一种用于模拟低渗储层压裂直井水驱油实验的装置及方法

文档序号:6186100阅读:257来源:国知局
一种用于模拟低渗储层压裂直井水驱油实验的装置及方法
【专利摘要】本发明公开了一种用于模拟低渗储层压裂直井水驱油实验的装置及方法。该装置包括设于烘箱内的地层油中间容器、地层水中间容器、注入水中间容器、径向岩心夹持器Ⅰ和径向岩心夹持器Ⅱ;地层油中间容器、地层水中间容器和注入水中间容器的入口与驱替泵相连通;地层油中间容器、地层水中间容器和注入水中间容器的出口均依次与径向岩心夹持器Ⅰ和径向岩心夹持器Ⅱ相连通;径向岩心夹持器Ⅱ的出口端依次与回压控制阀、回压表和液体计量容器相连接;液体计量容器的顶部与气体计量器相连通。本发明还提供了利用该装置评价渗储层压裂直井水驱油效果的方法。本发明填补了国内模拟裂缝远端的径向流和裂缝内双线性流的耦合流动实验装置的空白,可真实地模拟低渗储层压裂直井水驱开发效果。
【专利说明】一种用于模拟低渗储层压裂直井水驱油实验的装置及方法
【技术领域】
[0001]本发明涉及一种用于模拟低渗储层压裂直井水驱油实验的装置及方法,属于石油和天然气的勘探开发领域。
【背景技术】
[0002]国内低渗透油气田石油地质储量丰富,占陆地探明储量的26.9%,一般需要压裂才能达到经济开采要求。在低渗油藏开发过程中,常需要进行室内物理模拟实验,评价油藏的水驱开发效果。低渗透油藏压裂直井开发实践表明:深层储层经水力压裂,往往形成一条过井的单一的垂直裂缝,在裂缝表面将会产生垂直裂缝表面的地层线性流动,在裂缝内部,存在朝向井的不稳定线性流动;在裂缝远端为拟径向流。目前,低渗透储层压裂直井的水驱油实验主要采用将实验岩心压裂成垂直缝放入单向流岩心夹持器中,模拟水驱开发效果,而未考虑到裂缝远端未压裂部分的驱替效果和径向渗流特征,造成实验误差大,严重影响了模拟效果,无法为现场试验提供有力的指导。

【发明内容】

[0003]本发明的目的是提供一种用于模拟低渗储层压裂直井水驱油实验的装置及方法,本发明提供的装置结构合理且操作简便;利用本发明的装置,可以定量模拟裂缝远端的径向流和裂缝内双线性流的耦合流动模型的水驱效果评价,更加有效地模拟地层流体实际渗流特征。
[0004]本发明所提供的一种用于模拟低渗储层压裂直井水驱油实验的装置,包括设于烘箱内的地层油中间容器、地层水中间容器、注入水中间容器、径向岩心夹持器I和径向岩心夹持器II ;
[0005]所述地层油中间容器、所述地层水中间容器和所述注入水中间容器的入口均与一驱替泵相连通;所述地层油中间容器、所述地层水中间容器和所述注入水中间容器的出口均依次与所述径向岩心夹持器I和所述径向岩心夹持器II相连通;
[0006]所述径向岩心夹持器I的入口端设有注入压力表;所述径向岩心夹持器II的出口端依次与回压控制阀、回压表和液体计量容器相连接;
[0007]所述液体计量容器的顶部通过一管路与一气体计量器相连通;
[0008]所述径向岩心夹持器I和所述径向岩心夹持器II分别与一围压控制泵相连接;所述径向岩心夹持器I可放置的岩心的内径与所述径向岩心夹持器II可放置的岩心的外径相等。
[0009]上述的装置中,所述径向岩心夹持器I的入口端和所述径向岩心夹持器II的出口端均设有观察窗,可用于观察流体的流动。
[0010]上述的装置中,所述地层油中间容器、所述地层水中间容器和所述注入水中间容器的出口端均与一过滤器相连接,用于过滤地层油、地层水和注入水中的杂质。
[0011]上述的装置中,所述径向岩心夹持器I和所述径向岩心夹持器II的径向上均设有若干个压力传感器,所述若干个压力传感器与一计算机相连接,可用于监测所述径向岩心夹持器I和所述径向岩心夹持器II径向上的压力。
[0012]本发明还进一步提供了利用所述装置评价渗储层压裂直井水驱油效果的方法,包括如下步骤:
[0013](I)分别获取目标油田低渗储层中直井压裂裂缝的长度、井控动用储量的半径和钻井取心获得的全直径岩心的半径,依次标记为xf、re和r ;并在所述全直径岩心中钻取半径为(rXxf) / re的同心岩心;
[0014]选择内径为(rXxf) / re的岩心放置于所述径向岩心夹持器I中;
[0015]选择外径为(rXxf) / re的岩心放置于所述径向岩心夹持器II中;
[0016](2)对所述外径为(rXxf)/ re的岩心进行人工造压裂裂缝,得到经过所述岩心的垂直裂缝,且所述垂直裂缝的长度为2 (rXxf) / re;
[0017](3)配制地层油、地层水和注入水;
[0018](4)向所述地层水中间容器中注入所述地层水,并将所述径向岩心夹持器I的出口端与所述回压控制阀相连接,然后启动所述驱替泵;在所述驱替泵的作用下,所述地层水流经所述径向岩心夹持器I ;当监测到所述液体计量容器中有所述地层水注入时,关闭所述驱替泵,即实现对所述径向岩心夹持器I的水驱;然后向所述地层油中间容器中注入所述地层油,启动所述驱替泵;在所述驱替泵的作用下,所述地层油流经所述径向岩心夹持器
I;当监测到所述液体计量容器中有所述地层油注入时,关闭所述驱替泵,即实现对所述径向岩心夹持器I的油驱;
[0019]向所述地层水中间容器中注入所述地层水,并将所述径向岩心夹持器II的入口端与所述地层水中间容器的出口相连接,然后启动所述驱替泵;在所述驱替泵的作用下,所述地层水流经所述径向岩心夹持器II ;当监测到所述液体计量容器中有所述地层水注入时,关闭所述驱替泵,即实现对所述径向岩心夹持器II的水驱;然后向所述地层油中间容器中注入所述地层油,启动所述驱替泵;在所述驱替泵的作用下,所述地层油流经所述径向岩心夹持器II ;当监测到所述液体计量容器中有所述地层油注入时,关闭所述驱替泵,即实现对所述径向岩心夹持器II的油驱;
[0020](5)根据低渗储层的实际油藏的温度,设定所述烘箱的温度;
[0021]根据开采条件,设定所述回压控制阀和初始注入压力,所述回压控制阀的压力为地层压力,且所述初始注入压力小于地层破裂压力;
[0022](6)在步骤(5)设定的温度和压力下,进行水驱评价试验,具体可按照SY/T5345中的规定进行,具体步骤如下:
[0023]向所述注入水中间容器中注入所述注入水,开启所述驱替泵;在所述驱替泵的作用下,所述注入水依次流经所述径向岩心夹持器I和所述径向岩心夹持器II ;并通过所述液体计量容器收集并计量流入所述液体计量容器中的地层油,即实现对储层压裂直井水驱油效果的评价。
[0024]上述的方法中,步骤(4)中,在进行所述水驱步骤之前,所述方法还包括对所述径向岩心夹持器I和所述径向岩心夹持器II进行清洗、烘干和抽真空的步骤,具体可按照SY/T5345中的规定进行。
[0025]上述的方法中,所述方法还包括通过所述压力传感器测定所述径向岩心夹持器I和所述径向岩心夹持器II径向上的压力的步骤。
[0026]通过本发明的方法,可以得到水驱采油率,即注入到所述液体计量容器中的地层油与所述径向岩心夹持器I和所述径向岩心夹持器II中的地层油的总量的比值;同时,通过本发明的方法,还可以进行评价聚合物驱和气驱的效果。
[0027]本发明与现有技术相比,具有以下有益效果:
[0028]( I)本发明填补了国内模拟裂缝远端的径向流和裂缝内双线性流的耦合流动实验装置的空白,可以真实地模拟低渗储层压裂直井水驱开发效果;
[0029](2)本发明提供了一套低渗储层压裂直井水驱油效果的实验测试方法,原理可靠,操作简单方便。
【专利附图】

【附图说明】
[0030]图1为本发明用于模拟低渗储层压裂直井水驱油实验的装置的结构示意图。
[0031]图中各标记如下:
[0032]11高压驱替泵、12围压控制泵1、13围压控制泵I1、2烘箱、21地层油中间容器、22地层水中间容器、23注入水中间容器、24过滤器、25注入压力表、26入口观察窗、27径向岩心夹持器1、28径向岩心夹持器I1、31出口观察窗、32回压控制阀、33回压表、34液体计量容器、35气体计量器、41压力传感器、42计算机。
【具体实施方式】
[0033]下面结合附图对本发明做进一步说明,但本发明并不局限于以下实施例。
[0034]下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
[0035]下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
[0036]如图1所示,本发明提供的用于模拟低渗储层压裂直井水驱油实验的装置包括设于烘箱2内的地层油中间容器21、地层水中间容器22、注入水中间容器23、径向岩心夹持器I 27和径向岩心夹持器II 29。地层油中间容器21、地层水中间容器22和注入水中间容器23的入口均与一高压驱替泵11相连通,用于驱替液体。地层油中间容器21、地层水中间容器22和注入水中间容器23的出口均依次与径向岩心夹持器I 27和径向岩心夹持器
II29相连通,且在该相连通的管路上依次设有过滤器24、注入压力表25和入口观察窗26。径向岩心夹持器I 27和径向岩心夹持器II 28之间设有回压控制阀I 28,且径向岩心夹持器II 29的出口端依次与出口观察窗31、回压控制阀32、回压表33和液体计量容器34相连接,该液体计量容器34用于储存和计量液体,且液体计量容器34的顶部通过一管路与气体计量器35相连通,模拟试验过程中,进入至液体计量容器34的气体会进入至气体计量器35中。
[0037]本发明的装置中,径向岩心夹持器I 27和径向岩心夹持器II 29分别与围压控制泵I 12和围压控制泵II 13相连接,用于向径向岩心夹持器I 27和径向岩心夹持器II 29施加围压提供驱替动力。
[0038]本发明的装置中,径向岩心夹持器I 27内可以放置的岩心的内径与径向岩心夹持器II 29内可以放置的岩心的外径相等。
[0039]本发明的装置中,为了能监测径向岩心夹持器I 27和径向岩心夹持器II 29径向上的压力,在径向岩心夹持器I 27和径向岩心夹持器II 29的径向上设置多个压力传感器41,并将这些压力传感器41与计算机42相连接,以能实时监测各点的压力。具体设置的压力传感器41的个数,可根据实际需要进行调整。
[0040]利用本发明上述提供的装置评价渗储层压裂直井的水驱油效果,具体包括如下步骤:
[0041](I)分别获取目标油田低渗储层中直井压裂裂缝的长度、井控动用储量的半径和钻井取心获得的全直径岩心的半径,依次标记为xf、re和r ;并在所述全直径岩心中钻取半径为(rXxf) / re的同心岩心;
[0042]选择内径为(rXxf) / re的岩心放置于径向岩心夹持器I 27中;
[0043]选择外径为(rXxf) / re的岩心放置于径向岩心夹持器II 28中;
[0044]2)对所述外径为(rXxf) / re的岩心进行人工造压裂裂缝,得到经过岩心的垂直裂缝,且所述垂直裂缝的长度为2 (rXxf) / re;
[0045](3)根据地层原油的PVT分析报告配制地层油;根据地层水和注入水的化验分析报告配制地层水和注入水;
[0046](4)对岩心的原始状态进行恢复
[0047]首先,对径向岩心夹持器I 27和径向岩心夹持器II 29中的岩心进行清洗、烘干、抽真空,具体可按照SY/T5345中的规定进行;
[0048]然后,对径向岩心夹持器I 27的水驱和油驱的过程如下:
[0049]向地层水中间容器22中注入上述配制的地层水,并将径向岩心夹持器I 27的出口直接与液体计量容器34相连通,然后启动高压驱替泵11 ;在该高压驱替泵11的作用下,地层水流经径向岩心夹持器I 27 ;当监测到液体计量容器34中有地层水注入时,关闭高压驱替泵11,即实现对径向岩心夹持器I 27的水驱;然后向地层油中间容器21中注入上述配制的地层油,然后启动高压驱替泵11 ;在高压驱替泵11的作用下,地层油流经径向岩心夹持器I 27 ;当监测到液体计量容器34中有地层油注入时,关闭高压驱替泵11,即实现对径向岩心夹持器I 27油驱;
[0050]对径向岩心夹持器II 28的水驱和油驱的过程如下:
[0051]向地层水中间容器22中注入上述配制的地层水,并将径向岩心夹持器II 28的入口直接与地层水中间容器22的出口相连通,然后启动高压驱替泵11 ;在该高压驱替泵11的作用下,地层水流经径向岩心夹持器II 28 ;当监测到液体计量容器34中有地层水注入时,关闭高压驱替泵11,即实现对径向岩心夹持器II 28的水驱;然后向地层油中间容器21中注入上述配制的地层油,然后启动高压驱替泵11 ;在高压驱替泵11的作用下,地层油流经径向岩心夹持器II 28 ;当监测到液体计量容器34中有地层油注入时,关闭高压驱替泵11,即实现对径向岩心夹持器I 27油驱;
[0052]向地层油中间容器21中注入上述配制的地层油,然后启动高压驱替泵11 ;在高压驱替泵11的作用下,地层油依次流经径向岩心夹持器I 27和径向岩心夹持器II 29 ;当监测到液体计量容器34中有地层油注入时,关闭高压驱替泵11,即实现对径向岩心夹持器
I27和径向岩心夹持器II 29的油驱;
[0053]通过上述步骤,即得到径向岩心夹持器I 27和径向岩心夹持器II 29中束缚水饱和度和原始含油饱和度;[0054](5)根据低渗储层的实际油藏的温度,设定烘箱2的温度;
[0055]根据开采条件,如不同的压力水平、注采比等,设定回压控制阀28的压力为地层压力,且使初始注水压力小于地层的破裂压力;
[0056](6)在步骤(5)设定的温度和压力下,具体可按照SY/T5345中的规定进行评价试验,具体步骤如下:
[0057]向注入水中间容器23中注入上述配制好的注入水,开启高压驱替泵11 ;在该高压驱替泵11的作用下,注入水依次流经径向岩心夹持器I 27和径向岩心夹持器II 29 ;并通过液体计量容器34收集并计量流入液体计量容器34中的地层油,进而得到收集到的地层油与径向岩心夹持器I 27和径向岩心夹持器II 29中的地层油的总量的比值,即为水驱采油率,至此即实现对储层压裂直井水驱油效果的评价。
[0058]利用本发明的装置进行水驱效果评价时,还可通过计算机实时监测径向岩心夹持器I 27和径向岩心夹持器II 29径向上的各测试点的压力。
[0059]本发明提供的装置可以用来模拟裂缝远端的径向流和裂缝内双线性流的耦合流动模型的水驱效果,本领域技术人员还可以利用本发明的装置实现注聚、注气等驱替效果评价。
【权利要求】
1.一种用于模拟低渗储层压裂直井水驱油实验的装置,其特征在于: 所述装置包括设于烘箱内的地层油中间容器、地层水中间容器、注入水中间容器、径向岩心夹持器I和径向岩心夹持器II ; 所述地层油中间容器、所述地层水中间容器和所述注入水中间容器的入口均与一驱替泵相连通;所述地层油中间容器、所述地层水中间容器和所述注入水中间容器的出口均依次与所述径向岩心夹持器I和所述径向岩心夹持器II相连通; 所述径向岩心夹持器I的入口端设有注入压力表;所述径向岩心夹持器II的出口端依次与回压控制阀、回压表和液体计量容器相连接; 所述液体计量容器的顶部通过一管路与一气体计量器相连通; 所述径向岩心夹持器I和所述径向岩心夹持器II分别与一围压控制泵相连接;所述径向岩心夹持器I可放置的岩心的内径与所述径向岩心夹持器II可放置的岩心的外径相等。
2.根据权利要求1所述的装置,其特征在于:所述径向岩心夹持器I的入口端和所述径向岩心夹持器II的出口端均设有观察窗。
3.根据权利要求1或2所述的装置,其特征在于:所述地层油中间容器、所述地层水中间容器和所述注入水中间容器的出口端均与一过滤器相连接。
4.根据权利要求1-3中任一项所述的装置,其特征在于:所述径向岩心夹持器I和所述径向岩心夹持器II的径向上均设有若干个压力传感器,所述若干个压力传感器与一计算机相连接。
5.利用权利要求1-4中任一项所述装置评价渗储层压裂直井水驱油效果的方法,包括如下步骤:` (1)分别获取目标油田低渗储层中直井压裂裂缝的长度、井控动用储量的半径和钻井取心获得的全直径岩心的半径,依次标记为xf、re和r ;并在所述全直径岩心中钻取半径为(rXxf) / re的同心岩心; 选择内径为(rXxf) / re的岩心放置于所述径向岩心夹持器I中; 选择外径为(rXxf) / re的岩心放置于所述径向岩心夹持器II中; (2)对所述外径为(rXxf)/re的岩心进行人工造压裂裂缝,得到经过所述岩心的垂直裂缝,且所述垂直裂缝的长度为2 (rXxf) / re; (3)配制地层油、地层水和注入水; (4)向所述地层水中间容器中注入所述地层水,并将所述径向岩心夹持器I的出口端与所述回压控制阀相连接,然后启动所述驱替泵;在所述驱替泵的作用下,所述地层水流经所述径向岩心夹持器I ;当监测到所述液体计量容器中有所述地层水注入时,关闭所述驱替泵,即实现对所述径向岩心夹持器I的水驱;然后向所述地层油中间容器中注入所述地层油,启动所述驱替泵;在所述驱替泵的作用下,所述地层油流经所述径向岩心夹持器I ;当监测到所述液体计量容器中有所述地层油注入时,关闭所述驱替泵,即实现对所述径向岩心夹持器I的油驱; 向所述地层水中间容器中注入所述地层水,并将所述径向岩心夹持器II的入口端与所述地层水中间容器的出口相连接,然后启动所述驱替泵;在所述驱替泵的作用下,所述地层水流经所述径向岩心夹持器II ;当监测到所述液体计量容器中有所述地层水注入时,关闭所述驱替泵,即实现对所述径向岩心夹持器II的水驱;然后向所述地层油中间容器中注入所述地层油,启动所述驱替泵;在所述驱替泵的作用下,所述地层油流经所述径向岩心夹持器II ;当监测到所述液体计量容器中有所述地层油注入时,关闭所述驱替泵,即实现对所述径向岩心夹持器II的油驱; (5)根据低渗储层的实际油藏的温度,设定所述烘箱的温度; 根据开采条件,设定所述回压控制阀和初始注入压力,所述回压控制阀的压力为地层压力,且所述初始注入压力小于地层破裂压力; (6)在步骤(5)设定的温度和压力下,进行水驱评价试验,具体可按照SY/T5345中的规定进行,具体步骤如下: 向所述注入水中间容器中注入所述注入水,开启所述驱替泵;在所述驱替泵的作用下,所述注入水依次流经所述径向岩心夹持器I和所述径向岩心夹持器II ;并通过所述液体计量容器收集并计量流入所述液体计量容器中的地层油,即实现对储层压裂直井水驱油效果的评价。
6.根据权利要求5所述的方法,其特征在于:步骤(4)中,在进行所述水驱步骤之前,所述方法还包括对所述径向岩心夹持器I和所述径向岩心夹持器II进行清洗、烘干和抽真空的步骤。
7.根据权利要求5或6所述的方法,其特征在于:所述方法还包括通过所述压力传感器测定所述径向岩心夹持器I和所述径向岩心夹持器II径向上的压力的步骤。
【文档编号】G01M99/00GK103674593SQ201310632442
【公开日】2014年3月26日 申请日期:2013年12月2日 优先权日:2013年12月2日
【发明者】苑志旺, 杨莉, 杨宝泉, 皮建 申请人:中国海洋石油总公司, 中海油研究总院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1