测量物质浓度的传感器装置制造方法

文档序号:6213639阅读:125来源:国知局
测量物质浓度的传感器装置制造方法
【专利摘要】一种传感器装置,其用于在干扰物存在下测定开放式样品(130)中物质的浓度,所述传感器装置包括:第一光源(200),其发射被所述物质吸收的第一波长下的脉冲光(S1),第二光源(210),其发射透过所述物质的第二波长下的脉冲光(S2),光学装置(250、252、254、310、320、330、340),其用于沿相同的光路将发射的所述第一波长和第二波长的脉冲光(S1、S2)的至少一部分引导通过开放式样品(130),以及样品检测器(230),其布置在所述光路的末端用于接收透过所述样品(130)的所发射的所述第一波长和第二波长的光(S1、S2),其中所述干扰物作为沉积物形成在暴露于所述物质的所述光学装置(250、252、254、310、320、330、340)中的至少一个上,并且其中所述第一波长和第二波长被所述干扰物吸收。
【专利说明】
【技术领域】
[0001] 本发明涉及传感器装置。更具体地讲,本发明涉及用于测量在灌装机灭菌单元内 的灭菌物质浓度的传感器装置。 测量物质浓度的传感器装置

【背景技术】
[0002] 用于测定物质的含量、存在或浓度的不同传感器是人们所熟知的并且广泛用于不 同行业中,以监测或控制特定环境的物理参数。
[0003] 因为不同应用要求使用专门设计的传感器,所以存在大量可商购获得的不同传感 技术。
[0004] 一种此类传感技术包括光的使用,其中传感器测定通过被布置在所发射的光的光 路中的样品的吸收和/或透射量。因此,此类传感器装置通常包括布置在样品的第一侧上 的光源、布置在样品的相对侧上的检测器、以及用于测定吸收率和/或透射率的控制器。优 选所述控制器还包括计算单元,所述计算单元用于将检测到的透射率和/或吸收率转换成 样品量,诸如样品内特定物质的量。
[0005] 现有技术光传感器的实例描述于US3, 895, 233和EP0762107中。
[0006] 光传感器非常具有吸引力,因为它们可用于许多不同的样品。物质的光吸收谱通 常是复杂的曲线,所以通过选择所用光的特定的波长可获得显著的传感器分辨率。
[0007] 在食品加工中,诸如在液体食品包装中,将纸盒型(carton-based)包装材料折叠 成包装,随后其被液体食品填充。为遵守国家食品安全规定,而且确保封闭的食品质量,必 须确保对封闭的食品进行灭菌。然而,还必须在灌装和密封之前对包装本身进行灭菌。
[0008] 在现代灌装机中,包装材料通常用过氧化氢(H202)灭菌。灭菌可在让包装材料输 送通过的H 202灭菌室中进行,或者作为在灌装和密封之前将H202气体供入半成品包装中的 喷雾单元进行。因此,在灌装之前具有让包装材料通过的无菌区。
[0009] 已经证明H202的光吸收谱适合于用于检测和测量灌装机的无菌区中的H 202量的 光传感器。此类光传感器还要求使用光学透镜和窗以引导光通过H20 2并到达检测器中。然 而,在气体环境中,诸如在液体食品灌装机的无菌区中,光学组件上的沉积物有助于测量的 噪音增加,因此降低测量的质量。
[0010] 虽然上述传感器装置提供了一些优点,但是此类传感器装置的完整结构不适于其 中干扰物趋于在光路中形成沉积物的特定应用。
[0011] 因此,需要改善的传感器装置,尤其是对于测量样品中灭菌物质的量是至关重要 的这样的应用而言。


【发明内容】

[0012] 因此,本发明优选旨在通过提供根据所附权利要求所述的系统,单独地或以任意 组合减轻、缓解或消除上述确定的本领域中的缺陷和缺点中的一个或多个并解决至少上述 问题。
[0013] 本发明的一个目的是允许发射的不同波长的光按照相同光路通过样品并到达样 品检测器。
[0014] 本发明的另一个目的是减少传感器装置的电缆的数量。
[0015] 本发明的另一个目的是通过减少反应性物质(如H202)与电子元件直接接触的风 险来改善传感器装置的质量。
[0016] 因此,本发明的一个设想是以脉冲方式发射光使得单个样品检测器可以一定顺序 检测发射的光束,由此第一和第二光束可按照相同的光路通过样品到达样品检测器。
[0017] 另一个设想是提供传感器装置,所述传感器装置对作为沉积物形成于布置在所发 射的光的光路中的各种光学组件上的干扰物不敏感。
[0018] 根据一个方面,提供传感器装置,其用于在干扰物存在下测定开放式样品中物质 的浓度。所述传感器装置包括:第一光源,其发射被所述物质吸收的第一波长下的脉冲光, 第二光源,其发射透过所述物质的第二波长下的脉冲光,光学装置,其用于沿相同的光路将 发射的所述第一波长和第二波长的脉冲光的至少一部分引导通过开放式样品,以及样品检 测器,其布置在所述光路的末端用于接收所发射的透过所述样品的所述第一波长和第二波 长的光,其中所述干扰物作为沉积物形成在暴露于所述物质的所述光学装置中的至少一个 上,并且其中所述第一波长和第二波长被所述干扰物吸收。
[0019] 根据本发明的另一个方面,提供传感器装置,其用于在干扰物存在下测定样品中 物质的浓度。所述传感器装置包括:第一光源,其发射被所述物质和所述干扰物吸收的第一 波长下的脉冲光,第二光源,其发射透过所述物质并被所述干扰物吸收的第二波长下的脉 冲光,光学装置,其用于沿相同的光路将所发射的所述第一波长和第二波长的脉冲光的至 少一部分引导通过样品,以及样品检测器,其布置在所述光路的末端用于接收所发射的透 过样品的所述第一波长和第二波长的光。
[0020] 第一光源、第二光源、以及样品检测器可布置在样品的同一侧。该优点在于传感器 装置可制成较小体积,进而因为样品检测器定位成靠近控制器,所以所需要的电缆的数量 较少。
[0021] 传感器装置还可包括参考检测器,参考检测器用于接收所发射的不透过样品的所 述第一波长和第二波长的光的一部分。因此,因为参考检测器可对所发射的光在透过样品 之前进行精确测量,所以可改善测量的质量。
[0022] 参考检测器与第一光源、第二光源和样品检测器布置在样品的相同侧。这进一步 改善了传感器装置的紧密度。
[0023] 传感器装置还可包括控制器,所述控制器连接至第一光源、第二光源、样品检测器 和参考检测器,并被配置成以脉冲顺序激活第一光源和第二光源。所述控制器还被配置成 将样品检测器和参考检测器的接收信号与相关光源相关联。这在样品检测器作为单个检测 器而不是作为用于每个波长的分离的样品检测器实施时,是特别有利的。
[0024] 所述控制器还可配置成在不激活第一光源和第二光源中的任一光源的情况下,将 样品检测器和参考检测器的接收信号关联作为背景光。因此,因为当激活光源时,可从样品 检测器和参考检测器所接收的信号中减去背景噪音,所以可获得改善的精确度。
[0025] 第一光源可以为UV-LED,由此,使用稳健、小型、可靠且较便宜的设备。
[0026] 所述控制器可被配置成控制第一光源和第二光源的温度。这是有利的,因为可实 现光源寿命的延长,以及减少光强度和波长分布的变化。
[0027] 第一光源、第二光源、样品检测器以及参考检测器可被封闭在与样品隔离的第一 壳体中。这使得传感器装置特别适用于腐蚀性环境,如适用于含过氧化氢的样品。
[0028] 第一壳体可包括:第一光学窗,其允许从第一光源和第二光源发射的光离开第一 壳体并进入样品,以及第二光学窗,其允许从第一光源和第二光源发射的光离开样品并进 入第一壳体,其中所述传感器装置还包括加热器,所述加热器被配置成提高第一和第二光 学窗的温度。通过提供加热器,实现样品物质冷凝的风险降低。此外,通过加热光学窗,具 有较小的稳定剂沉积的风险,稳定剂沉积可能影响测量精确度。
[0029] 所述第一壳体还包括冷却器,其降低第一壳体内的温度。因此有可能能使光源接 近电源,从而减小传感器尺寸。
[0030] 所述控制器可连接至存储器,所述存储器存储所接收的检测器信号的参考值,并 且其中控制器还被配置成在接收的检测器信号不同于存储的参考值时,传递警报信号。这 在存在可能损坏光学窗的风险的情况下是优选的。在此类损坏的情况下,检测到的光强度 将偏离预期值,由此可由于碎玻璃而触发警报信号。
[0031] 根据进一步的方面,提供了能够提供封闭液体食品的纸盒型包装的灌装机。所述 灌装机包括根据前述方面的传感器装置。
[0032] 所述纸盒型包装在灌装和后续密封之前可以开口瓶的形式提供,所述开口瓶传输 通过灭菌单元,所述灭菌单元包括封闭了所述传感器装置的无菌气体歧管,并且其中所述 无菌气体歧管包括至少一个被导向开口瓶的无菌气体排放喷雾喷嘴。
[0033] 所述传感器装置的控制器还可被配置成向无菌物质供应部提供样品中的确定浓 度的物质,由此实现用于提供样品内所需物质浓度的反馈回路。
[0034] 根据还有的进一步的方面,提供一种用于借助于传感器装置在干扰物的存在下测 定样品中物质的浓度的方法。所述方法包括以下步骤:提供根据前述方面所述的传感器装 置,激活第一光源和第二光源,借助于所述样品检测器接收所发射的透过样品的所述第一 波长和第二波长的光;并由对应于所接收的所发射的光的至少一个信号测定在干扰物存在 下样品中物质的浓度。
[0035] 根据另一个方面,提供一种用于控制样品中物质浓度的方法。所述方法包括以下 步骤:提供连接至物质供应部的样品,根据前述方面测定样品中物质的浓度,将测定的浓度 与参考值进行比较,对应于所述测定的浓度与所述参考值之间的差值确定所述物质供应部 的校正操作参数,以及将所述校正操作参数传递至所述物质供应部以增加或减少样品中物 质的浓度。

【专利附图】

【附图说明】
[0036] 参考附图,本发明所具有的这些和其它方面、特征和优点将由以下本发明实施方 式的描述而变得显而易见并被阐明,其中
[0037] 图1是根据实施方式的传感器装置的示意图;
[0038] 图2是示出根据实施方式的传感器装置检测顺序的图;以及
[0039] 图3是包括传感器装置的灌装机的一部分的示意性侧视图。
[0040] 图4是设置在管道或室的壁中的传感器装置的示意图。

【具体实施方式】
[0041] 以图1开始,示出了传感器装置100的示意图。所述传感器装置100包括第一壳 体110、第二壳体120、以及布置在至少第一壳体110和第二壳体120之间的样品130。优选 第一壳体110借助于刚性支撑400连接至第二壳体120。
[0042] 样品130优选是开口的,即允许待测量的物质流入和流出样品130。因此,在一个 实施方式中,传感器装置100至少部分地布置在样品130内部用于原位测量存在于样品130 中的一种或多种物质。在优选的实施方式中,传感器装置100相对于样品130定位,使得第 二壳体120布置在样品130内部,而第一壳体110至少部分地布置在样品130外部。这也 示出在图4中,图4示出传感器装置100布置在限定开口样品的管道或室的壁550中。
[0043] 第一壳体110形成与样品130隔离的封闭空间,并封闭了第一光源200、第二光源 210、参考检测器220、和样品检测器230。另外,在第一壳体110内设置控制器240用于控 制光源200、210以及检测器220、230。
[0044] 第一壳体110还被分成两个坚直堆叠的隔室112、114。上隔室112封闭了电子元 件,即控制器240,光源200、210以及检测器220、230。另外,由此还在其中封闭了另外的电 源和/或连接器。
[0045] 下隔室114从上隔室112向下延伸以射出窗254、256。第二壳体120借助于延伸 通过样品130的刚性支撑杆400连接至第一壳体110。
[0046] 第一光源200发射第一波长或第一波长区间的光Si。第二光源210发射第二波长 或第二波长区间的光S 2。选择第一波长或第一波长区间,以主要被存在于样品130中的物 质以及被样品130中的其它不期望的物质吸收。选择第二波长或第二波长区间,以主要透 过存在于样品130中的物质,但是主要被样品130中的不期望的物质吸收。不期望的物质 在光路中例如形成为沉积物,这将在下面进一步描述。
[0047] 布置第一光源200和第二光源210使得所发射的光Si和S2分别彼此相对成90° 定向。还提供分束器250用于将发射的光Si和S 2分成两个独立的光路。第一光路从分束 器250直接延伸至参考检测器220,由此参考光速,即所发射的光Sp S2,直接投射在参考检 测器220上而不穿过样品130。
[0048] 第二光路从分束器250延伸至样品检测器230,由此样品光束,即所发射的光Si、 S2,在芽过样品130之后投射在样品检测器230上。
[0049] 第二光路包括第一聚焦透镜252以引导所发射的光成为窄光束。另外,第一 壳体110包括形成第一壳体110和样品130之间的界面的光射出窗254。
[0050] 穿过样品130之后,所发射的光Sp S2经由光入射窗310进入第二壳体120,所述 光入射窗310被布置成形成样品130和第二壳体120之间的界面。当光Sp S2传播到第二 壳体120中时,提供一对反射器320、330用于将发射的光Sp &重新定向成大约180°。
[0051] 在图1所示的实施方式中,反射器320、330是回射器或诸如棱镜350之类的后向 反射器的两个表面。所述棱镜为所谓的光束折叠道威棱镜,其成型为截锥直角棱镜,具有 第一成45°角表面320和第二成45°角表面330。在此类棱镜中,反射光平行于入射光射 出。在此类棱镜中,完成全内部反射,并且在入射光和反射光之间不出现或仅出现少量反射 损失。
[0052] 如图1中可见,布置棱镜使得入射光成直角被引导向棱镜的最大矩形表面。所述 光在第一成45°角表面320处内部反射90度,并继续到第二成45°角表面330,在所述第 二成45°角表面处其内部反射另外的90度,此后,其射出棱镜。因此,棱镜的光入射点和射 出点彼此变位(displace)。
[0053] 棱镜的材料优选为熔融二氧化硅。由熔融二氧化硅制成的棱镜可承受用气相过氧 化氢灭菌所需的温度。
[0054] 作为另外一种选择,可使用由蓝宝石制成的棱镜。在可供选择的实施方式中,反射 器320、330可以为常规直角棱镜的表面。在另一个可供选择的实施方式中,反射器320、330 可以为适用于反射紫外光的镜子,诸如紫外增强的铝涂覆镜。
[0055] 因此,光Sp S2在光射出窗340处射出第二壳体120,所述光射出窗340形成第二 壳体和样品130之间的射出界面,从而所述光在经由光入射窗256重新进入第一壳体110 之前再次透过样品130。将样品检测器230布置在高于用于调整所透射的光Sp S2的形状 的第二聚焦透镜258的第二光路中。
[0056] 因此,将第二光路,即穿过样品130的光路,设置成将Si和S2两者从分束器250引 导至样品检测器230的单个唯一路径。
[0057] 通过借助于反射器320、330重新引导光,可减小传感器装置100的总尺寸。然而, 光透过样品130的光路将是样品长度的两倍,从而样品130内物质浓度的局部变化会影响 测量的风险较小。
[0058] 还优选将参考检测器220设置成单个检测器,从而将对应于所检测的光的信号F1 传递到控制器240。
[0059] 另外,优选将样品检测器230设置成单个检测器,从而将对应于所检测的光的信 号F2传递到控制器240。
[0060] 因此,控制器240被配置成接收来自检测器220、230的信号FI、F2并计算存 在于样品130中的预定物质的量,同时补偿存在于第二光路中的不期望的物质(即干扰 物)的影响。可以各种方式进行此类计算,其中至少一个实例由相同 申请人:详细描述于 US2003-025909 中。
[0061] 然而,一般算法可在下面简要描述。参考检测器220提供对应于不穿过样品130 的所发射的光Si、S2的光强度的参考信号Fi。以类似方式,样品检测器230提供对应于穿过 样品130之后的发射的光Sp S2的光强度的样品信号F2。因此,控制器240接受四种不同 的光强度值,即i) Si的参考强度,ii) S2的参考强度,iii) Si的样品强度,和iv) S2的样品强 度。这些光强度值通过给所发射的光Sp S2施加脉冲并将各自的光强度值与其相应的光源 220、210相关联来获得。通过比较Si的样品强度与Si的参考强度,可获得由存在于样品中 的物质以及第二光路中其它不期望有的物质的总吸收值。另外,通过比较S 2的样品强度与 S2的参考强度,可获得由干扰物即不期望有的物质造成的吸收值。然后,可根据预定公式处 理这两个值,从而获得不包括干扰物的样品物质的浓度。
[0062] 传感器装置100可用于测定不同应用中的各种物质,但是优选的应用在液体食品 加工技术范围内并且是对食品包装材料灭菌室中灭菌剂的浓度的测定。通常,此类灭菌通 过使食品包装材料暴露于过氧化氢气体来提供。
[0063] 在此类应用中,由于为了确保最终包装以及待分配给消费者的被封闭产品的质 量,所需浓度是至关重要的事实,因此测量灭菌室中过氧化氢气体的精确浓度是有利的。在 包括气态过氧化氢的应用中,还必须避免物质与传感器的电子元件直接接触。这通过包括 透射窗254、256的密封第一壳体110实现。然而,使用过氧化氢通常包括添加本领域熟知的 各种稳定剂。此类稳定剂趋于在包括窗254、256、310、340在内的接触表面上产生沉积物。 从而,这些沉积物可代表存在于发射光&、S 2的光路中的干扰物或不期望有的物质。因此, 所提出的实施方式减少了在测定过氧化氢的实际浓度时此类沉积物的影响。
[0064] 对于该具体应用,第一光源可以在紫外(UV)范围内,所述光可被过氧化氢以及由 稳定剂形成的沉积物吸收。第二光源可发射可见光,所述可见光被干扰物即稳定剂沉积物 吸收,但是透过过氧化氢气体。优选第一光源200和/或第二光源210包括至少一个发光二 极管。为了检测过氧化氢的量,第一光源200,即UV LED,优选被配置成发射在220至300nm 范围内的光,而第二光源210,即可见光LED,优选被配置成发射在350至700nm范围内的 光。
[0065] 其它特征也适用于传感器装置100,用于提供对样品中物质浓度的更有效和稳健 的测量。
[0066] 在【具体实施方式】中,在支撑杆400上布置温度传感器400。所述支撑400可例如 形成为将第二壳体120牢固固定至第一壳体110的多个杆。所述杆可彼此分开以允许样品 130中的物质流过。在一个实施方式中,第一壳体110和第二壳体120形成为圆筒体,从而 在相对端部的外周处设置肋状物。因为吸收率是物质量的函数,所以通过测量样品130的 温度,可以更精确地测定实际的物质浓度。然而,浓度不仅取决于数量而且取决于压力和温 度,所以附加的温度传感器410允许更精确地测定给定压力下的浓度。为此,温度传感器 410直接或远程连接至控制器240。
[0067] 此外,第一壳体110的下隔室114包括加热器116,加热器116被配置成增加第一 壳体110的窗254、256的温度。加热器116可设置成围绕下隔室114的加热线圈,但是对 于特定的应用也可使用其它加热装置。
[0068] 加热器116提供多个优点,具体取决于样品130中物质的选择。如果物质为气态 过氧化氢,则加热器将减少在窗254、256上冷凝的风险。因为冷凝可导致入射光的吸收率 的变化,所以在减少或甚至消除冷凝的风险时,就提供改善的测量。另外,通过加热窗254、 256,由于过氧化氢稳定剂的存在以及它们沉积在冷表面上能力而导致沉积物形成的风险 较小。
[0069] 另外,第一壳体110可包括冷却器118,其用于降低第一壳体110中的温度。通过 降低温度,改善了诸如光源200、210和检测器220、230等电子元件的操作。冷却器可设置 为围绕内部壳体110的通道的封闭系统,从而诸如冷却水之类的冷却流体在入口 119a处进 入通道系统并且在出口 11%处离开。为了获得额外的冷却效率,可在第一壳体110内部设 置风扇,以使第一壳体110内的空气循环。
[0070] 优选控制器240接收来自布置在第一壳体110内的其它温度传感器的信号,使得 可在操作期间持续监控电子元件的温度。另外,借助于控制器240可实施反馈回路,使得冷 却流体的流量可在第一壳体110内的温度过高时增加。在温度超过存储的参考温度的情况 下,可将控制器调整成关闭光源200、210。存储的参考温度为45°C,但是当然可设置成另一 个温度值。此外或作为一种选择,在高温的情况下,控制器240可关闭加热器116。采取所 述措施,以延长LED,特别是UV-LED的寿命。
[0071] 到目前为止,参考检测器220和样品检测器230被设置成接收发射的光Si、S2的单 个检测器。然而,这些检测器220、230中每一个还可被设置为两个独立的检测器,其中每一 个检测器被配置成仅检测所发射的波长或波长区间中的一个。
[0072] 然而,在图1中,示出了优选的配置,其中参考检测器220以及样品检测器230设 置为能够检测全部发射光即Si和S 2两者的单个检测器。为了以稳健的方式将Si和S2彼此 分开,控制器240以脉冲方式控制光源220、210。
[0073] 参见图2,在tl时开始,控制器240激活与第一波长或第一波长区间的光脉冲Si 对应的第一光源200并持续较短的时间。因为检测器220、230被配置用于连续操作,所以 它们将感测到发射的光Si,然而不知道其是从光源200、210中的哪一个发射的。因为控制 器240触发了光源200,所以其可将检测到的信号与正确的光源200相关联。在下一步中, 在t2时,控制器激活第二光源210并持续较短的时间。控制器立即将检测到的信号与第二 光源210相关联。此时,控制器240能够测定存在于样品130中的物质的量,同时补偿任何 不期望有的干扰物。然而,物质的定量可通过在t3时提供第三检测样品来进一步改善。因 为光源200、210都不被激活,所以检测到的信号相当于影响先前测定的吸收率和/或透射 率的背景辐射。因此,可分别从先前在tl和t2时检测到的信号中减去t3时检测到的强 度。优选在操作其中安装了传感器装置100的设备期间重复该程序,该重复作为t4-t9示 出。测量背景光的实施方式在诸如食品加工的应用中是特别有利的,其中背景光可具有与 第一和/或第二波长相同的波长。例如,灌装机中的灭菌室可暴露于来自外部的光,即正常 房间照明的光。从而这种光可在可见光的范围内覆盖第二波长,因此减少此类背景光将改 善传感器装置的操作和可靠性。
[0074] 使光脉冲化减少了 UV-LED的操作时间,从而延长UV-LED的寿命。
[0075] 控制器240还可连接至存储器,所述存储器存储所接收到的检测器信号的参考 值。此类参考值可代表正常操作条件,由此可将控制器240进一步配置成在检测到的信号 偏离存储的参考值时触发警报。这在样品的条件可能导致损坏诸如窗254、256、310、340等 设备的情况下是特别有利的。如果,例如窗254、256、310、340中的一个将破裂,则检测到的 信号h、F 2的光强度将不同于预定值,所以可产生指示检修或维护的警告。
[0076] 存储器还例如储存作为温度的函数的光源效率的参考值。控制器被配置成在接收 到的样品检测器(230)的检测器信号(其与检测到的第一光源和第二光源200、210的温度 相关)显著小于存储的参考值时,传递警报信号。
[0077] 现在转到图3,示出了传感器装置100的工业应用。灌装机的一部分作为灭菌单元 500示出,在所述灭菌单元500中借助于载体520引入准备灌装的包装510。优选在相同灌 装机500的上游部分中,将包装520预先半折叠以形成具有一个开口端512和一个封闭端 514的纸盒型套筒。例如具有包括颈部、肩部和密封倾倒口的盖的塑料组件的封闭端514, 可例如被注塑成形成套筒的纸盒型层压体。
[0078] 灭菌单元500包括封闭气态灭菌物质(例如添加或不添加稳定剂的H202)的无菌 气体歧管530并包括多个排放喷嘴540,所述喷嘴540被配置成将喷雾状分布的灭菌物质喷 射到包装510的内部。
[0079] 将传感器装置100布置在歧管530内,以测量并确定灭菌物质的浓度。因此,当至 少第一壳体100与灭菌物质隔离时,传感器装置的样品130相当于歧管530的内部。因此 将传感器装置100配置成在灌装机操作期间连续操作,以精确测定灭菌单元500的质量和 稳健性。优选地,传感器装置100能够使所测定的样品130中的物质量返回至物质供应部 (未示出),以增加或减少歧管530 (即样品130)中的物质量。
[0080] 可在各种应用中实施此类反馈回路,从而可将所测定的浓度与对应于期望浓度的 参考值进行比较。因此可将所测定的浓度和参考值之间的差值转换成连接至样品的物质供 应部的经校正的操作参数,诸如流率。因此,传感器装置的控制器可被配置成将信号传递至 物质供应部,以增加或减少样品中物质的浓度。
[0081] 虽然已经描述了【具体实施方式】,但是应该理解在不脱离所附权利要求限定的范围 的情况下可对印刷系统进行各种修改。
【权利要求】
1. 一种用于在干扰物的存在下测定开放式样品(130)中物质的浓度的传感器装置,所 述传感器装置包括: 第一光源(200),其发射被所述物质吸收的第一波长下的脉冲光(SJ, 第二光源(210),其发射透过所述物质的第二波长下的脉冲光(S2), 光学装置(250、252、254、310、320、330、340),其用于沿相同的光路将所发射的所述第 一波长和第二波长的脉冲光(&、S2)的至少一部分引导通过所述开放式样品(130),以及 样品检测器(230),其布置在所述光路的末端用于接收所发射的透过所述样品(130) 的所述第一波长和第二波长的光(Si、S2),其中 所述干扰物作为沉积物形成在暴露于所述物质的所述光学装置(250、252、254、310、 320、330、340)中的至少一个上,并且其中所述第一波长和第二波长被所述干扰物吸收。
2. 根据权利要求1所述的传感器装置,其中所述第一光源(200)、所述第二光源(210)、 以及所述样品检测器(230)布置在所述样品(130)的同一侧上。
3. 根据权利要求2所述的传感器装置,其中所述光学装置包括布置在所述样品(130) 的第二侧上的反射器(320、330),所述反射器(320、330)-起适于将所述光(3 1、32)重新引 导至所述样品检测器。
4. 根据权利要求3所述的传感器装置,其中所述反射器(320、330)为后向反射器棱镜 (350)的表面,其中反射通过全内反射实现。
5. 根据权利要求1-4中任一项所述的传感器装置,其还包括参考检测器(220),该参考 检测器(220)用于接收所发射的所述第一波长和第二波长的光(Sp S2)的不透过所述样品 (130)的一部分。
6. 根据权利要求5所述的传感器装置,其中所述参考检测器(220)与所述第一光源 (200)、所述第二光源(210)以及所述样品检测器(230)布置在所述样品(130)的相同侧 上。
7. 根据权利要求5或6所述的传感器装置,还包括控制器(240),所述控制器(240)连 接至所述第一光源(200)、所述第二光源(210)、所述样品检测器(230)以及所述参考检测 器(220),并被配置成以脉冲顺序激活所述第一光源(200)和第二光源(210),所述控制器 还被配置成将所述样品检测器(230)和所述参考检测器(220)的接收信号(FpF 2)与相关 的所述光源(200、210)相关联。
8. 根据权利要求7所述的传感器装置,其中所述控制器(240)还被配置成在不激活所 述第一光源(200)和所述第二光源(210)中的任一个的情况下,将所述样品检测器(230) 和所述参考检测器(220)的接收信号(FpF 2)关联作为背景光。
9. 根据前述权利要求中任一项所述的传感器装置,其中所述第一光源(200)为 UV-LED〇
10. 根据权利要求7-9中任一项所述的传感器装置,其中所述控制器(240)被配置成控 制所述第一光源(200)和所述第二光源(210)的温度,并且在该温度超过所存储的参考温 度时关闭所述源。
11. 根据权利要求6-10中任一项所述的传感器装置,其中将所述第一光源(200)、所 述第二光源(210)、所述样品检测器(230)以及所述参考检测器(220)封闭在与所述样品 (130)隔离的第一壳体(110)中。
12. 根据权利要求11所述的传感器装置,其中所述第一壳体(110)包括: 第一光学窗(254),其允许从所述第一光源(200)和所述第二光源(210)发射的光(Sp S2)离开所述第一壳体(110)并进入样品(130),以及第二光学窗(256),其允许从所述第一 光源(200)和所述第二光源(210)发射的光(Sp S2)离开样品(130)并进入所述第一壳体 (110),其中所述传感器装置(100)还包括加热器(116),所述加热器(116)被配置成提高所 述第一和第二光学窗(254、256)的温度。
13. 根据权利要求11或12所述的传感器装置,其中所述第一壳体(110)包括冷却器 (118),所述冷却器(118)用于降低所述第一壳体(110)内的温度。
14. 根据权利要求7-13中任一项所述的传感器装置,其中所述控制器(240)连接至存 储器,所述存储器存储所接收的检测器信号(FpF 2)的参考值,并且其中所述控制器(240) 还被配置成在所接收的检测器信号(FpF2)不同于所存储的参考值时,传递警报信号。
15. -种能够提供封闭液体食品的纸盒型包装的灌装机,其包括根据权利要求1-12中 任一项所述的传感器装置(100)。
16. 根据权利要求15所述的灌装机,其中所述纸盒型包装在灌装和后续密封之前以开 口瓶(510)的形式提供,所述开口瓶(510)传输通过灭菌单元(500),所述灭菌单元(500) 包括封闭了所述传感器装置(100)的无菌气体歧管(530),并且其中所述无菌气体歧管 (530)包括至少一个被导向所述开口瓶(510)的无菌气体排放喷雾喷嘴(540)。
17. 根据权利要求16所述的灌装机,其中所述传感器装置(100)的控制器(240)被配 置成向无菌物质供应部中提供所述样品(130)中的确定浓度的物质。
18. -种用于借助于传感器装置在干扰物的存在下测定样品中的物质的浓度的方法, 所述方法包括以下步骤: 提供根据权利要求1-14中任一项所述的传感器装置, 激活所述第一光源和所述第二光源, 借助于所述样品检测器接收所发射的透过所述样品的所述第一波长和第二波长的光, 以及 由对应于所接收的所述所发射的光的至少一个信号测定在干扰物存在下样品中的物 质的浓度。
19. 一种用于控制样品中的物质的浓度的方法,所述方法包括以下步骤: 提供连接至物质供应部的样品, 根据权利要求16测定所述样品中的所述物质的浓度, 将所测定的浓度与参考值进行比较, 对应于所述所测定的浓度与所述参考值之间的差值,确定所述物质供应部的校正操作 参数,以及 将所述校正操作参数传递至所述物质供应部,以增加或减少所述样品中的所述物质的 浓度。
【文档编号】G01N21/31GK104114449SQ201380009460
【公开日】2014年10月22日 申请日期:2013年3月14日 优先权日:2012年3月27日
【发明者】安德里亚·玛萨利, 欧亨尼奥·西吉诺尔菲, 波·伦贝里, 汉斯·哈尔斯坦迪斯, 希勒瓦·德巴克 申请人:利乐拉瓦尔集团及财务有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1