一种基于动态规划的多帧相参积累目标检测前跟踪方法

文档序号:6179948阅读:207来源:国知局
一种基于动态规划的多帧相参积累目标检测前跟踪方法
【专利摘要】本发明公开了一种基于动态规划的多帧相参积累目标检测前跟踪方法,它是利用动态规划获得目标在几帧回波数据中的可能航迹,通过对目标回波相位的二次项进行估计和补偿和对多帧回波数据中的目标回波进行相参积累来提高输出信噪比,实现对微弱目标的跟踪。与传统非相参TBD方法在帧间积累时没有利用目标回波的相位信息相比,本发明在帧间积累时利用了回波信号的相位信息,它使用较少帧数回波数据就提高了输出信噪比,从而提高了目标检测概率;同时提供了目标的航迹和运动信息,实现了目标的跟踪。
【专利说明】 一种基于动态规划的多帧相参积累目标检测前跟踪方法
【技术领域】
[0001]本发明属于雷达系统中目标多帧检测和跟踪的【技术领域】,它特别涉及到了低信噪比条件下雷达多帧检测和跟踪微弱目标的【技术领域】。
【背景技术】
[0002]随着目标隐身技术的不断发展和升级,雷达所检测目标(如飞机、舰船)的雷达目标反射截面积(RCS)减小了一到两个数量级。这增加了雷达检测目标的难度,同时也对雷达自身的生存构成了威胁。正是由于上述原因,微弱目标的检测和跟踪成为雷达检测领域的一个重要研究方向。已有的研究成果中提到了通过延长脉冲积累时间来提高输出信噪t匕,从而提高了雷达对微弱目标的检测能力。现有预警雷达体系为了防止距离模糊的产生,其脉冲重复频率较低。在低重频预警雷达的工作体制下,雷达发射机在一个方位向分辨单元上发射的脉冲数很少,从而导致了一帧雷达回波数据中包含的目标回波脉冲数很少,这使得在单帧回波数据内对目标回波进行长时间的脉冲积累变得很难实现。
[0003]检测前跟踪算法是通过先存储多帧未经过门限处理的雷达回波原始数据,然后进行能量积累来对微弱目标进行检测和跟踪的技术,见文献“孙立宏.雷达弱小目标检测前跟踪方法研究.[硕士学位论文],西安:西安电子科技大学,2007”。由于信噪比较低时,单帧回波数据无法检测出微弱目标,检测前跟踪方法通过对多帧回波数据进行处理,根据先验信息沿目标的运动轨迹进行能量积累,从而提高输出信噪比,达到检测微弱目标的目的。经典的检测前跟踪算法主要有基于Hough变换的检测前跟踪算法、基于粒子滤波的检测前跟踪算法以及基于动态规划的检测前跟踪算法等等。在雷达信号处理中脉冲的能量积累包括相参积累和非相参积累,前者是指对复数据(即包含幅度和相位的数据)进行积累,而后者指的是仅仅对数据的幅度(也可能是幅度的平方或者幅度对数)进行积累。上面提到的几种检测前跟踪算法均为对单帧雷达回波数据进行相参积累,多帧回波数据间采用非相参积累。由于这些算法在帧间积累时都舍去目标回波的相位信息,因此信噪比较低的时候其积累效率比帧间相参积累时低。传统的非相参检测前跟踪算法要达到与相参检测前跟踪算法达到同样的检测性能就必须要使用更多帧的回波数据进行积累,因而传统的非相参检测前跟踪算法的数据处理量与相参检测前跟踪算法相比也较大。

【发明内容】

[0004]为了能在低信噪比条件下,使用较少帧数的雷达回波数据就能得到较高的对微弱目标的检测概率,本发明提出了一种基于动态规划的多帧相参积累目标检测前跟踪方法,其特点是利用动态规划获得目标在几帧回波数据中的可能航迹,通过对目标回波相位的二次项进行估计和补偿以利用目标回波的相位信息,通过对多帧回波数据中的目标回波进行相参积累来提高输出信噪比,实现对微弱目标的检测。这种方法与传统非相参检测前跟踪方法相比,使用较少帧数回波数据就提高了输出信噪比,从而提高了目标检测概率。
[0005]为了方便描述本发明的内容,首先作以下术语定义:[0006]定义1、检测前跟踪
[0007]在雷达系统中,检测前跟踪是指雷达在获得一个扫描周期的回波数据后,先不进行处理,不设检测门限和不宣布检测结果,而是将接收到的每一个扫描时刻的回波数据数字化后存储起来,等达到设定的数据量时在各扫描时刻之间对假设路径包含的点作几乎没有信息损失的相关处理,从而估计出目标的运动轨迹,最后检测结果和目标轨迹同时宣布,见文献“孙立宏.雷达弱小目标检测前跟踪方法研究.[硕士学位论文],西安:西安电子科技大学,2007”。
[0008]定义2、距离单元
[0009]在雷达系统中,将雷达测距的范围划分成若干小的区域并将其编号,雷达根据目标回波信号落入的区域编号计算目标与雷达之间的距离。
[0010]定义3、方位向
[0011]将雷达扫描空间均匀划分为若干等分,每一等分为一个方位向。
[0012]定义4、虚警门限
[0013]雷达系统中的参数,当统计值超过虚警门限时雷达报告发现目标,当统计值未超过虚警门限时雷达不报告发现目标。详见文献“丁鹭飞,耿富录.雷达原理(第三版).西安电子科技大学出版社.2009.8”。
[0014]定义5、一帧回波数据
[0015]在本发明中,一帧回波数据是指在一个雷达扫描周期内,雷达接收机所接收、采样并存储的在这一个雷达扫描周期内所有发射脉冲的回波数据。
[0016]定义6、慢时间
[0017]雷达发射脉冲重复时间为T,记第一个脉冲的发射时刻为0,那么第m个脉冲的发射时刻为tm=mT(m=0,1, 2….),tm即亦称为慢时间。
[0018]定义7、距离-慢时间二维数据矩阵
[0019]本发明中距离-慢时间二维数据矩阵的行代表距离向,其行的数目为雷达对每个回波采样的点数;矩阵的列代表方位向,其列的数目为雷达在每个方位向发射脉冲的序号。假设雷达扫描空间被分为N个方位向,每个方位向发射M个脉冲,雷达对每个发射脉冲的回波采样L次,则在一个雷达扫描周期内雷达连续发射LXM个脉冲并按方位向编号将采样数据存储为N个L行M列的二维矩阵Slxm中,其中,M、N、L均为正整数,如图1所示。
[0020]定义8、FFT
[0021]FFT为快速傅里叶变换,是离散傅里叶变换的快速算法。
[0022]定义9、动态规划
[0023]动态规划是一个运筹学的分支,是求解决策过程最优化的方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法一一动态规划。1957年出版了他的名著《DynamicProgramming》,这是该领域的第一本著作。
[0024]定义10、信噪比
[0025]信噪比是指信号的功率与环境噪声功率的比值。详见文献“丁鹭飞,耿富录.雷达原理(第三版).西安电子科技大学出版社.2009.8”。[0026]定义11、二次相位
[0027]二次相位是指雷达回波数据的相位中关于慢时间的二次项。
[0028]定义12、动态存储矩阵
[0029]动态存储矩阵指能够根据实际的需求进行动态的更新(存储和清除)矩阵中各单元的值,并能够根据需求扩展矩阵的维数,如增加列的维数或者增加行的维数。
[0030]定义13、动态存储向量
[0031]动态存储向量指能够根据实际的需要进行动态的更新向量中元素单元值的存储向量。
[0032]定义14、动态存储参数
[0033]动态存储参数指参数的值能够根据存储的需要对参数的取值进行动态的改变。
[0034]定义15、FFT
[0035]FFT即快速傅里叶变换,计算离散傅里叶变换的一种快速算法。快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的。采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著。详见“程乾生.数字信号处理.北京大学出版社,北京,2003”。
[0036]定义16、单载频信号
[0037]单一载频脉冲信号可以表示为矩形信号与余弦信号的乘积:
【权利要求】
1.一种基于动态规划的多帧相参积累目标检测前跟踪方法,其特征是它包括如下步骤: 步骤1、相关参数的初始化 初始化的参数均已知且如下所示:雷达发射脉冲的载频记为f。;雷达发射脉冲重复时间为记T ;雷达的距离分辨率记为δ r ;相参处理的雷达数据帧数记为K,K为正整数;雷达在距离向上的距离单元个数记为L ;雷达扫描空间被划分成的方位向个数记为N,雷达在每个方位向发射的脉冲个数记为M ;帧序号记为1,第I帧的回波方位向序号记为m,第1+1帧的回波方位向序号记为P,第I帧第m个方位向的雷达回波可以表示成一个L行M列的矩阵,记为Sfi,且第1+1帧第P个方位向的雷达回波可以表示成一个L行M列的矩阵,记为5f+1,其中m为第I帧的回波方位向序号,P为第1+1帧的回波方位向序号,取值范围为1=1,2,.3,-,K-l,m=l, 2, 3,…,N,p=l,2,3,…,N ;雷达虚警门限值记为Vs ;电磁波传播速度记为V ;目标在两帧数据之间的方位向走动最大值为Λ X ;目标回波相位二次项系数最小值记为Ymin ;目标回波相位二次项系数最大值记为Ymax ;回波相位二次项系数参考值个数记为G ; 步骤2、利用动态规划得到积累矩阵 采用传统的动态规划方法进行如下循环: 步骤2.1、选取第一帧与第二帧相关联的回波数据 初始化步骤I中的帧序号I和方位向序号m, P,令1=1, m=l, p=l ;定义一个MXM行K列的动态存储矩阵A,并初始化动态存储矩阵A的所有元素为零,动态存储A的行序号记为r,则 r=l,2,".,ΜΧΜ,初始化 r=l,转到步骤 2.1.1 ;
步骤2.1.1 取出步骤I中的第I帧第m个方位向的雷达回波矩阵I),并取出第1+1帧第P个方位向的回波矩阵= U,转到步骤2.1.2 ;
步骤2.1.2 如果|p-m| >Δχ,将P的值增加1,转到步骤2.1.3 ;其中|.1表示绝对值运算,>表示大于,ΔX为步骤I中已知的方位向走动最大值; 如果|p-m|≤Δ X,将m的值存入动态存储矩阵A的第r行第一列,将P的值存入动态存储矩阵A的第r行第二列,并令r的值增加I, P的值增加I,转到步骤2.1.3 ;其中|.表示绝对值运算, <表示小于或者等于,Δ X为步骤I中已知的方位向走动最大值;
步骤2.1.3 如果P≤N,则转到步骤2.1.1 ; 如果P > N,则将P置为1,将m的值增加I,转到步骤2.1.1 ;
步骤2.1.4 如果m≤N,则转到步骤2.1.1 ; 如果m > N,则将m置为1,将I的值增加I,第一帧存储结束,转到步骤2.1.5 ;
步骤2.1.5 删除动态存储矩阵A的全部为零的行,得到第一帧完整关联存储后的矩阵,记为矩阵B,转到步骤2.2 ; 步骤2.2、从第二帧起选取关联回波数据 取步骤2.1.4中得到的第一帧完整关联存储后的矩阵B,第一帧完整关联存储后的矩阵B的行数记为Tl,第一帧完整关联存储后的矩阵B的列数记为Yl,第一帧完整关联存储后的矩阵B的行序号记为i,取值范围i=l,2,…,Tl,其列序号记为j,取值范围j=l,2,...,Y1,第一帧完整关联存储后的矩阵B的元素记为B(i,j) (i=l,2,…,Tl ;j=l,2,…,Yl),令.i=l, 1=2, m=l, p=l,转到步骤 2.2.1 ;
步骤2.2.1 取出步骤I中的第I帧第m个方位向的雷达回波矩阵Smi,并取出第1+1帧第P个方位向的回波矩阵,转到步骤2.2.2'
步骤2.2.2 如果|p-m| >Δ X,转到步骤2.2.4,其中|.I表示绝对值运算,>表示大于,Δ χ为步骤I中已知的方位向走动最大值; 如果|p-m|≤Δχ,转到步骤2.2.3,其中I.|表示绝对值运算,≤表示小于或者等于,Δχ为步骤I中已知的方位向走动最大值;
步骤2.2.3 将m的值与矩阵B的第i行第j (j=l)列的值作比较: 如果相等,则将P的值存入第一帧完整关联存储后的矩阵B的第i行第j(j=l+l)列,即B(i,j)=p, j=l+l,将p的值增加I,转到步骤2.2.5 ; 如果不相等,则将i的值增加1,转到步骤2.2.4 ;
步骤2.2.4 如果i≤Tl,则转到步骤2.2.3; 如果i > Tl,则将P的值增加I,转到步骤2.2.5 ;
步骤2.2.5 如果P≤N,则转到步骤2.2.1 ; 如果P > N,则将P置为1,将m的值增加I,转到步骤2.2.6 ;
步骤2.2.6 如果m≤N,则转到步骤2.2.1 ; 如果m > N,则将m置为1,将I的值增加I,转到步骤2.2.7 ;
步骤2.2.7 如果I ≤ K-1,则转到步骤2.2.1 ; 如果I > K-1,则整个动态规划步骤结束,得到针对步骤2.1.5中的矩阵B利用动态规划积累后所得到的矩阵,记为矩阵E,转到步骤3 ; 步骤3删除无效数据 对于步骤2.2.7中得到的矩阵E,删除矩阵E中非零元素个数小于K的行,得到删除无效行后的矩阵,记为矩阵F,转到步骤4 ; 步骤4相参积累 步骤4.1 取出步骤3中得到的矩阵F,统计矩阵F的行数,记为T2,统计矩阵F的列数,记为Y2,矩阵F的行序号记为al,矩阵F的列序号记为a2,取值范围al=l,2,…,T2,a2=l,2,…,Y2 ;定义一个L行MXNXK列动态积累矩阵C,并将矩阵C的所有元素置零;定义一个T2行G列的动态存储矩阵H,动态存储矩阵H的行序号记为zl,列序号记为z2,则矩阵H的第zl行第z2列的元素记为H(zI,z2) (z 1=1,2,...T2,z2=l,2,…,G),将动态存储矩阵H的所有元素置零;定义一个最大值存储参数W ;初始化al=l,相参积累方法如下: 步骤4.2 首先取出矩阵F第al行所有列的数据,记为Ral,1; Ralj2,…,Ral,T2,其中Ral,a2(a2=l,2,…,T2)为整数;然后按照行不变,列数递增的顺序,将步骤I中的雷达回波矩阵
【文档编号】G01S13/66GK103513244SQ201310486037
【公开日】2014年1月15日 申请日期:2013年10月17日 优先权日:2013年10月17日
【发明者】张晓玲, 师同彦, 张龙 申请人:电子科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1