水分检测传感器、缺陷检测传感器及利用其的传感器阵列的制作方法

文档序号:11287342阅读:275来源:国知局
水分检测传感器、缺陷检测传感器及利用其的传感器阵列的制造方法与工艺

本发明涉及水分检测传感器、缺陷检测传感器及利用其的传感器阵列,更详细地说,涉及利用与水(水分)可逆地产生反应而合成荧光的水分敏感性化合物,在短时间内可逆地感知水分并对极微量的水分也具有高敏感度的水分检测传感器、缺陷检测传感器及利用其的传感器阵列。



背景技术:

近来,在显示器领域受瞩目的oled适用于小型手机到55英寸的tv等多种领域。oled显示器中重要的技术之一是与oled的寿命及耐久性相关的气体障壁技术(水分及氧气阻隔技术或封装技术)。即,oled对水分非常敏感,水分透过度(watervaportransmissionrate,wvtr)允许值为10-6g/㎡day(基板1平米中每天透过的水分量)以下。当前,oled使用玻璃基板,因此基板本身的水分透过度没有问题,通过提高封装材料及密封材料的障壁特性来重点解决水分透过问题。

另外,具有柔韧(flexible)形态的柔性显示器或电子纸等设备与目前的硬(hard)电子产品不同,它们非常轻薄、易弯曲且能够折叠,预想日后会在市场上占据重要位置。但这种形态的柔性电子产品使用不是玻璃的塑料(高分子)作为基板,因此会发生很多问题。即,塑料基板由具有分子间致密度低的空间(freevolume)的结构构成,大量水分会通过基板本身进入设备内部,水分透过量曾达到101g/㎡day以上。该数值是要求oled显示器的wvtr允许值的107倍。因此,正在开发在塑料基板上放置多种形态的障壁膜来防止wvtr的技术,具代表性的是高分子/陶瓷多层膜结构。

另外,与如所述的wvtr防止技术一同开发的测定材料的wvtr物性的技术也非常重要。具代表性的wvtr测定技术有三种,(1)透过率测定法,(2)ir测定法,(3)质量分析法,(4)钙测试法。

尤其,钙测试法是测定10-4g/m2day以下的极微量透过率的代表性方法,该技术利用uv-visible光来测定不透明的钙因与水分的反应而变得透明的程度,由此测定透过率的方法。通常,使非活性气体或干空气中水蒸气达到饱和,将其投入到一定量反应物质(例如钙)中,通过测定透过率来获得反应物质变透明的程度(氢氧化钙),并通过此来测定wvtr的方法。但是,通过这种方法,测试试片只能获得数cm一下的小的部分的水分透过率,只能获得相对比较值而不能获得绝对的水分透过率,因此难以应用到大面积生产的显示器设备的基板及障壁层的水分透过量的测定。

ir测定方法是利用了水分子的旋转、振动、并进运动的能源等级相当于ir波长且照射ir波长的光时吸收该光的原理,科学上应用较多,但因检测器的敏感度局限,难以测定10-4g/㎡day以下的水分透过量。

质量分析法也基于科学原理而能够测定水分透过量,但如ir测定法,因多种问题而难以测定10-4g/㎡day以下的水分透过量。并且,对水分透过度造成最大影响的因素是薄膜上产生的缺陷。因此,缺陷的实时监测对水分透过度的解决非常重要。

因此,能够测定10-4g/㎡day以下的水分透过量并在短时间内进行测定的高速测定方法在显示器市场中的需求非常大,为此,需要开发一种对极微量的水分也具有较大光特性变化的水质测定系统及能够测定缺陷的方法。



技术实现要素:

(要解决的技术问题)

本发明的目的在于提供一种水分检测传感器,能够在短时间内可逆地感知水分且对极微量的水分也具有高敏感度。

本发明的另一目的在于提供一种以感知层应用所述水分检测传感器的缺陷检测传感器。本发明的另一目的在于提供一种包括所述水分或缺陷检测传感器的传感器阵列。

(解决问题的手段)

本发明提供一种水分检测传感器,包括选自钙黄绿素、钙黄绿素乙酰氧基甲基酯(calceinacetoxymethylester,calcein-am)及钙黄绿素蓝(calceinblue)中的一种以上的水分敏感性化合物。

优选地,所述水分敏感性化合物为由以下化学式1表示的钙黄绿素。

[化学式1]

所述水分检测传感器还可包括选自au、ag、cu、co、rh、ti及fe中的一种以上的金属或非金属元素。

并且,本发明提供一种缺陷检测传感器,具备包括所述水分敏感性化合物的感知层而与水分反应时发出荧光。

并且,本发明提供一种水分或缺陷检测传感器阵列,包括:所述水分检测传感器或缺陷检测传感器;发光部,使水分敏感性荧光体发光;及受光部,接受从所述水分敏感性荧光体释放的荧光。

(发明的效果)

本发明的水分检测及缺陷检测传感器不受共存气体的妨碍而能够仅精确定量水分,因此选择性优异、因可逆而能够继续再使用,从而降低所需费用,有效监测水分的浓度变化。

并且,具有因敏感度优异而能够进行精密的检测,回应速度非常快的优点。并且,因水分易通过缺陷渗透且荧光强度的增加,能够利用此来容易地监测缺陷。

附图说明

图1是改变向包括钙黄绿素的dmf溶液中添加的水分含量并记录观察到的荧光的增加量的图表。

图2是本发明的缺陷检测传感器及其使用形态的模式图。

图3是将本发明的水分敏感性化合物适用为感知层的缺陷检测传感器上的层叠薄膜的缺陷的观察照片。

具体实施方式

本发明提供一种水分检测传感器,包括选自钙黄绿素、钙黄绿素乙酰氧基甲基酯(calceinacetoxymethylester,calcein-am)及钙黄绿素蓝(calceinblue)中的一种以上的化合物。

所述化合物由以下化学式1-3表示。

[式1:钙黄绿素]

[式2:钙黄绿素-am]

[式3:钙黄绿素蓝]

所述化合物是已知化合物且可以在商业上获得的化合物。

所述化合物可通过非荧光性物质或水分的添加而变换成发出荧光的物质,添加所述水分发出荧光及荧光的猝灭是可逆的。

以用化学式1表示的化合物即钙黄绿素为例而对本发明的化合物的作用进行说明。

所述钙黄绿素是已知的发出荧光的物质。该化合物的激发波长为492nm,荧光波长在547nm出现,但钙黄绿素在没有水分即水分子的状态下,受到未共享电子的影响,化学式1成为荧光猝灭(quenching)而失去荧光的状态。但是,所述钙黄绿素可通过添加或去除水分而相互变换,如以下的反应式1,所述水分的添加或去除反应是可逆的。

若更具体地说明,化学式1在没有水分子的状态下,受到氮原子的未共享电子的影响,引发化学式1的荧光猝灭(quenching)的效果,即pet(photo-inducedelectrontransfer)现象,以不表现荧光的路径释放吸收的能源(nonradiativerelaxation)。但是,存在水分子时,氮原子的未共享电子不再引发pet现象,化学式1的荧光将表现(turn-on)。根据发明人的反复实验,利用所述化合物的水分检测传感器能够检测100ng/cc的水分浓度以下的极微量的水分。

另外,本发明的水分检测传感器中所述水分敏感性化合物表现的pet现象可通过与金属或转移金属的键合而扩大。此时,

所述水分敏感性化合物与金属或转移金属的键合是形成复合(complex)形态的配位键,举例来说,作为以该目的使用的金属或转移金属可以是au、ag、cu、co、rh、ti或fe元素。

并且,本发明提供一种具备包括上述水分敏感性化合物的感知层的缺陷检测传感器。图2是本发明的缺陷检测传感器及其使用形态的模式图。图2中,缺陷检测传感器包括形成在玻璃基板上的感知层,所述感知层包括上述的水分敏感性化合物。另外,在感知层上层叠包括作为检测对象的缺陷的薄膜,透过所述薄膜的缺陷的水分与水分敏感性化合物产生反应而发出荧光,检测到层叠在感知层上的薄膜的缺陷。此时,检测到的是缺陷的位置和大小。

根据本发明的缺陷检测传感器的一实施例,所述感知层可通过将上述的水分敏感性化合物涂在基板上而形成。作为该目的使用的基板可使用玻璃、聚烯烃或聚酯薄膜等。此时,作为形成所述感知层的涂布方法,举例来说,可从旋转涂布、刮棒涂布、刮刀涂布、微凹版涂布、辊式涂布等湿式涂布或热蒸镀、溅射等方法中选择适当的方法。

根据本发明的缺陷检测传感器的一实施例,所述感知层可一同使用水分敏感性化合物与不参与所述水分敏感性化合物的荧光机理的亲水性高分子。作为该目的使用的亲水性高分子,举例来说,可以是聚氧化乙烯(peo)、聚丙烯酸(polyacrylicacid)等。这种情况下,感知层可通过以下方法形成:将所述水分敏感性化合物和亲水性高分子溶解或分散到适当的溶剂而准备涂布液,然后将所述涂布液涂在基板上并进行干燥。举例来说,上述的亲水性高分子因其亲水性而不阻隔水分敏感性化合物与水分产生反应的机会,同时有助于水分敏感性化合物的均匀的分散、均匀的涂布。

所述缺陷检测传感器检测的缺陷是水分透过性缺陷。举例来说,存在于适用在oled显示器装置的偏光薄膜等光学薄膜、障壁层薄膜等的水分透过性裂纹、小孔、划痕或制造过程中厚度薄至规定厚度以下的部分。

所述缺陷可以死贯通薄膜的,但即使是不贯通薄膜的,只要具有10-6g/㎡day以上的水分透过度的缺陷即可适用本发明的缺陷检测传感器。另外,本发明的缺陷检测传感器除了使液体状态的水分通过的缺陷之外,使蒸汽(vapor)状态的水分通过的缺陷也被本发明的缺陷检测而感测。

另外,举例来说,存在可通过本发明的缺陷检测传感器检测的缺陷的薄膜可以是由氧化铝、硅石、硅、ito、zto、zns、gap、ta2o3、tio2、geo2及vox等形成的无机薄膜,或者由聚乙烯(pe)或聚丙烯(pp)等聚烯烃、聚对苯二甲酸乙二醇酯(pet)或聚萘二甲酸乙二醇酯(pen)等聚酯、聚苯乙烯(ps)、聚氨酯(pu)、环氧、聚醚砜(pes)、聚酰亚胺(pi)、聚醚醚酮(peek)、聚砜(psf)、聚醚酰亚胺(pei)等塑料材质形成的有机薄膜。举例来说,所述薄膜是作为构成太阳电池或oled、半导体装置的一部分层的,或作为液晶显示器、柔性显示器、平板显示器装置的一部分的。

本发明的实施例中,所述缺陷检测传感器可由基板及形成在其上的感知层构成。这种情况下,举例来说,将所述缺陷传感器接合到塑料薄膜等作为检测对象的薄膜,然后用公知的工具密封接合体的末端,使其接触水分或含水空气后,通过作为检查对象的薄膜,用荧光检测与包括在缺陷检测传感器的感知层的水分敏感性化合物产生反应的水分,从而确认存在于对象薄膜的缺陷的位置和大小。

另外,本发明的另一实施例中,举例来说,所述缺陷检测传感器可作为oled、太阳电池等光元件或显示器面板等元件的一部分。这种情况下,由基板和感知层构成的缺陷检测传感器中,基板形成在作为检查对象的薄膜层的下部,涂水分敏感性荧光体的层可成为基板。这种情况下,可在元件内直接检查形成在感知层上的薄膜的缺陷。

并且,提供包括本发明的所述水分或缺陷检测传感器的水分或缺陷检测传感器阵列。举例来说,所述传感器阵列包括:水分或缺陷检测传感器,包括水分敏感性荧光体的水分或缺陷检测传感器;发光部,使所述水分敏感性荧光体发光;以及受光部,接受从所述水分敏感性荧光体释放的荧光。

以下,通过实施例更详细地说明本发明的结构及其效果。以下的实施例仅用于更具体地说明本发明,本发明的范围并不限定于这些实施例。

实施例

(1)能够容易检测水分及薄膜缺陷的化合物的制造

利用化学式1的化合物合成工艺如下。使钙黄绿素(calcein,3-3'-bis[n,n-di(carboxymethy)-aminomethy]fluorescein)与作为亲水性高分子的聚氧化乙烯(polyethyleneoxide,peo)一同溶解到二甲基甲酰胺(dimethylformamide,dmf),以80℃、500rpm搅拌1小时。

(2)水分敏感性评价

为了确认水分的检测特性,利用荧光测定装置(plspectrometer,shinko公司产品,型号:s-3100)测定基于水分的量的荧光强度。将1x10-2[m]的化学式1化合物和peo的量调整为dmf的0.05wt%量并添加。水分的量增加20ppm的水分并观察了荧光增加。对水分敏感性的评价结果如图1。

图1是在dmf溶剂中包括1x10-2[m]浓度的钙黄绿素的溶液中,通过改变水分含量观察的荧光的增加量的记录图表。可通过图1确认钙黄绿素与水分接触时发出荧光。并且,增加的水分含量在实验范围,即2至12ng/cc的范围内,所述荧光的强度随着增加的水分含量而呈现线性增加。

(3)缺陷检测传感器

并且,为了确认缺陷特性,如图2,将包括化学式1的化合物的所述溶液旋转涂布到玻璃上,然后进行干燥而制造出缺陷检测传感器。在所述缺陷检测传感器的感知层上,利用射频磁控溅射(rfmagnetronsputtering)蒸镀方式形成无机层氧化铝(厚度50nm),观察此时形成的缺陷。将这样准备的样品放置在大气中一天,使得大气中的水分通过氧化铝层缺陷与化学式1的化合物充分反应。

并且,图3示出通过利用共聚焦激光扫描显微镜(confocallaserscanningmicroscope)的光学模式和荧光模式观察缺陷的照片。图3是观察形成在本发明的缺陷检测传感器上的氧化铝层上存在的缺陷的照片。通过图3确认到用荧光模式观察光学模式中难以用显微镜观察的缺陷时,能够清晰识别其位置和相对大小。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1