生产现场集料三维检测的实时数据采集方法及采集系统的制作方法

文档序号:6191536阅读:188来源:国知局
专利名称:生产现场集料三维检测的实时数据采集方法及采集系统的制作方法
生产现场集料三维检测的实时数据采集方法及采集系统技术领域
本发明属于矿质混合料三维检测技术领域,具体涉及一种生产现场集料三维检测的实时数据采集方法及采集系统。
背景技术
浙青路面是由以浙青材料作为结合料粘结矿料而修筑的面层与各类基层和垫层所组成的路面结构,浙青路面工作在复杂的荷载应力与环境条件下,为了保障其路用性能,对浙青混合料的材料选择、生产以及成型过程需要实施严格的质量控制。
浙青路面混合料的矿料组成称为浙青混合料的级配。浙青混合料主要是指未经摊铺、压实的浙青混凝土混合料和浙青碎石混合料。浙青混凝土混合料是由适当比例的粗集料、细集料及填料组成的符合规定级配的矿料与浙青拌合而制成的符合技术标准的浙青混合料。浙青混合料的级配组成决定了浙青路面的路用性能。由于浙青混合料级配的决定性作用,浙青路面的施工过程常规的试验检测项目就是浙青混合料的级配,以控制施工质量。现行的浙青混合料的级配检测内容主要包括浙青含量的测定、各档集料的分离与质量的测定。浙青混合料中各档集料的分离与测定的传统方法主要是用摇筛机对浙青抽取后的集料摇筛后测得。浙青混合料中的矿料组成试验是浙青路面施工时重要的质量检查项目,它用于浙青混合料抽提浙青含量后的回收矿料的筛分试验,以检验其组成是否符合设计要求。国外在评定浙青路面施工时的矿料级配时,一般在质量要求中并不规定对全部筛孔进行筛分、检验,而注重于关键筛孔的质量检验,以减少工作量。
上述方法存在操作复杂、获取数据精度不高且试验数据主要依赖于操作者的试验水平的缺陷;所用到的试验检测设备大多体积庞大,价格昂贵,并且试验周期较长。对于浙青混合料的矿料集料颗粒的有些参数,如棱角性和针片状颗粒,仅仅依靠筛分还不能确定,还需要额外的试验。此外,在测定浙青含量采用抽提时由于是使用有机物,容易对人体产生伤害,采用燃烧法则会污染环境。
因此,需要寻求一种能够快速无损的检测浙青混合料矿料级配的装置及方法,图像处理技术基本能够实现这一目标,但是通过图像处理的方法只能得到集料的二维数据,用在级配组成的分析中精确度很多时候还是不够理想;发明人针对上述问题,设计了用于集料级配检测的数字化成像采集系统及采集方法(参见授权公告号为CN101920043B的中国发明专利),其结构如图1所示,该需要通过设置活动的分料板实现了对集料流的采样采集,解决了以往集料图像采集装置必须对集料下落流进行全部图像采集的问题,克服了采集到的图像质量差、颗粒难分离、处理数据量大的缺陷,但经过一段时间的现场使用,发明人发现其仍存在一些不容忽视的问题:
问题1:由于现有的分料板是倾斜的,虽然实现了集料的分流,但造成了集料下落的速度得不到最佳控制,且在分料板上各段集料下落速度不均,致使相机采集的数据失真,对处理结果造成较大误差甚至错误;
问题2:对分料板或者传送带上直接进行集料拍摄时,由于分料板或者传送带表面平整光滑,铺设其上的集料如果没有将表面全部遮盖,激光光源打在上面不可避免地会有反光,这样采集的数据会存在很多不易处理的噪声点,严重时数据则不能使用,如果采集处理过程中没有及时发现而使用了该数据,则处理结果误差会非常大。因此需要对采集过程有严密的追踪,必要时舍弃一些异常数据,但这样导致试验效率较低,费时费力,且测量精度不能得到保证。问题3:相机拍摄有最佳的视场,现有系统中设计了距离控制杆和角度控制杆分别调整分料板的位置及倾斜角度,实现了集料有效分流,但是调节距离控制杆和角度控制杆的同时,分料板上的集料与相机的相对位置发生变化致使相机无法始终在最佳视场下工作,会对结果产生无法量化的影响。问题4:现有系统和方法,利用线阵相机采集到二维图像,并通过计算将集料二维的数据转换成体积,进而获取浙青混合料级配,由于图像处理的复杂性,获取的级配与实际级配有较大比较大的偏差。

发明内容
针对上述现有的集料级配采集装置及方法中存在的问题,本发明的目的在于,提供一种生产现场集料三维检测的实时数据采集方法及采集系统,该方法不用对二维数据进行转化,能够直接获取集料的三维数据信息,极大地提高了集料级配的计算精度;对拍摄过程中集料的下落速度进行控制,解决集料下落速度不均匀的问题;解决了集料放置平面的反光对采集数据的影响的问题;对相机的最佳拍摄视场进行了控制;对分料板的宽度及安装位置进行了改进以确保拍摄到完整的集料样本;且抗震性好、不受生产现场不同光照情况的影响,能够实时采集矿料的三维数据,在矿质混合料生产现场直接投入使用可以更客观、准确的描述集料的形态特征,利于在生产过程中实时分析矿质混合料的级配,为生产出符合既定标准要求的矿质混合料提供技术支持和保障;检测过程安全无污染,节省了大量人力、物力;有助于促进矿料级配检测自动化,提高浙青路面的路用性能;对矿质混合料的级配由二维检测进入到三维检测、控制的阶段,有十分重要的现实意义和使用价值。为了实现以上任务,本发明采用的如下技术解决方案:一种生产现场集料三维检测的实时数据采集方法,包括以下步骤:步骤一,架设集料传送装置,所述集料传送装置包括进料仓、一级传动带、分料板和总传动带,其中,进料仓位于一级传动带物料输入端的上方,总传动带位于一级传动带的下方;所述分料板低于一级传送带且分料板上端靠近一级传送带物料输出端;分料板高于总传送带;所述分料板上端安装有可伸缩的距离调节杆,其通过调节自身长度来调节分料板上端到一级传送带的水平距离;由分料板和一级传送带之间下落的集料直接落到集料总传动带上运送到现场生产的下一环节;分料板下端安装有可伸缩的角度调节器,其用来调节分料板的倾斜程度;步骤二,在分料板下方架设二级传送带,且分料板下端与二级传送带不接触,二级传送带高于总传动带;由分料板下落的集料全部落于二级传送带上,由二级传送带下落的集料全部落于总传送带上;步骤三,安装数据获取装置,所述数据获取装置包括封装在防尘箱中的激光器和面阵相机,所述面阵相机镜头前安装有滤光片;
将防尘箱安装在二级传送带中部的正上方且两者之间,并使得激光器正对二级传送带,面阵相机的镜头与二级传动带的垂直距离为25cm ;
步骤四,设置自动控制装置,所述自动控制装置包括电源、计算机、第一编码器和第二编码器,第一编码器安装在二级传送带转轴上,第二编码器安装在防尘稳固箱上且与面阵相机相连,所述激光器、面阵相机、第一编码器和第二编码器分别连接计算机;所述电源连接计算机;
计算机实时接收编码器发送来的二级传送带传送速度信息,并根据接收到的信息实时控制二级传送带传送速度;第二编码器采集面阵相机的采样频率发送到计算机,计算机根据接收的信息控制面阵 相机的采样频率。
本发明的方法还包括如下其他技术特征:
所述分料板上端与一级传送带物料输出端之间的水平距离为5 15cm。
所述分料板比一级传送带两侧均宽出10cm。
所述二级传送带与分料板下端垂直距离为If 40cm。
在二级传送带外表面均匀刻有直径为0.05、.18mm的盲孔,且相邻盲孔中心距离0.18^0.4_。
所述面阵相机的镜头与传动带的垂直距离为25cm。
所述计算机控制二级传送带传送速度为0.01m/s"0.04m/s,面阵相机的触发时间间隔为IOms 18ms。
一种上述方法所使用的生产现场集料三维检测的实时数据采集系统,包括集料传送装置、二级传送带、数据获取装置和自动控制装置,其中:
集料传送装置:集料传送装置包括进料仓、一级传动带、分料板和总传动带,其中,进料仓位于一级传动带物料输入端的上方,总传动带位于一级传动带的下方;所述分料板低于一级传送带且分料板上端靠近一级传送带物料输出端,分料板高于总传送带;所述分料板上端安装有可伸缩的距离调节杆;由分料板和一级传送带之间下落的集料直接落到总传动带上;分料板下端安装有可伸缩的角度调节器;
二级传送带:二级传送带设置在分料板下方,且分料板下端与二级传送带不接触,二级传送带高于总传动带;由分料板下落的集料全部落于二级传送带上,由二级传送带下落的集料全部落于总传送带上;
数据获取装置:所述数据获取装置包括封装在防尘箱中的激光器和面阵相机,所述面阵相机镜头前安装有滤光片;
防尘箱位于二级传送带中部的正上方,并使得激光器正对二级传送带,面阵相机的镜头与传动带的垂直距离为25cm ;
自动控制装置:所述自动控制装置包括电源、计算机、第一编码器和第二编码器,其中,第一编码器安装在二级传送带转轴上,第二编码器安装在防尘稳固箱上,且连接面阵相机;所述激光器、面阵相机、第一编码器和第二编码器分别连接计算机;所述电源连接计算机。
所述分料板上端与一级传送带物料输出端之间的水平距离为5 15cm ;分料板比一级传送带两侧均宽出10cm。
所述二级传送带表面均匀刻有直径为0.05、.18mm的盲孔,且相邻盲孔中心距离0.18^0.4mm。与现有技术相比,本发明的优点在于:1、本发明通过在分料板之后设置二级传送带并在二级传送带转轴上安装编码器,对从分料板下落集料的行进速度进一步精准控制,经试验,该速度控制在0.0lm/s"0.04m/s能满足系统需求,在0.025m/s时达到最佳效果。解决了由于分料板倾斜使得集料的速度得不到很好的控制,以及分料板各段的集料下落速度大小不均匀致使拍摄图像失真处理效果不理想的问题。2、本发明对二级传送带表面进行了粗糙度控制。通过在二级传送带上设置为盲孔并对二级传送带表面进行磨损处理,增加其表面的粗糙度,避免普通传送带光滑的表面对直射的激光有反光的影响,使得相机采集到的数据受到不易估算和排除的影响,提高了试验效率且保证了测量精度。3、本发明对相机的最佳拍摄视场进行了设置。在设置相机和激光光源的位置的时候,结合相机的视场,并考虑了集料在二级传送带上的稳定区域段,保证在相机最佳视场范围内的集料都速度稳定,适合拍摄,避免了集料运行速度不均带来的误差对处理结果精确性的影响。4、本发明采用面阵相机,直接获取较为准确的集料的三维高度数据信息,通过计算机精确地将集料三维还原,可获取准确的集料的体积、形状以及其他需要的参数,与现有的利用二维图像获取级配的方法相比有更高的准确度,且实时性好、可操作性强,更加适用于混合料生产现场。5、本发明保留了对现有技术中的分料板进行改进,将分料板宽度增加了 20cm,保证从一级传送带下落的集料全部落在分料板上,既实现了对集料流的采样采集,解决了必须对集料下落流进行全部采集的问题,又确保了采集样本的完整性,进一步克服了采集图像质量差、颗粒难分离、处理数据量大的缺陷。6、采用防尘机箱降低了生产现场灰尘对采集结果的影响和图像采集设备的损坏可能,且不受生产现场日光和其他光线变化的影响而进行全天候集料级配的数字化成像,提高了采集工作效率。7、本发明实现了在浙青混合料生产现场对集料级配数据动态图像的快速采集,无需对浙青混合料和浙青路面采集抽样试件,避免了对路面再损坏,并节省修补成本和试件运输成本,不受检测样品的差异性和特殊性的影响。8、本发明可在各档集料级配过程中进行长期数字化成像,精确度高,更及时、精确地发现级配时集料动态的变化,作为实时生产控制提供参考,避免不合格浙青混合料的生产,节约时间并降低成本。9、本发明针对不同的集料粒径及流量大小通过距离控制杆动态调节分料板与一级传送带间距离,控制采样集料流的大小适应动态检测的需求;可针对不同的集料特征和拍摄要求,控制分料板的倾斜角度来控制集料流的下滑速度,使下滑速度根据检测要求在可控范围之内调整;扩大了采集方法的适用范围和灵活 性;通过分料板位置的设置轻松实现了采样集料紧贴拍摄背景板,即分料板的下落,从而最大程度地消除采集到的图像中集料阴影所带来的检测影响,降低了图像处理的难度,提高了采集精度。10、本发明可实现计算机对图像采集设备的远程控制,不受面阵相机数据传输线有效距离的限制,为远程检测提供了可能,同时避免了检测人员置身灰尘多、空气差、环境恶劣的生产现场,改善了工作人员的工作环境。在现有技术的基础上更进一步,实现了利用集料的三维数据获取混合料级配,开辟了全新的思路,有助于我国交通信息技术水平的迅速提升,为进一步发展浙青混合料级配的自动检测提供了更广阔的前景。


图1是现有的集料级配检测的图像采集系统的结构示意图。
图2是本发明的结构示意图。
图中各标号含义:1、进料仓,2、一级传送带,3、分料板,4、二级传送带,5、防尘箱,6、激光器,7、面阵相 机,8、滤光片,9、总传送带,10、计算机,11、第一编码器,12、电源,13、距离调节器,14、角度调节器,15、第二编码器。
以下结合附图和具体实施方式
对本发明进一步解释说明。
具体实施方式
如图1所示,本发明的生产现场集料三维检测的实时数据采集方法,包括以下步骤:
步骤一,架设集料传送装置,所述集料传送装置包括进料仓(I)、一级传动带(2)、分料板(3)和总传动带(9),其中,进料仓(I)位于一级传动带(2)物料输入端的上方,总传动带(9)位于一级传动带(2)的下方;所述分料板(3)低于一级传送带(2)且分料板(3)上端靠近一级传送带(2)物料输出端,两者之间水平距离为5 15cm (优选8cm);分料板(3)高于总传送带(9);分料板(3)比一级传送带(2)两侧均宽出IOcm,以保证从一级传送带(2)滑落的集料均能够落在分料板(3)上,从而获取充足的采集样本;所述分料板(3)上端安装有可伸缩的距离调节杆(13),其作用是通过调节自身长度来调节分料板(3)上端到一级传送带(2 )的水平距离,从而控制一级传送带(2 )传送到分料板(3 )上物料的量对于抽样分析较为合适;由分料板(3)和一级传送带(2)之间下落的集料直接落到总传动带(9)上运送到现场生产的下一环节。分料板(3)下端安装有可伸缩的角度调节器(14),其用来调节分料板(3)的倾斜程度,以控制集料沿分料板(3)滑落的速度从而采集到质量较好的图像数据。
步骤二,在分料板(3)下方架设二级传送带(4),且分料板(3)下端与二级传送带(4 )不接触,二级传送带(4 )高于总传动带(9 );由分料板(3 )下落的集料全部落于二级传送带(4)上,由二级传送带(4)下落的集料全部落于总传送带(9)上;二级传送带(4)与分料板(3)下端垂直距离为18 40cm (优选25cm);
在二级传送带(4)外表面均匀刻有直径为0.05、.18mm的盲孔(对于混合料中影响级配的能测得的最小集料粒径为0.075mm,优选0.07mm),相邻盲孔中心距离0.18^0.4mm,以此增加其表面粗糙度,避免了传送带的光滑表面对直射的激光反光产生的影响,从而保证了相机采集数据的质量。
步骤三,安装数据获取装置,所述数据获取装置包括封装在防尘箱(5)中的激光器(6)和面阵相机(7),所述面阵相机(7)镜头前安装有滤光片(8);防尘箱(5)用于防止激光器(6)和面阵相机(7)损坏或受集料生产现场灰尘大的影响,并避免震动对面阵相机(7)采集数据精度的影响。
所述二级传送带(4)两端转轴之间距离大于2米,将防尘箱(5)安装在二级传送带(4)中部的正上方且两者之间垂直距离为15飞5cm (优选20cm),并使得激光器(6)正对二级传送带(4),面阵相机(7)的镜头与传动带的垂直距离为25cm,以保证面阵相机(7)所拍摄到的集料处于速度均匀、稳定的适合拍摄的状态。面阵相机(7)的最大视场范围为60*60cm,优选50*50。面阵相机(7)经过专业标定,可直接获取其视场范围内物体相对于标定平面的高度信息即集料的三维数据;调节所述激光器(6)功率以满足生产现场需求;所述滤光片(8)用以滤除可见光,使得系统的工作不受外界天气和光照情况的影响。
步骤四,设置自动控制装置,所述自动控制装置包括电源(12)、计算机(10)、第一编码器(11)和第二编码器(15),第一编码器(11)安装在二级传送带(4)转轴上,和第二编码器(15)安装在防尘稳固箱(5)上且与面阵相机(7)相连,所述激光器(6)、面阵相机(7)、第一编码器(11)和第二编码器(15)分别连接计算机(10);所述电源(12)连接计算机(10),电源(12)正常情况下采用室电,并采用UPS电源作为备用电源。
计算机(10)实时接收编码器发送来的二级传送带(4)传送速度信息,并根据接收到的信息实时控制二级传送带(4)传送速度为0.01m/s"0.04m/s,(优选0.025m/s),经试验,在二级传送带在该速度时采集的图像数据效果最佳。第二编码器(15)采集面阵相机(7)的采样频率发送到计算机(10),计算机(10)根据接收的信息控制面阵相机(7)的采样频率,即采集三维数据的间隔时间;两个编码器相互配合使得相机的采样频率与传送带移动速度相匹配,从而满足系统的精度及实时性需求,面阵相机(7)曝光时间为10ms,相机触发时间间隔为10ms 18ms,传送带移动速度为0.01m/s 0.04m/s,系统经过多次试验确定的相机最佳触发间隔时间为15ms,传送带移动速度为0.025m/s,此时面阵相机(7)的采样频率域传送带的移动速度达到最佳匹配。
如图1所示,实现上述方法的本发明的生产现场集料三维检测的实时数据采集系统,包括集料传送装置、二级传送带、数据获取装置和自动控制装置,其中:
集料传送装置:集料传送装置包括进料仓(I)、一级传动带(2)、分料板(3)和总传动带(9),其中,进料仓(I)位于一级传动带(2)物料输入端的上方,总传动带(9)位于一级传动带(2 )的下方;所述分料板(3 )低于一级传送带(2 )且分料板(3 )上端靠近一级传送带(2)物料输出端,两者之间水平距离为5 15cm (优选8cm);分料板(3)高于总传送带(9);分料板(3)比一级传送带(2)两侧均宽出IOcm,以保证从一级传送带(2)滑落的集料均能够落在分料板(3 )上,从而获取充足的采集样本;所述分料板(3 )上端安装有可伸缩的距离调节杆(13),其作用是通过调节自身长度来调节分料板(3)上端到一级传送带(2)的水平距离,从而控制一级传送带(2)传送到分料板(3)上物料的量对于抽样分析较为合适;由分料板(3)和一级传送带(2)之间下落的集料直接落到集料总传动带(9)上运送到现场生产的下一环节。分料板(3)下端安装有可伸缩的角度调节器(14),其用来调节分料板(3)的倾斜程度,以控制集料沿分料板(3)滑落的速度从而采集到质量较好的图像数据。
二级传送带:二级传送带(4)设置在分料板(3)下方,且分料板(3)下端与二级传送带(4)不接触,二级传送带(4)高于总传动带(9);由分料板(3)下落的集料全部落于二级传送带(4)上,由二级传送带(4)下落的集料全部落于总传送带(9)上;二级传送带(4)与分料板(3)下端垂直距离为ISlOcm (优选25cm);在二级传送带(4)表面均匀刻有直径为0.05、.18mm的盲孔(对于混合料中影响级配的能测得的最小集料粒径为0.075mm,优选0.07mm),相邻盲孔中心距离0.18^0.4mm,以此增加其表面粗糙度,避免了传送带的光滑表面对直射的激光反光产生的影响,从而保证了相机采集数据的质量。数据获取装置:所述数据获取装置包括封装在防尘箱(5)中的激光器(6)和面阵相机(7),所述面阵相机(7)镜头前安装有滤光片(8);防尘箱(5)用于防止激光器(6)和面阵相机(7)损坏或受集料生产现场灰尘大的影响,并避免震动对面阵相机(7)采集数据精度的影响。所述二级传送带(4)两端转轴之间距离大于2米,将防尘箱(5)安装在二级传送带(4)中部的正上方且两者之间垂直距离为15飞5cm (优选20cm),并使得激光器(6)正对二级传送带(4),面阵相机(7)的镜头与传动带的垂直距离为25cm,以保证面阵相机(7)所拍摄到的集料处于速度均匀、稳定的适合拍摄的状态。面阵相机(7)的最大视场范围为60*60cm,优选50*50。面阵相机(7)经过专业标定,可直接获取其视场范围内物体相对于标定平面的高度信息即集料的三维数据;调节所述激光器(6)功率以满足生产现场需求;所述滤光片(8)用以滤除可见光,使得系统的工作不受外界天气和光照情况的影响。自动控制装置:所述自动控制装置包括电源(12)、计算机(10)、第一编码器(11)和第二编码器(15),其中,第一编码器(11)安装在二级传送带(4)转轴上,第二编码器(15)安装在防尘稳固箱(5)上,且连接面阵相机(7);所述激光器(6)、面阵相机(7)、第一编码器
(11)和第二编码器(15)分别连接计算机(10);所述电源(12)连接计算机(10),电源(12)正常情况下采用室电,并采用UPS电源作为备用电源。计算机(10)用于实时接收第一编码器(11)发送来的二级传送带(4)传送速度信息,并根据接收到的信息实时控制二级传送带(4)传送速度为0.01m/s^0.04m/s,(优选0.025m/s),经试验,在二级传送带在该速度时采集的图像数据效果最佳。第二编码器(15)采集面阵相机(7)的采样频率发送到计算机(10),计算机(10)进一步对面阵相机(7)的采样频率进行控制,即控制采集三维数据的间隔时间;第一编码器(11)和第二编码器
(15)相互配合使得面阵相机(7)的采样频率与第二传送带(4)移动速度相匹配,从而满足系统的精度及实时性需求,面阵相机(7)曝光时间为10ms,相机触发间隔的时间范围可在10ms^l8ms之间,二级传送带(14)移动速度为0.01m/s 0.04m/s,系统经过多次试验确定的相机最佳触发间隔时间为15ms,二级传送带(4)的移动速度为0.025m/s,此时相机的采样频率与第二传送带(4)的移动速度达 到最佳匹配。
权利要求
1.一种生产现场集料三维检测的实时数据采集方法,其特征在于,包括以下步骤: 步骤一,架设集料传送装置,所述集料传送装置包括进料仓(I)、一级传动带(2)、分料板(3)和总传动带(9),其中,进料仓(I)位于一级传动带(2)物料输入端的上方,总传动带(9)位于一级传动带(2)的下方;所述分料板(3)低于一级传送带(2)且分料板(3)上端靠近一级传送带(2)物料输出端;分料板(3)高于总传送带(9);所述分料板(3)上端安装有可伸缩的距离调节杆(13),其通过调节自身长度来调节分料板(3)上端到一级传送带(2)的水平距离;由分料板(3)和一级传送带(2)之间下落的集料直接落到集料总传动带(9)上运送到现场生产的下一环节;分料板(3)下端安装有可伸缩的角度调节器(14),其用来调节分料板(3)的倾斜程度; 步骤二,在分料板(3 )下方架设二级传送带(4 ),且分料板(3 )下端与二级传送带(4 )不接触,二级传送带(4 )高于总传动带(9 );由分料板(3 )下落的集料全部落于二级传送带(4 )上,由二级传送带(4)下落的集料全部落于总传送带(9)上; 步骤三,安装数据获取装置,所述数据获取装置包括封装在防尘箱(5)中的激光器(6)和面阵相机(7),所述面阵相机(7)镜头前安装有滤光片(8); 将防尘箱(5)安装在二级传送带(4)中部的正上方且两者之间,并使得激光器(6)正对二级传送带(4),面阵相机(7)的镜头与二级传动带(4)的垂直距离为25cm ; 步骤四,设置自动控制装置,所述自动控制装置包括电源(12)、计算机(10)、第一编码器(11)和第二编码器(15),第一编码器(11)安装在二级传送带(4)转轴上,第二编码器(15)安装在防尘稳固箱(5)上且与面阵相机(7)相连,所述激光器(6)、面阵相机(7)、第一编码器(11)和第二编码器(15)分别连接计算机(10);所述电源(12)连接计算机(10); 计算机(10)实时接收编码器发送来的二级传送带(4)传送速度信息,并根据接收到的信息实时控制二级传送带(4)传送速度;第二编码器(15)采集面阵相机(7)的采样频率发送到计算机(10),计算机(10)根据接收的信息控制面阵相机(7)的采样频率。
2.如权利要求1所述的生产现场集料三维检测的实时数据采集方法,其特征在于,所述分料板(3)上端与一级传送带(2)物料输出端之间的水平距离为5 15cm。
3.如权利要求1所述的生产现场集料三维检测的实时数据采集方法,其特征在于,所述分料板(3)比一级传送带(2)两侧均宽出10cm。
4.如权利要求1所述的生产现场集料三维检测的实时数据采集方法,其特征在于,所述二级传送带(4)与分料板(3)下端垂直距离为18 40cm。
5.如权利要求1所述的生产现场集料三维检测的实时数据采集方法,其特征在于,在二级传送带(4)外表面均匀刻有直径为0.05、.18mm的盲孔,且相邻盲孔中心距离0.18^0.4mm。
6.如权利要求1所述的生产现场集料三维检测的实时数据采集方法,其特征在于,所述面阵相机(7)的镜头与传动带的垂直距离为25cm。
7.如权利要求1所述的生产现场集料三维检测的实时数据采集方法,其特征在于,所述计算机(10)控制二级传送带(4)传送速度为0.01m/s"0.04m/s,面阵相机(7)的触发时间间隔为IOms 18ms。
8.—种生产现场集料三维检测的实时数据采集系统,其特征在于,包括集料传送装置、二级传送带、数据获取装置和自动控制装置,其中:集料传送装置:集料传送装置包括进料仓(I)、一级传动带(2)、分料板(3)和总传动带(9),其中,进料仓(I)位于一级传动带(2)物料输入端的上方,总传动带(9)位于一级传动带(2)的下方;所述分料板(3)低于一级传送带(2)且分料板(3)上端靠近一级传送带(2)物料输出端,分料板(3)高于总传送带(9);所述分料板(3)上端安装有可伸缩的距离调节杆(13);由分料板(3)和一级传送带(2)之间下落的集料直接落到总传动带(9)上;分料板(3)下端安装有可伸缩的角度调节器(14); 二级传送带:二级传送带(4)设置在分料板(3)下方,且分料板(3)下端与二级传送带(4 )不接触,二级传送带(4 )高于总传动带(9 );由分料板(3 )下落的集料全部落于二级传送带(4)上,由二级传送带(4)下落的集料全部落于总传送带(9)上; 数据获取装置:所述数据获取装置包括封装在防尘箱(5)中的激光器(6)和面阵相机(7),所述面阵相机(7)镜头前安装有滤光片(8); 防尘箱(5)位于二级传送带(4)中部的正上方,并使得激光器(6)正对二级传送带(4),面阵相机(7)的镜头与传动带的垂直距离为25cm ; 自动控制装置:所述自动控制装置包括电源(12)、计算机(10)、第一编码器(11)和第二编码器(15),其中,第一编码器(11)安装在二级传送带(4)转轴上,第二编码器(15)安装在防尘稳固箱(5)上,且连接面阵相机(7);所述激光器(6)、面阵相机(7)、第一编码器(11)和第二编码器(15)分别连接计算机(10);所述电源(12)连接计算机(10)。
9.如权利要求8所述的生产现场集料三维检测的实时数据采集系统,其特征在于,所述分料板(3)上端与一级传送带(2)物料输出端之间的水平距离为5 15cm ;分料板(3)比一级传送带(2)两侧均宽出10cm。
10.如权利要求8所述的生产现场集料三维检测的实时数据采集系统,其特征在于,所述二级传送带(4)表面均匀刻有直径为0.05、.18mm的盲孔,且相邻盲孔中心距离.0.18^0.4 _。
全文摘要
本发明公开了生产现场集料三维检测的实时数据采集方法及采集系统,集料传送装置包括进料仓、一级传动带、分料板和总传动带,分料板下方设二级传送带,安装数据获取装置,数据获取装置包括封装在防尘箱中的激光器和面阵相机,防尘箱安装在二级传送带上方,激光器正对二级传送带,第一编码器安装在二级传送带转轴上,第二编码器安装在防尘稳固箱上且与面阵相机相连,所述激光器、面阵相机、第一编码器和第二编码器分别连接计算机;计算机控制二级传送带传送速度和面阵相机采样频率。本发明能够直接获取集料的三维数据信息,极大地提高了集料级配的计算精度;对拍摄过程中集料的下落速度进行控制,解决集料下落速度不均匀的问题。
文档编号G01N15/02GK103149131SQ20131003901
公开日2013年6月12日 申请日期2013年1月31日 优先权日2013年1月31日
发明者李伟, 沙爱民, 孙朝云, 郝雪丽, 罗晶, 王鹏远, 袁梦霞, 任炳兰, 赵海伟 申请人:长安大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1