一种接地网网内电势差问题计算方法与流程

文档序号:12593306阅读:488来源:国知局
一种接地网网内电势差问题计算方法与流程

本发明属于电力系统接地网网内电势差分析领域。适用于电力系统发生不对称故障的情况下,入地故障电流产生的散流网内电势差和导通网内电势差的计算分析。



背景技术:

接地起着系统接地、保护接地、防雷接地和防静电接地的作用,是电力系统安全运行的基础保障。随着我国电力工业的迅猛发展,电力系统的容量不断提高,不对称短路故障电流也越来越大,这给变电站接地网设计提出了更严格的要求。我国接地规程对变电站接地网的电位升(GPR)高要求为5kV,并同时规定“经过采取一定安全措施之后可以再继续提高GPR的允许值”。IEEE的接地规程并没有对GPR作明确的要求,而更强调均衡电位。有文献指出,系统发生短路时设备的外壳和芯线的电位将同时升高,作用在设备绝缘层上的电压并非GPR,故把GPR作为接地系统设计的控制条件并不合理。

现代变电站中有大量的信号电缆和低压供电电缆就近与接地网相连。当电力系统发生不对称短路故障时,接地网上的电位分布呈现不均匀性,屏蔽层可能由于两端接地而烧毁。另外,变电站内许多仪器的接地端与接地网相连,接地网上不同点之间的电位差可能引发仪器误动。因此有必要深入研究接地网网内电势差问题。



技术实现要素:

为了解决以往对网内电势差研究更集中在二次系统设备和电缆耐压方面,对网内电势差问题研究不深的问题,本发明提出了一种接地网网内电势差问题的计算方法,为电力系统接地设计提供参考,提高电力系统安全运行水平。

为实现此目的,本发明所采用的技术方案是:一种接地网网内电势差问题计算方法,其特征在于,包括以下步骤:

(1)分析站内外故障时网内电势差的组成部分;

站内故障时网内电势差的分量由三部分组成:散流网内电势差、回流网内电势差和分流网内电势差,回流网内电势差和分流网内电势差均为电流从地网一端注入再从另一端流出的情况,故统称为“导通网内电势差”,回流/分流网内电势差数值上等于两端口间导通阻抗乘以回流/分流电流;

(2)建立散流网内电势差和导通网内电势差的理论模型;

定义编号节点m电压Vm和节点n电压Vn,由于支路导体足够稠密,可以近似认为支路p电压Up等于m和n电压的平均值:

Up=0.5(Vm+Vn) (1)

式(1)写成矩阵形式有:

U=KV (2)

式(2)中,U为支路电压列向量,V是节点电压列向量,K是支路-节点关联矩阵;当支路p与节点q相连时有K(p,q)=0.5,否则为0;

由接地理论有,支路散流电流I为:

I=SU (3)

式(3)中,S为支路散流阵;

设r为导体根数,支路散流电流可以等分到与之相连的两个节点,此时节点q的散流电流J(q)为:

式(4)写成矩阵形式有:

J=K′I (5)

式(5)中J为节点散流电流列向量,K′是K的转置;

记F为节点电流向量,运用电网络分析理论有:

F–J=YV (6)

式(6)中,Y是节点导纳矩阵,综合(2)~(6)式整理就有:

F=(K′SK+Y)V (7)

接地网的节点导纳矩阵Y的格式如下:

Y=AZ–1A′ (8)

式(8)中,A是关联矩阵,A′是A的转置矩阵,Z是接地网导体的支路阻抗矩阵;当支路p和节点m关联且p的方向背离m,则A(m,p)=1;当支路p和节点m关联且p的方向指向m,则A(m,p)=–1;当支路p和节点m不关联时,A(m,p)=0;Z的格式为:

Z(p,c)=jωM(p,c),m≠n (10)

其中,j为虚数单位,Z(p,p)是导体p的内阻抗,ω是角频率,μc和σc分别是p的磁导率和电导率,a是p的等效半径,I0和I1分别是修正的第一类零阶和第一类一阶贝赛尔函数,Z(p,c)和M(p,c)分别是导体p和导体c之间的互阻抗和互感;M(p,c)的表达式如下:

式(11)中,μ0为真空磁导率,θpc是导体p和导体c之间的夹角;

由于注入节点电流向量F已知,通过式(7)就可以求出节点电压向量V,然后相应求出支路电压向量U和支路散流电流向量I,这样接地网的等效接地阻抗、跨步电势、接触电势、地表电位分布、散流网内电势差的问题都可以解决,定义入地电流对应的节点电位复数向量差之模值的最大值为散流网内电势差D:

D=max|Vi-Vj|,i,j=1,…,n,i≠j (12)

取散流网内电势差D与GPR之比为散流网内电势差百分数W:

(3)利用散流网内电势差模型计算回流网内电势差和分流网内电势差;

导通网内电势差计算模型同散流网内电势差的计算模型完全一致,区别在于注入节点电流向量F需要按照分流/回流电流的位置,大小和方向来设定。

与现有技术相比,本发明具有如下的有益效果:本发明的接地网网内电势差问题的计算方法,研究了接地网网内电势差的计算模型,针对目前对网内电势差的研究未考虑分流电流和回流电流的影响的不足,对网内电势差问题开展了深入研究,为电力系统接地设计提供参考,提高电力系统安全运行水平。

附图说明

图1为站内短路故障及分流位置示意图。

图2为站外短路故障及分流位置示意图。

图3为地网模型示意图。

图4为某变电站的接地网俯视图。

具体实施方式

为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样在本申请所列权利要求书限定范围之内。

本发明的技术解决原理如下:

站内故障时网内电势差的分量由三部分组成:散流网内电势差、回流网内电势差和分流网内电势差。回流网内电势差和分流网内电势差均为电流从地网一端注入再从另一端流出的情况,故可统称为“导通网内电势差”,回流/分流网内电势差数值上等于两端口间导通阻抗乘以回流/分流电流。

站外短路时,取线路对杆塔短路的情况,站外故障时网内电势差由散流网内电势差和分流网内电势差组成。

散流网内电势差的理论模型可以参考场路结合的节点电压法来完成。假设接地网由众多埋地的接地导体构成,由于计算需要,接地网往往需要细分为足够稠密的支路导体R。支路导体的两个端点在模型中称为节点N。剖分后接地网的等效模型由r根导体和n个节点构成。

分流/回流电势差是由分流/回流电流形成的网内电势差,其计算模型同散流网内电势差的计算模型完全一致,区别在于注入节点电流向量需要按照分流/回流电流的位置,大小和方向来设定。

依据得出的,编制VC++程序,分析不同情况下接地网电阻、散流网内电势差和散流网内电势差百分数。

一种接地网网内电势差问题研究模型的实施步骤:

1.分析站内外故障时网内电势差的组成部分:

当站内发生不对称短路时,取母线对地短路的情况,如图1中FZ所示。短路电流由站内分量和系统分量构成。站内分量是回流电流IZ0,其回流路径是母线-地网-变压器。系统提供短路电流可分为入地电流IS0和分流电流IS1两部分。IS0流通路径是母线-地网-避雷线-系统中性点或者是母线-地网-避雷线-杆塔-大地-系统中性点。IS1流通路径为母线-地网-大地-系统中性点,或者是母线-地网-大地-杆塔-避雷线-系统中性点。

综合上述分析,站内故障时网内电势差的分量由三部分组成:散流网内电势差、回流网内电势差和分流网内电势差。回流网内电势差和分流网内电势差均为电流从地网一端注入再从另一端流出的情况,故可统称为“导通网内电势差”,回流/分流网内电势差数值上等于两端口间导通阻抗乘以回流/分流电流。

站外短路时,取线路对杆塔短路的情况,如图2中FS所示。变电站侧提供的短路电流IS由可分为入地电流IS0和分流电流IS1。所以站外故障时网内电势差由散流网内电势差和分流网内电势差组成。IS0流通路径为母线-杆塔-大地-地网-变压器-母线,或者是母线-避雷线-杆塔-大地-地网-变压器-母线。

2.建立散流网内电势差和导通电势差的理论模型;

定义编号节点m电压Vm和节点n电压Vn,由于支路导体足够稠密,可近似认为支路p电压Up等于m和n电压的平均值:

Up=0.5(Vm+Vn) (1)

式(1)写成矩阵形式有:

U=KV (2)

式(2)中,U为支路电压列向量,V是节点电压列向量,K是支路-节点关联矩阵。当支路p与节点q相连时有K(p,q)=0.5,否则为0。

由接地理论有,支路散流电流I为:

I=SU (3)

式(3)中,S为支路散流阵。

设r为导体根数,支路散流电流可等分到与之相连的两个节点,此时节点q的散流电流J(q)为:

式(4)写成矩阵形式有:

J=K′I (5)

式(5)中J为节点散流电流列向量,K′是K的转置。

记F为节点电流向量,运用电网络分析理论有:

F–J=YV (6)

式(6)中,Y是节点导纳矩阵,综合(2)~(6)式整理就有:

F=(K′SK+Y)V (7)

接地网的节点导纳矩阵Y的格式如下:

Y=AZ–1A′ (8)

式(8)中,A是关联矩阵,A′是A的转置矩阵,Z是接地网导体的支路阻抗矩阵。当支路p和节点m关联且p的方向背离m,则A(m,p)=1;当支路p和节点m关联且p的方向指向m,则A(m,p)=–1;当支路p和节点m不关联时,A(m,p)=0。Z的格式为:

Z(p,c)=jωM(p,c),m≠n (10)

其中,j为虚数单位,Z(p,p)是导体p的内阻抗,ω是角频率,μc和σc分别是p的磁导率和电导率,a是p的等效半径,I0和I1分别是修正的第一类零阶和第一类一阶贝赛尔函数,Z(p,c)和M(p,c)分别是导体p和导体c之间的互阻抗和互感。M(p,c)的表达式如下:

式(11)中,μ0为真空磁导率,θpc是导体p和导体c之间的夹角。

由于注入节点电流向量F已知,通过式(7)就可以很方便地求出节点电压向量V,然后相应求出支路电压向量U和支路散流电流向量I,这样接地网的等效接地阻抗、跨步电势、接触电势、地表电位分布、散流网内电势差的问题等都可以解决。定义入地电流对应的节点电位复数向量差之模值的最大值为散流网内电势差D:

D=max|Vi-Vj|,i,j=1,…,n,i≠j (12)

取散流网内电势差D与GPR之比为散流网内电势差百分数W:

3.利用散流网内电势差模型计算回流网内电势差和分流网内电势差

导通电势差计算模型同散流网内电势差的计算模型完全一致,区别在于注入节点电流向量F需要按照分流/回流电流的位置,大小和方向来设定F。

4.实际应用

某变电站的接地网俯视图如图4所示,站址土壤电阻率160Ω·m。水平导体材料为50mm×10mm扁钢。故障电流分布情况如下:A点60kA,B点–20kA,C点–5kA,D点–8kA,E点–10kA,入地电流为17kA。两个电缆位置Q1-Q2和Q1-Q3。

计算得到接地网的最大网内电势差为1187.6V,两根双端接地电缆承受的网内电势差分别为446.1V和265.7V。若两电缆分别使用两根30mm×3mm扁铜作为均压带,长度分别为140m和100m,计算得到双端接地电缆的承受的网内电势差分别为231.7V和68.3V,分别下降了48.1%和74.3%。证明了电缆沟中与二次电缆平行布置一根双端接地的扁铜或铜绞线对于降低电缆屏蔽层承受电压从而防止屏蔽层烧毁的有效性。故障电流较大时,网内电势差有可能超过1.4kV,可能会对二次设备造成影响。此时应适当增加钢材导体截面积或者在技术经济条件允许的情况下使用镀铜钢或者铜材接地网。

本说明书未作详细描述的内容属于本领域专业技术人员公知的现有技术。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1