带连续谱则覆盖了多个倍频程。
[0059]实际测量中由于目标信号与接收阵列水听器相互运动,存在多普勒信号接收问题。图1(见【专利附图】
附图
【附图说明】)为利用水平线列阵对水下目标的辐射噪声进行噪声检测的简图,舰船或被测目标经过水平线列阵时,对噪声信号进行采样,完成对噪声源的检测。对于N个基元组成的线列阵,由于拖曳速度的存在相互运动,使接收到的信号与辐射声源存在频率不一致情况,且相对声源运动接收频率变高,背离声源运动接收频率变低。
[0060]对于辐射噪声信号s (t)复包络可以表示为
[0061]
【权利要求】
1.一种被动合成孔径目标信号检测和分辨方法,该方法应用被动合成孔径技术实现对水下弱目标信号进行有效检测,所述的方法包含: 步骤101)构造在拖线阵移动下对目标信号的运动多普勒接收模型; 步骤102)依据被动合成孔径声纳算法利用拖线阵阵列在固定的时间间隔发生相继两次运动时,分别对空间位置上重叠部分的水听器接收的目标信号做互相关平均,即将接收的目标信号进行分时间段处理,分析每相邻两次时间段的接收信号,然后对不同时间段各阵元接收的目标信号进行频域波束形成处理; 步骤103)对频域波束形成后的输出分频带进行能量积分得到各时间段波束输出;步骤104)按拖线阵移动下构建的多普勒接收模型,分别对时间延迟及空间位置移动进行相位估计,并依据得到的相位估计获取相位修正因子; 步骤105)将分时间段各次相位修正因子用于补偿步骤103)的波束输出,对补偿后的波束输出相干组合累加进而获得时间方位历程图,读出目标所在方位,将其方位记录进行处理及判别,实现对目标的检测。
2.根据权利要求1所述的被动合成孔径目标信号检测和分辨方法,其特征在于,所述重叠部分的水听器的具体重叠数目为拖线阵阵元总个数的一半,且能有效避免由于拖线阵难以维持恒定速度而无法保证连续测量时水听器的空间位置完全重叠。
3.根据权利要求1所述的被动合成孔径目标信号检测和分辨方法,其特征在于,所述相位修正因子为时间延迟估计和空间位置移动相位估计的和。
4.根据权利要求1所述的被动合成孔径目标信号检测和分辨方法,其特征在于,所述步骤102)进一步包含如下子步骤: 步骤102-1)依据被动合成孔径声纳算法利用拖线阵阵列在固定的时间间隔发生相继两次运动时,分别对空间位置上重叠部分的水听器接收信号做互相关平均,即将接收信号进行分时间段处理,分析每相邻两次时间段的接收信号; 其中,该步骤还包含采用线谱检测策略检测接收的目标信号中的有用的信号; 步骤102-2)然后对不同时间段各阵元接收信号进行频域波束形成处理。
5.根据权利要求1所述的被动合成孔径目标信号检测和分辨方法,其特征在于,所述步骤105)进一步包含如下子步骤: 步骤105-1)依据步骤104)得到的“相位估计获取相位修正因子”及步骤103)中“各时间段波束输出”,分时间段处理,将各时间段的相位修正因子与对应时间段波束输出进行相乘等处理,即完成对“分时 间段各次相位修正因子用于补偿步骤103)的波束输出”; 步骤105-2)将上述各时间段的信号进行叠加,即对补偿后的波束输出进行相干组合累加进而获得时间方位历程图; 步骤105-3)再对时间方位历程图波束输出进行检测,得到目标波束对应方位,具体为:将不同频带内目标波束对应的检测方位进行记录,将各频带内存储的方位进行二次拟合,根据计算结果计算方位估计方差,将计算的方位估计方差与设定的检测方差门限进行比较,若小于门限,则检测到的水声目标信号结果属实,接收到水下目标信号确实含有水声目标信号,否则检测结果为虚警,接收到的信号中不含目标信号,综完成目标信号的检测和定位。
6.一种拖线阵运动非重叠孔径的被动合成孔径目标信号检测和分辨系统,该系统应用被动合成孔径技术实现对水下弱目标信号进行有效检测,所述的系统包含:接受模型建立模块,用于构造在拖线阵移动下对目标信号的运动多普勒接收模型;第一处理模块,用于依据被动合成孔径声纳算法利用拖线阵阵列在固定的时间间隔发生相继两次运动时,分别对空间位置上重叠部分的水听器接收信号做互相关平均,即将接收信号进行分时间段处理,分析每相邻两次时间段的接收信号,然后对不同时间段各阵元接收信号进行频域波束形成处理; 第二处理模块,用于对频域波束形成后的输出分频带进行能量积分得到各时间段波束输出; 时空相位修正因子获取模块,用于按拖线阵移动下构建的多普勒接收模型,分别对时间延迟及空间位置移动进行相位估计,并依据得到的相位估计获取相位修正因子;和 运动相位误差补偿及检测结果输出模块,用于将分时间段各次相位修正因子用于补偿所述的波束输出,对补偿后的波束输出进行相干组合累加进而获得时间方位历程图,再由其时间方位历程图得到目标波束对应方位,完成目标信号的检测和定位。
7.根据权利要求6所述的被动合成孔径目标信号检测和分辨系统,其特征在于,所述重叠部分的水听器的具体重叠数目为拖线阵阵元总个数的一半。
8.根据权利要求6所述的被动合成孔径目标信号检测和分辨方法,其特征在于,所述相位修正因子为时间延迟估计和空间位置移动相位估计的和。
9.根据权利要求6所述的被动合成孔径目标信号检测和分辨系统,其特征在于,所述第一处理模块进一步包含如下子模块: 分时间段处理子模块,用于依据被动合成孔径声纳算法利用拖线阵阵列在固定的时间间隔发生相继两次运动时,分别对空间位置上重叠部分的水听器接收信号做互相关平均,即将接收信号进行分时间段处理,分析每相邻两次时间段的接收信号;和频域波束形成子模块,用于对不同时间段各阵元接收信号进行频域波束形成处理。
10.根据权利要求1所述的被动合成孔径目标信号检测和分辨方法,其特征在于,所述运动相位误差补偿及检测结果输出模块进一步包含如下子模块: 运动相位误差补偿子模块,用于将分时间段各次相位修正因子补偿波束输出; 相干组 合处理子模块,用于对补偿后的波束输出进行相干组合累加;和检测结果输出子模块,用于由时间方位历程图得到目标波束对应方位,完成目标信号的检测和定位。
【文档编号】G01S7/539GK103529441SQ201210227963
【公开日】2014年1月22日 申请日期:2012年7月2日 优先权日:2012年7月2日
【发明者】赵闪, 陈新华, 余华兵 申请人:中国科学院声学研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1