立体封装太赫兹辐射探测器的制造方法

文档序号:6169271阅读:271来源:国知局
立体封装太赫兹辐射探测器的制造方法
【专利摘要】本发明提供了一种立体封装太赫兹辐射探测器,包括介质扩展半球透镜、太赫兹波信号处理单元、LTCC基板、第一中频信号处理单元,太赫兹信号处理单元包括砷化镓天线和砷化镓谐波混频器,第一中频信号处理单元包括基于LTCC基板的射频无源巴伦接收网络和第一中频信号处理电路,大气辐射的微弱太赫兹电磁信号和空间馈入的亚毫米波本振信号由所述透镜汇聚到砷化镓天线上,通过砷化镓谐波混频器进行第一次下变频处理,产生中频差分信号;所述中频差分信号通过所述巴伦接收网络合成为中频不平衡信号,第一中频信号处理电路将输入的中频不平衡信号转换成由A/D模数转换器处理的基带信号。本发明具有超宽频域、立体封装和多通道功率合成的优点。
【专利说明】
【技术领域】
[0001] 本发明涉及一种太赫兹辐射探测器,更具体地,涉及立体封装太赫兹辐射探测器。 立体封装太赫兹辐射探测器

【背景技术】
[0002] 处于20_120km范围内的中高层大气中主要包括氧气、碳氧化合物、一氧化氯、水 蒸汽等多种能够反应大气层中的物理、化学和辐射情况的有用气体。通过开展对相关气体 辐射电磁波的探测、处理和分析工作,能够及时有效地监控日地关系、全球气候变化和环境 变化(包括空间环境和地面生态环境)的相关情况。根据电磁频谱分类,频率范围覆盖 300MHz-300GHz的电磁波统称微波,其中包含分米波、厘米波、毫米波和太赫兹信号。由于中 高层大气主要以辐射太赫兹频段信号为主,因此太赫兹信号探测器是进行大气监测的主要 设备。加快研发相关大气探测设备对于我国及时掌握大气变化信息,提高气象预报水平,月艮 务国民经济发展,具有重大的现实促进作用和长远的战略意义。
[0003] 目前美国宇航局的喷气推进实验室研制的EOS MLS(地球临边观测微波辐射 计)可以用于测量地球大气临边的微波热辐射,主要用于跟踪监测平流层臭氧层的稳定 性、提高气候变化预测水平和提高对全球空气质量的认知。英国气象局研发的微波辐 射计AMSU-B,工作于5个通道,分别用于反演近地表情况和大气水汽轮廓。日本发射的 ADE0S-II,搭载了被动微波辐射计,用于测量海洋表面温度、风速以及土壤湿度。目前国内 相关研究机构研发了部分可用于微波辐射计的器件,尚未出现有关用于大气气体监控的微 波辐射探测装置的报道。
[0004] 上述微波辐射计或探测装置多是由分立模块组成,各模块之间通过波导等传统微 波传输装置进行连接。虽然分立形式的探测器有结构简单、技术相对成熟等优点,但是在体 积、重量、成本和性能一致性等方面的缺陷逐渐凸显,已不能完全适应当今大气探测装置的 发展趋势。
[0005] 低温共烧陶瓷(LTCC)作为一种未来发展前景广阔的三维立体封装技术,近些年 来引起了国内外机构的广泛关注和深入研究。LTCC材料具有稳定的介电常数、低介质损耗、 立体封装结构等优点,但目前尚未出现将低温共烧陶瓷(LTCC)应用于大气观测的太赫兹 辐射探测装置的报道。


【发明内容】

[0006] 本发明所要解决的技术问题是克服现有技术的上述缺点,提供一种立体封装太赫 兹辐射探测器,采用LTCC三维立体封装技术将太赫兹辐射探测器的原本分立的各子系统 进行三维一体化封装,可解决现有探测设备体积大、重量重、连接复杂、成本高和一致性差 等诸多问题,实现了超宽频域和一体化封装的大气探测装置。
[0007] 根据本发明,提供了一种立体封装太赫兹辐射探测器,包括介质扩展半球透镜、太 赫兹信号处理单元、LTCC基板、第一中频信号处理单元,太赫兹信号处理单元包括砷化镓天 线和砷化镓谐波混频器,第一中频信号处理单元包括基于LTCC的射频无源巴伦接收网络 和第一中频信号处理电路;其中,大气辐射的微弱太赫兹电磁信号和空间馈入的亚毫米波 本振信号由介质扩展半球透镜汇聚到砷化镓天线上,由砷化镓天线接收到的所述电磁信号 和亚毫米波本振信号通过砷化镓谐波混频器进行第一次下变频处理,产生中频差分信号; 所述中频差分信号通过基于LTCC的射频无源巴伦接收网络合成为中频不平衡信号,完成 由差分信号到不平衡信号转换;合成后的中频不平衡信号输入第一中频信号处理电路进行 处理,第一中频信号处理电路将输入的中频不平衡信号转换成由AD模数转换器处理的基 带信号。
[0008] 立体封装太赫兹辐射探测器还包括与第一中频信号处理单元的第一中频信号处 理电路连接或耦合的基带信号处理单元,基带信号处理单元包括A/D模数转换器。
[0009] 介质扩展半球透镜位于所述立体封装太赫兹辐射探测器的上部,通过卡环将介 质扩展半球透镜固定在整个LTCC基板的中心,太赫兹信号处理单元安装在介质扩展半球 透镜的底部中心位置,太赫兹信号处理单元的输出信号金属化层通过倒装芯片互连结构与 LTCC基板表层的输入信号金属化层进行连接,实现太赫兹信号处理单元的砷化镓谐波混频 器与基于LTCC基板的射频无源巴伦接收网络之间的差分信号传输。
[0010] 第一中频信号处理电路和基带信号处理单元按照封装种类不同采用裸芯片形式 的单片微波集成电路 MMIC(Monolithic Microwave Integrated Circuit)和 / 或表贴封 装形式的表面贴装器件SMD(Surface Mounted Devices);裸芯片形式的单片微波集成电路 MMIC埋置于LTCC基板底部的空腔内部,通过金丝键合和位于LTCC基板底部表层的微带线 实现输入和输出信号的互连传输;表贴封装形式的表面贴装器件SMD焊接在LTCC基板底部 的下表面,通过微带线实现信号的互连传输。
[0011] 所述倒装芯片互连结构包括凸点上金属化层、凸点、下填料和凸点下金属化层; 凸点上金属化层与太赫兹信号处理单元的输出信号金属化层连接;凸点下金属化层位于 LTCC基板顶部,凸点下金属化层与LTCC基板上部表层的输入信号金属化层连接;凸点位于 凸点上金属化层和凸点下金属化层之间,实现射频信号传输;下填料分布于凸点和金属化 层周围。
[0012] LTCC基板包括自上面下的22层,LTCC基板的第1层在LTCC基板的第2层上面, LTCC基板的第22层在LTCC基板的底部,基于LTCC的射频无源巴伦接收网络包括多层耦合 带状线,多层耦合带状线分别埋置于LTCC基板的第1层至第15层,其中LTCC基板的第0 层、第8层、第15层和第19层为与耦合带状线相对应的射频信号接地平面;第一中频信号 处理单元还包括供电网络和控制网络,供电网络用于传输裸芯片形式的单片微波集成电路 MMIC和表贴封装形式的表面贴装器件SMD使用的供电信号,控制网络用于传输裸芯片形式 的单片微波集成电路MMIC和表贴封装形式的表面贴装器件SMD使用的控制信号,供电网络 分布于基板内部的第16层,控制网络分布于基板内部的第18层。
[0013] 第一中频信号处理电路和基带信号处理单元位于LTCC基板的第22层;裸芯片形 式的单片微波集成电路MMIC埋置于LTCC基板的第22层的空腔内部,裸芯片形式的单片微 波集成电路MMIC通过金丝键合和位于LTCC基板的第22层底部表层的微带线进行信号传 输;表贴封装形式的表面贴装器件SMD焊接在LTCC基板的第22层下表面,表贴封装形式的 表面贴装器件SMD通过焊接和微带线进行信号传输;基带信号处理单元输出的基带信号传 输至位于LTCC基板底面四周的引脚焊盘,所述引脚焊盘作为与后级数字信号处理系统进 行信号传输的互联接口。
[0014] 可选择地,第一中频信号处理电路包括前端低噪声放大器LNA、频率预选器、中频 混频器和功率放大器;前端低噪声放大器对所述中频不平衡信号进行小信号的低噪声放大 处理,产生经放大处理后的中频信号,所述中频信号依次完成频率选择、二次变频和信号放 大后,传输给基带信号处理单元进行基带信号处理;基带信号处理单元还包括控制芯片和 通道基带信号处理器,控制芯片通过控制指令控制通道基带信号处理器对基带信号进行处 理。
[0015] 可选择地,第一中频信号处理电路包括前端低噪声放大器LNA、频率预选器、混频 器、功率放大器;基带信号处理单元还包括基带信号处理器;所述中频不平衡信号经过第 一中频信号处理电路的低噪声放大器LNA进行小信号低噪声放大后进入频率预选器滤除 谐波信号;频率预选器输出的信号与中频本振信号输入混频器进行第二次下变频处理;混 频器输出基带信号,功率放大器对来自混频器的基带信号进行信号功率放大,功率放大器 的输出信号输入到A/D模数转换器以产生数字信号,基带信号处理器通过对所述数字信号 进行信号处理,分析接收到的大气气体辐射的信息。
[0016] 可选择地,太赫兹信号处理单元为N个,第一中频信号处理单元为N个,基带信号 处理单元为N个,相同频率的N路输入信号分别通过N个太赫兹信号处理单元、N个第一中 频信号处理单元、N个基带信号处理单元形成N个通道的基带信号,每一路输入信号仅通过 一个太赫兹信号处理单元、一个第一中频信号处理单元、一个基带信号处理单元形成一个 通道的基带信号,N为> 1的自然数。
[0017] 可选择地,立体封装太赫兹辐射探测器为大气临边探测器,由卫星搭载所述立体 封装微波辐射探测器,所述立体封装太赫兹辐射探测器在距地球表面20-120ΚΠ 1之间的任 一高度,所述立体封装微波辐射探测器通过接受118GHz的电磁波来探测02的辐射信息;通 过接受183GHz的电磁波来探测H 20和ΗΝ03的辐射信息;通过接受205GHz的电磁波来探测 〇3的辐射信息;通过接受240GHz的电磁波来探测C0气体辐射信息。
[0018] 可选择地,立体封装太赫兹辐射探测器探测C0的辐射信息,所述大气辐射的微 弱太赫兹电磁信号为C0气体辐射的240GH电磁波,所述空间馈入的亚毫米波本振信号为 94GHz本振信号,所述中频差分信号的频率为42GHz,中频本振信号的频率为39GHz,所述放 大器的输出信号的频率为3GHz ;所述N为12。即,相同频率的12路输入信号通过12个通 道太赫兹信号处理单元、12个第一中频信号处理单元、12个通道基带信号处理单元形成12 路基带信号。
[0019] 可选择地,LTCC基板选用Dupont951生瓷片,介电常数7. 8,烧结后每层生瓷片的 厚度为96um,所述卡环包括直径为66mm、厚度为4. 5mm的聚四氟乙烯卡环。
[0020] 本发明的立体封装微波辐射探测器是基于LTCC封装工艺的三维立体封装大气探 测设备,不同于通常以金属波导作为信号传输方式的分立探测设备,其具有以下优点:
[0021] 1.超宽频域
[0022] 本探测器一体化集成了太赫兹信号处理单元、第一中频信号处理单元和基带信号 处理单元,其接收和处理的信号按照频率分类包含了从太赫兹到基带信号频段,频率覆盖 范围200GHz以上。应用此探测器可以实现从接收大气辐射的太赫兹信号到中频信号处理, 最后提供可以直接输入A/D转换器进行数字处理的基带信号,一次性实现的对大气辐射信 息的接收和处理工作,有利于及时准确地反应大气辐射信息。
[0023] 2.立体封装
[0024] 应用LTCC封装工艺,实现了介质扩展半球透镜、砷化镓单片谐波混频天线、无源 射频接收网络、供电和控制网络、信号放大芯片和有源基带接收芯片的一体化三维立体封 装。虽然随着芯片集成技术的不断发展,很多射频有源电路都可以实现小型化单片集成,但 是无源器件尚且不能在集成电路内部实现集成,成为占据电路二维版图面积的主要器件。 本设备充分利用LTCC工艺,具有三维立体化封装特点。其中作为无源电路中最主要的射频 无源巴伦接收网络被内埋于LTCC基板内部,有源单片集成电路埋置于LTCC下表面空腔中 或者表贴在LTCC下表面基板上。本设备采用三维立体封装设计方式,实现了传统电路的二 维平面结构到三维立体化封装结构的转变,极大地减小了设备的体积和重量。除此之外,由 于采用了一体化集成工艺,避免了原有分立的系统所必须的繁琐的组装和调试过程,从而 提高了系统的整体可靠性,对于降低卫星载荷的体积、重量和稳定性具有重要意义。
[0025] 3.多通道功率合成
[0026] 本发明的探测器应用LTCC多层立体集成工艺,实现了多通道集成接收系统。当对 某一种大气气体进行探测时,此探测器可以通过对每一通道信号采取差异化相位配置的方 式,使各通道波束进行空间功率合成,从而有效扩展单一气体成分探测范围。因此,该太赫 兹辐射探测器具备对大气中各种主要气体成分的全天候、全天时的探测能力。

【专利附图】

【附图说明】
[0027] 应说明的是,下面描述中的附图仅示意地示出了一些实施例,并没有包括所有可 能的实施例。
[0028] 图1地球大气探测系统的示意原理图;
[0029] 图2为立体封装太赫兹辐射探测器的实施例的剖面图;
[0030] 图3倒装芯片互连结构的实施例的示意图;
[0031] 图4为本发明实施例的12通道三维立体封装太赫兹辐射探测器的示意图。

【具体实施方式】
[0032] 下面将结合附图描述本发明的示例性实施例的技术方案。显然,所描述的实施例 只是本发明的一部分实施例,而不是全部的实施例。所描述的实施例仅用于图示说明,而不 是对本发明范围的限制。基于本发明的实施例,本领域普通技术人员在没有作出创造性劳 动前提下所获得的所有其他实施例,都属于本发明保扩的范围。
[0033] 作为本发明一个实施例,立体封装太赫兹辐射探测器可用于地球大气探测系统 中,作为大气临边探测器。图1示出了地球大气探测系统实施例的示意原理图。由卫星搭 载的地球大气探测系统位于距地球表面20-120Km的某一预定高度,来自探测目标的各种 大气辐射的电磁波首先通过准光系统中的抛物面主镜汇集后反射到双曲面次镜上。大气辐 射的电磁波通过双曲面次镜反射后,以准平行光的方式进入宽频域立体封装太赫兹辐射探 测器,来自本振源L0的本振信号以空间馈入的方式进入立体封装太赫兹辐射探测器。也就 是说,立体封装太赫兹辐射探测器位于双曲面次镜后,用以接收大气辐射的电磁波和空间 馈入的本振信号。
[0034] 例如可以通过计算机显示器显示立体封装太赫兹辐射探测器的探测结果或者通 过其它输出设备输出立体封装太赫兹辐射探测器的探测结果。
[0035] 例如,立体封装太赫兹辐射探测器通过接受118GHz的电磁波,探测02的辐射信 息;通过接受183GHz的电磁波,探测H 20和ΗΝ03的辐射信息;通过接受205GHz的电磁波, 探测〇3的辐射信息;通过接受240GHz的电磁波,探测C0的辐射信息。
[0036] 如图1所示,立体封装太赫兹辐射探测器包括介质扩展半球透镜、太赫兹信号处 理单元、第一中频信号处理单元、基带信号处理单元。
[0037] 从信号传输角度可以按照不同的工作频域将立体封装太赫兹辐射探测器分为三 部分,第一部分包括介质扩展半球透镜和太赫兹信号处理单元,例如,太赫兹信号处理单元 包括砷化镓谐波混频天线,砷化镓谐波混频天线包括砷化镓天线和砷化镓谐波混频器;第 二部分包括基于LTCC的射频无源巴伦接收网络和第一中频信号处理电路,例如,第一中频 信号处理电路包括前端低噪声放大器、频率预选器、混频器和功率放大器;第三部分为基带 信号处理单元,例如,基带信号处理单元包括A/D模数转换器、控制芯片和通道基带信号处 理器。
[0038] 例如,大气辐射的微弱太赫兹电磁信号和空间馈入的本振信号(例如亚毫米波本 振信号)首先由介质扩展半球透镜汇聚到砷化镓天线上,由砷化镓天线接收到的大气辐射 的微弱太赫兹电磁信号和空间馈入的本振信号通过砷化镓谐波混频器进行第一次下变频 处理,产生中频差分信号。中频差分信号经过基于LTCC的射频无源巴伦接收网络完成信号 合成,由两路中频差分信号合成一路中频不平衡信号。所述中频不平衡信号再经过前端低 噪声放大器LNA,完成小信号的低噪声放大处理,产生经放大处理后的中频信号。
[0039] 最后,所述中频信号依次完成频率选择、二次变频和信号放大后,传输给基带信号 处理单元进行基带信号处理。控制芯片通过控制指令控制基带信号处理单元的基带信号处 理器对基带信号进行处理。
[0040] 通过对上述三个不同频域信号的接收处理之后,可以将大气辐射的太赫兹信号下 变频到A/D模数转换器可以处理的基带信号,从而实现大气辐射信号在超宽频域的接收处 理过程。
[0041] 从各分系统集成封装角度分析,可以将整个探测器分为三部分。第一部分包括介 质扩展半球透镜和砷化镓单片谐波混频天线,砷化镓单片谐波混频天线包括砷化镓天线和 砷化镓谐波混频器,单片混频天线安装在介质扩展半球透镜的底部中心位置。一方面,通过 在LTCC基板的上表面制作出相应形状和大小的卡槽实现对于介质扩展半球透镜的机械固 定;另一方面,通过倒装焊工艺将单片混频天线输出的射频信号传输到基于LTCC基板的射 频无源巴伦接收网络中。第二部分包括埋置于LTCC基板内部的射频无源巴伦接收网络(即 基于LTCC基板的射频无源巴伦接收网络)、系统供电网络和系统控制网络。第三部分包括 射频前端低噪声放大器、频率预选器、混频器和功率放大器、A/D模数转换器、控制芯片和通 道基带信号处理器。第三部分的电路芯片按照封装种类不同可以分为裸芯片形式的单片微 波集成电路丽1C和/或表贴封装形式的表面贴装器件SMD,其中裸芯片形式的单片微波集 成电路MMIC埋置于LTCC基板下表面的空腔内部,通过金丝键合工艺实现输入和输出信号 的互连传输,表贴封装形式的表面贴装器件SMD (即表贴封装的芯片)焊接在LTCC基板的 下表面,通过微带线实现信号的互连传输。
[0042] 图2示出了立体封装太赫兹辐射探测器的实施例的剖面图。该探测器基于低温共 烧陶瓷工艺LTCC制造,LTCC基板23选用Dupont951生瓷片,介电常数7. 8,烧结后每层生 瓷片的厚度为96um。根据探测器指标需求和机械强度要求来选择LTCC基板,例如,选择22 层的LTCC基板,总厚度为2. 112mm。参见图2,按照从上到下的顺序对整体结构分析如下: 位于整个探测器最上部的是直径为38. 1mm,扩展高度为7. 4mm介质扩展半球透镜21。通过 直径为66mm,厚度为4. 5mm的聚四氟乙烯卡环22将该透镜21固定在整个LTCC基板23的 中心,以实现对接收电磁波的汇聚作用。砷化镓太赫兹谐波混频天线或砷化镓太赫兹谐波 混频器安装在透镜21的底部中心处,其输出信号金属化层通过倒装焊接(例如凸点芯片倒 装焊接)与LTCC基板上表层的输入信号金属化层进行连接,实现太赫兹信号处理单元和基 于LTCC基板的射频无源巴伦接收网络之间的差分信号传输。所述金属化层例如为焊盘。
[0043] LTCC基板包括自上而下的22层,LTCC基板的第1层在LTCC基板的第2层上面, LTCC基板的第22层在LTCC基板的底部,基于LTCC的射频无源巴伦接收网络包括多层耦 合带状线,多层耦合带状线分别埋置于LTCC基板的第1层至第15层,其中LTCC基板的第 0层、第8层、第15层和第19层为与耦合带状线相对应的射频信号接地平面。
[0044] 第一中频信号处理单元还包括供电网络和控制网络,供电网络用于传输裸芯片形 式的单片微波集成电路丽1C和表贴封装形式的表面贴装器件SMD使用的供电信号,控制网 络用于传输裸芯片形式的单片微波集成电路MMIC和表贴封装形式的表面贴装器件SMD使 用的控制信号,供电网络分布于基板内部的第16层,控制网络分布于基板内部的第18层。
[0045] 第一中频信号处理电路和基带信号处理单元位于整个LTCC基板底部的22层,其 中裸芯片形式的单片微波集成电路MMIC芯片内埋于基板的第22层的空腔内部,通过金丝 键合工艺和位于22层底部表层的微带线进行信号传输,表贴封装形式的芯片表面贴装器 件SMD焊接在LTCC基板的第22层下表面,表贴封装形式的表面贴装器件SMD通过焊接和微 带线进行信号传输。最终处理完成的基带信号传输至位于基板底面四周特定的引脚焊盘, 所述引脚作为与后级数字信号处理系统进行信号传输的互联接口。
[0046] 作为本发明的一个实施例,第一中频信号处理电路包括低噪声放大器LNA、频率预 选器、混频器、功率放大器;基带信号处理单元包括A/D模数转换器、基带信号处理器、控制 芯片;所述中频不平衡信号经过第一中频信号处理单元的低噪声放大器LNA进行小信号低 噪声放大后进入频率预选器滤除谐波信号;频率预选器输出的信号与中频本振信号进入混 频器进行第二次下变频处理,混频器输出基带信号,功率放大器对来自混频器的基带信号 进行信号功率放大,功率放大器的输出信号输入到A/D模数转换器以产生数字信号,基带 信号处理器通过对所述数字信号进行信号处理工作,分析接收到的大气气体辐射的信息。
[0047] 图3是倒装芯片互连结构的实施例的示意图。本发明中的太赫兹信号处理单元的 砷化镓谐波混频器和LTCC基板通过倒装焊工艺实现信号互连传输,因此倒装芯片互连结 构是实现跨频域系统之间互连的关键部分。射频信号主要通过凸点实现在太赫兹信号处理 单元和中频信号处理单元之间的传输。如图3所示,倒装芯片互连结构包括凸点上金属化 层31、凸点32、下填料33和凸点下金属化层34。凸点上金属化层31位于包括砷化镓谐波 混频器的砷化镓芯片下部,与太赫兹信号处理单元的输出信号金属化层连接,凸点下金属 化层34位于LTCC基板顶部,与LTCC基板上表层的输入信号金属化层连接;凸点位于凸点 上金属化层31和凸点下金属化层34之间,实现射频信号传输;下填料分布于凸点和金属化 层周围,实现支撑保护作用。
[0048] 根据本发明的一个实施例,太赫兹信号处理单元可以为N个,第一中频信号处理 单元可以为N个,基带信号处理单元可以为N个,相同频率的N路输入信号通过N个太赫兹 信号处理单元、N个第一中频信号处理单元、N个基带信号处理单元形成N个通道的基带信 号,N为> 1的自然数,每一路输入信号经过一个太赫兹信号处理单元、一个第一中频信号 处理单元、一个基带信号处理单元形成一个通道的基带信号。图4中示出了 N为12的一个 实施例。
[0049] 图4是本发明示例实施例的12通道三维立体封装太赫兹辐射探测器的示意图。 以探测C0气体辐射的电磁波为例,图中立体封装太赫兹辐射探测器包括太赫兹信号处理 单元、第一中频信号处理单元、基带信号处理单元。太赫兹信号处理单元包括介质扩展半球 透镜、天线、谐波混频器。谐波混频器例如为砷化镓单片谐波混频器,图4中示出的谐波混 频器是3次谐波混频器。第一中频信号处理单元包括基于LTCC基板的射频无源巴伦接收 网络(在图4中简称为巴伦)、低噪声放大器LNA、频率预选器、中频混频器(在图4中简称 为混频器)、功率放大器(在图4中简称为放大器)。基带信号处理单元包括A/D模数转换 器、基带信号处理器和控制芯片。
[0050] 在图4的实施例中,大气福射的微弱大赫兹电磁信号为C0气体福射的240GHz电 磁波,亚毫米波本振信号为94GHz本振信号。C0气体辐射的240GHz电磁波和94GHz亚毫米 波本振信号通过扩展半球介质透镜和天线进行汇聚接收。接收后的信号通过谐波混频器进 行第一次下变频处理,产生频率为42GHz的中频差分信号信号,所述中频差分信号通过巴 伦合成为中频不平衡信号,完成由差分信号到不平衡信号转换;合成后的42GHz的中频不 平衡信号首先通过低噪声放大器LNA进行小信号低噪声放大后进入频率预选器滤除谐波 信号;频率预选器输出的信号与39GHz的中频本振信号输入中频混频器进行第二次下变频 处理;相同频率的12路输入信号经过变频处理后,通过放大器进行信号功率放大处理,而 后输入到基带信号处理单元的A/D转换器(模拟数字转换器)以产生数字信号,控制芯片 通过控制指令控制12个通道基带信号处理器通过对输入的数字信号进行信号处理工作, 分析接收到的大气气体辐射的信息,反演气体真实的变化情况。
[0051] 通过采用LTCC工艺,实现了多接收通道的立体化一体封装,可以在有限的空间内 集成更多接收电路,极大地增加了接收到的被探测气体辐射功率,提高了设备的探测距离。 除此之外,通过依次对接收到的12个通道基带信号进行相应的相位处理,可以实现接收天 线波束扫描,提1?空间探测范围。
[0052] 以上对本发明的实施例的描述仅用于说明本发明的技术方案,而不是对本发明范 围的限制,本发明并不限于所公开的这些实施例,本领域的技术人员可以对前述各实施例 所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,而这些修改或替换 都应落入本发明的保扩范围。
【权利要求】
1. 一种立体封装太赫兹辐射探测器,包括介质扩展半球透镜(21)、太赫兹波信号处 理单元、LTCC基板(23)、第一中频信号处理单元,太赫兹信号处理单元包括砷化镓天线和 砷化镓谐波混频器,第一中频信号处理单元包括基于LTCC基板的射频无源巴伦接收网络 和第一中频信号处理电路,其中,大气辐射的微弱太赫兹电磁信号和空间馈入的亚毫米波 本振信号由介质扩展半球透镜汇聚到砷化镓天线上,由砷化镓天线接收到的所述电磁信号 和所述亚毫米波本振信号通过砷化镓谐波混频器进行第一次下变频处理,产生中频差分信 号;所述中频差分信号通过所述基于LTCC的射频无源巴伦接收网络合成为中频不平衡信 号,完成由差分信号到不平衡信号转换;合成后的中频不平衡信号输入第一中频信号处理 电路进行处理,第一中频信号处理电路将输入的中频不平衡信号转换成由A/D模数转换器 处理的基带信号。
2. 如权利要求1所述的立体封装微波辐射探测器,其特征在于:所述立体封装太赫兹 辐射探测器还包括与第一中频信号处理单元的第一中频信号处理电路连接或耦合的基带 信号处理单元,基带信号处理单元包括A/D模数转换器。
3. 如权利要求2所述的立体封装微波辐射探测器,其特征在于: 介质扩展半球透镜(21)位于所述立体封装太赫兹辐射探测器的上部,通过卡环将介 质扩展半球透镜(21)固定在整个LTCC基板(23)的中心,太赫兹信号处理单元安装在介质 扩展半球透镜的底部中心位置,太赫兹信号处理单元的输出信号金属化层通过倒装芯片互 连结构与LTCC基板上部表层的输入信号金属化层进行连接,实现太赫兹信号处理单元的 砷化镓谐波混频器与基于LTCC基板的射频无源巴伦接收网络之间的差分信号传输; 第一中频信号处理电路和基带信号处理单元按照封装种类不同采用裸芯片形式的单 片微波集成电路和/或表贴封装形式的表面贴装器件;裸芯片形式的单片微波集成电路埋 置于LTCC基板底部的空腔内部,通过金丝键合和位于LTCC基板底部表层的微带线实现输 入和输出信号的互连传输;表贴封装形式的表面贴装器件焊接在LTCC基板底部的下表面, 通过微带线实现信号的互连传输。
4. 如权利要求3所述的立体封装太赫兹辐射探测器,其特征在于:所述倒装芯片互连 结构包括凸点上金属化层(31)、凸点(32)、下填料(33)和凸点下金属化层(34);凸点上金 属化层与太赫兹信号处理单元的输出信号金属化层连接;凸点下金属化层(34)位于LTCC 基板顶部,凸点下金属化层(34)与LTCC基板上部表层的输入信号金属化层连接;凸点位于 凸点上金属化层(31) 口凸点下金属化层(34)之间,实现射频信号传输;下填料分布于凸点 和金属化层周围。
5. 如权利要求3所述的立体封装微波辐射探测器,其特征在于: LTCC基板包括自上而下的22层,LTCC基板的第1层在LTCC基板的第2层上面,LTCC 基板的第22层在LTCC基板的底部,基于LTCC的射频无源巴伦接收网络包括多层耦合带状 线,多层耦合带状线分别埋置于LTCC基板的第1层至第15层,其中LTCC基板的第0层、 第8层、第15层和第19层为与耦合带状线相对应的射频信号接地平面;第一中频信号处理 单元还包括供电网络和控制网络,供电网络用于传输裸芯片形式的单片微波集成电路和表 贴封装形式的表面贴装器件使用的供电信号,控制网络用于传输裸芯片形式的单片微波集 成电路和表贴封装形式的表面贴装器件使用的控制信号,供电网络分布于基板内部的第16 层,控制网络分布于基板内部的第18层; 第一中频信号处理电路和基带信号处理单元位于LTCC基板的第22层;所述裸芯片形 式的单片微波集成电路埋置于LTCC基板的第22层的空腔内部,所述裸芯片形式的单片微 波集成电路通过金丝键合和位于LTCC基板的第22层底部表层的微带线进行信号传输;所 述表贴封装形式的表面贴装器件焊接在LTCC基板的第22层下表面,表贴封装形式的表面 贴装器件通过焊接和微带线进行信号传输;基带信号处理单元输出的基带信号传输至位于 LTCC基板底面四周的引脚焊盘,所述引脚焊盘作为与后级数字信号处理系统进行信号传输 的互联接口。
6. 如权利要求2-5的任一权利要求所述的立体封装太赫兹辐射探测器,其特征在于: 第一中频信号处理电路包括前端低噪声放大器、频率预选器、混频器和功率放大器;前 端低噪声放大器对所述中频不平衡信号进行小信号的低噪声放大处理,产生经放大处理后 的中频信号,所述中频信号依次完成频率选择、二次变频和信号放大后,传输给基带信号处 理单元进行基带信号处理;基带信号处理单元还包括控制芯片和通道基带信号处理器,控 制芯片通过控制指令控制通道基带信号处理器对基带信号进行处理。
7. 如权利要求2-5的任一权利要求所述的立体封装微波辐射探测器,其特征在于: 第一中频信号处理电路包括前端低噪声放大器、频率预选器、混频器、功率放大器;基 带信号处理单元还包括基带信号处理器; 所述中频不平衡信号经过第一中频信号处理电路的低噪声放大器进行小信号低噪声 放大后进入频率预选器滤除谐波信号;频率预选器输出的信号与中频本振信号进入混频器 进行第二次下变频处理,混频器输出基带信号,功率放大器对来自混频器的基带信号进行 信号功率放大,功率放大器的输出信号输入到A/D模数转换器以产生数字信号,基带信号 处理器通过对所述数字信号进行信号处理,分析接收到的大气气体辐射的信息。
8. 如权利要求7所述的立体封装微波辐射探测器,其特征在于:太赫兹信号处理单元 为N个,第一中频信号处理单元为N个,基带信号处理单元为N个,相同频率的N路输入信 号分别通过N个太赫兹信号处理单元、N个第一中频信号处理单元、N个基带信号处理单元 形成N个通道的基带信号,每一路输入信号仅通过一个太赫兹信号处理单元、一个第一中 频信号处理单元、一个基带信号处理单元形成一个通道的基带信号,N为> 1的自然数。
9. 如权利要求7所述的立体封装太赫兹辐射探测器,其特征在于:立体封装微波辐射 探测器为大气临边探测器,由卫星搭载所述立体封装太赫兹辐射探测器,所述立体封装太 赫兹辐射探测器在距地球表面20-120Km之间的任一高度,所述立体封装微波辐射探测器 通过接受118GHz的电磁波来探测0 2的辐射信息;通过接受183GHz的电磁波来探测H20和 ΗΝ03的辐射信息;通过接受205GHz的电磁波来探测03的辐射信息;通过接受240GHz的电 磁波来探测CO气体辐射信息。
10. 如权利要求8或9所述的立体封装太赫兹辐射探测器,其特征在于:立体封装太赫 兹辐射探测器探测CO的辐射信息,所述大气辐射的微弱太赫兹电磁信号为CO气体辐射的 240GH电磁波,所述空间馈入的亚毫米波本振信号为94GHz本振信号,所述中频差分信号的 频率为42GHz,中频本振信号的频率为39GHz,所述放大器的输出信号的频率为3GHz ;所述N 为12。
11. 如权利要求2-5的任一权利要求所述的立体封装太赫兹辐射探测器,其特征在于: 1^〇:基板选用0即〇1^951生瓷片,介电常数7.8,烧结后每层生瓷片的厚度为9611111,所述卡 环包括直径为66mm、厚度为4. 5mm的聚四氟乙烯卡环。
【文档编号】G01J1/42GK104101427SQ201310130016
【公开日】2014年10月15日 申请日期:2013年4月15日 优先权日:2013年4月15日
【发明者】袁博 申请人:袁博
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1