一种基于多星协同的空间碎片运动状态联合确定方法与流程

文档序号:11771047阅读:457来源:国知局
一种基于多星协同的空间碎片运动状态联合确定方法与流程

本发明涉及一种基于多星协同的空间碎片运动状态联合确定方法,属于航天控制技术领域。



背景技术:

随着空间碎片数量的不断增加,对在轨正常运行的航天器造成的威胁越来越大,对空间碎片实施主动清除已成为主要航天国家的共识。为了避免空间碎片级联碰撞效应,近地轨道的大型碎片(废弃航天器/火箭体)是碎片清除的首要对象。为了对空间碎片进行捕获和控制,需要采取精确有效的天基空间碎片观测手段,掌握空间碎片的运动状态信息。

采用观测卫星组网,构成空间信息感知平台,是进行空间碎片运动状态确定的理想方式。观测卫星网络需要具备姿态轨道快速机动能力、网络构型构建和保持控制能力、对非合作目标的跟踪测量和状态识别能力。观测卫星网络中可配置3-4颗观测卫星,在每个观测卫星上配置双目立体视觉相对测量敏感器。空间碎片观测任务以观测卫星编队的快速逼近、网络构建和绕飞观测作为具体实施过程,观测卫星网络在接到任务指令后,首先进行轨道机动,运行到空间碎片一定范围内,直到相对测量敏感器可以捕获目标;然后,围绕空间碎片进行多星网络快速构建,在碎片附近进行绕飞,并通过协同姿态指向控制,使得各个观测卫星上的双目立体视觉相对测量敏感器可以从不同方向指向空间碎片进行观测;进而,通过多源测量信息融合和最优状态估计获取空间碎片的运动状态。



技术实现要素:

本发明的技术解决问题是:克服现有技术的不足,针对空间碎片捕获和控制的信息获取需求,为了解决单星观测精度较低、特征点易受遮挡、观测量不连续的问题,提出一种基于多星协同的空间碎片运动状态联合确定方法,通过增加观测卫星网络中节点的数目,通过信息融合改善相对位姿联合确定系统的性能,达到精确估计空间碎片运动状态的目的。

本发明的技术方案是:一种基于多星协同的空间碎片运动状态联合确定方法,步骤如下:

(1)选择主观测卫星相对于空间碎片的相对姿态四元数、空间碎片相对于惯性系的角速率、主观测卫星相对于空间碎片的相对位置矢量,以及主观测卫星相对于空间碎片的相对速度矢量作为状态变量;

(2)采取多颗观测卫星组网的方式实施空间碎片观测,利用多颗观测卫星上的双目立体视觉相对测量敏感器,获取空间碎片上的特征点位置矢量的观测量;

(3)利用扩展卡尔曼滤波算法处理步骤(2)中得到的空间碎片上的特征点位置矢量观测量,获得状态变量的估计值,即主观测卫星相对于空间碎片的相对姿态四元数、空间碎片相对于惯性系的角速率、主观测卫星相对于空间碎片的相对位置矢量,以及主观测卫星相对于空间碎片的相对速度矢量的估计值,从而实现基于多星协同的空间碎片运动状态联合确定。

所述步骤(1)中状态变量为:

其中,qsf=[qsf1qsf2qsf3qsf4]t表示主观测卫星相对于空间碎片的相对姿态四元数,ωf=[ωfxωfyωfz]t表示空间碎片相对于惯性系的角速率,ρ=[ρxρyρz]t表示主观测卫星相对于空间碎片的相对位置矢量,表示主观测卫星相对于空间碎片的相对速度矢量;观测卫星网络中的观测卫星数设为l个。

所述步骤(2)中空间碎片上的特征点位置矢量的观测量为:

y=h(x)+v

其中,y表示空间碎片上的特征点位置矢量的观测量;h(x)表示观测函数;a(qjs)表示从主观测卫星本体坐标系到观测卫星网络中第j颗观测卫星本体坐标系的姿态转换矩阵,根据主观测卫星与第j颗观测卫星的相对姿态四元数qjs计算得到,下标j=1,2,…,l,用于区分不同的观测卫星;a(qsf)表示从空间碎片本体坐标系到主观测卫星本体坐标系的姿态转换矩阵,根据相对姿态四元数qsf计算得到;pinj表示第j个特征点在空间碎片本体坐标系中的位置矢量;表示从空间碎片轨道坐标系到主观测卫星本体坐标系的姿态转换矩阵;rjs表示主观测卫星与第j颗观测卫星的相对位置矢量,v表示测量噪声。

所述步骤(3)中通过扩展卡尔曼滤波算法处理空间碎片上的特征点位置矢量观测量,获得状态变量的估计值具体为:

其中,为tk-1时刻状态变量的估计值,分别为tk时刻状态变量的估计值和预测值,为已知的状态转移函数,t为滤波周期,k(tk)为滤波增益阵,y(tk)为tk时刻的观测量。

本发明与现有技术相比的有益效果是:

采用本发明方法,部署多颗观测卫星接近空间碎片,并在空间碎片周围绕飞,构成分布式观测卫星网络,在各个观测卫星上部署双目立体视觉相对测量敏感器,协同实施立体观测,通过多源测量信息融合,提升空间碎片运动状态的估计精度。本发明所述方法有助于解决旋转空间碎片上的特征点易受遮挡,导致敏感器观测量不连续的问题;所设计的观测方程中状态变量选取与单星观测时相同,并不增加状态变量,为空间碎片运动状态确定系统的性能提升提供了保障。相对现有的基于单星观测的空间碎片运动状态确定方法,本发明所述方法精度更高。此外,该方法计算量小,适合在轨应用。

附图说明

图1为本发明流程图;

图2为多星协同观测示意图;

图3为观测卫星数目对相对姿态确定精度的影响曲线。

具体实施方式

下面结合附图对本发明的具体实施方式进行进一步的详细描述。

本发明提出基于多星协同的空间碎片运动状态联合确定方法,如图1所示,步骤如下:

(1)选择主观测卫星相对于空间碎片的相对姿态四元数、空间碎片相对于惯性系的角速率、主观测卫星相对于空间碎片的相对位置矢量,以及主观测卫星相对于空间碎片的相对速度矢量作为状态变量。状态变量的数学表达式为:

其中,qsf=[qsf1qsf2qsf3qsf4]t表示主观测卫星相对于空间碎片的相对姿态四元数,ωf=[ωfxωfyωfz]t表示空间碎片相对于惯性系的角速率,ρ=[ρxρyρz]t表示主观测卫星相对于空间碎片的相对位置矢量,表示主观测卫星相对于空间碎片的相对速度矢量。

(2)采取多颗观测卫星组网的方式实施空间碎片观测,利用多颗观测卫星上的双目立体视觉相对测量敏感器获取空间碎片上的特征点位置矢量的观测量。观测卫星网络中的观测卫星数设为l个。利用双目立体视觉相对测量敏感器获取空间碎片上的特征点位置矢量的技术比较成熟。空间碎片上的特征点位置矢量的观测量为:

y=h(x)+v

其中,y表示空间碎片上的特征点位置矢量的观测量,h(x)表示观测函数,a(qjs)(j=1,2,…,l)表示从主观测卫星本体坐标系到观测卫星网络中第j颗观测卫星本体坐标系的姿态转换矩阵,可根据主观测卫星与第j颗观测卫星的相对姿态四元数qjs=[qjs1qjs2qjs3qjs4]t计算得到,计算公式如下所示

下标j用于区分不同的观测卫星,a(qsf)表示从空间碎片本体坐标系到主观测卫星本体坐标系的姿态转换矩阵,可根据相对姿态四元数qsf计算得到,计算公式如下所示

pimj表示第j个特征点在空间碎片本体坐标系中的位置矢量,表示从空间碎片轨道坐标系到主观测卫星本体坐标系的姿态转换矩阵,可根据已知的观测卫星运动状态信息和相对位置估计值计算得到,rjs表示主观测卫星与第j颗观测卫星的相对位置矢量,可根据已知的观测卫星运动状态信息计算得到,v表示测量噪声。

(3)利用扩展卡尔曼滤波算法处理步骤(2)中得到的空间碎片上的特征点位置矢量观测量,获得状态变量的估计值,即主观测卫星相对于空间碎片的相对姿态四元数、空间碎片相对于惯性系的角速率、主观测卫星相对于空间碎片的相对位置矢量,以及主观测卫星相对于空间碎片的相对速度矢量的估计值,从而实现基于多星协同的空间碎片运动状态联合确定。通过扩展卡尔曼滤波算法处理空间碎片上的特征点位置矢量观测量,获得状态变量的估计值具体为:

其中,为tk-1时刻状态变量的估计值,分别为tk时刻状态变量的估计值和预测值,为已知的状态转移函数,可根据卫星姿态动力学模型和轨道动力学模型建立,t为滤波周期,k(tk)为滤波增益阵,y(tk)为tk时刻的观测量。卫星姿态动力学模型可参考北京航空航天大学出版社1998年出版的由章仁为编著的《卫星轨道姿态动力学与控制》一书,卫星轨道动力学可参考南京大学出版社2006年出版的由刘林、胡松杰等编著的《航天动力学引论》一书,卡尔曼滤波算法的增益阵k(tk)的计算方法可参考西北工业大学出版社1998出版的由秦永元、张洪钺、汪叔华编著的《卡尔曼滤波与组合导航原理》一书。

实施例

以由4颗观测卫星构成的观测卫星网络为例,通过仿真实例验证本发明所述方法的有效性,多星协同观测示意图如图2所示。假设空间碎片运行在半长轴为7100km的近圆轨道上环绕地球运动,具有25°/s的姿态角速度,观测卫星网络在距离空间目标约100m的位置上自然绕飞,双目立体视觉相对测量敏感器安装在各个观测卫星上,其位置测量精度为0.05m,在空间碎片表面选取4个不共线的特征点进行观测,特征点在空间碎片本体坐标系中的位置矢量如下:

pin1=[100]tm,pin2=[111]tm

pin3=[010]tm,pin4=[-11-1]tm

敏感器采样频率为10hz,仿真时间约为空间碎片的1个轨道周期。

仿真过程中,空间碎片和观测卫星网络的真实运动状态数据通过高保真度卫星轨道姿态仿真器产生,采用扩展卡尔曼滤波算法处理根据姿态轨道数据模拟产生的测量数据,估计空间碎片的相对姿态、惯性角速度、相对位置和相对速度。将滤波算法对状态变量的估计值与真实状态数据进行对比,计算滤波算法的估计误差。

通过仿真分析了多星协同观测对提高空间碎片运动状态确定系统性能的积极效果。信息融合是以现有技术手段改善系统性能的有效方法,根据信息融合理论,融合多个敏感器的冗余测量信息,构成组合系统,能够有效消除测量噪声的影响,取得超越单个子系统的估计精度。观测卫星网络中的观测卫星数目分别为1个、2个、3个和4个时,空间碎片运动状态确定系统的相对姿态估计误差统计值如图3所示。图中纵坐标表示相对姿态估计误差的大小,单位为°,横坐标表示观测卫星数目,单位为个。根据图3不难看出,如果增加用于空间碎片观测的观测卫星数目,则空间碎片运动状态确定系统性能有所改善。通过统计计算可知,采用基于4颗卫星协同观测的空间碎片运动状态联合确定方法,相对姿态估计精度优于0.05°,系统性能优于单星观测的情况。

本发明所述方法能够充分发挥多敏感器信息融合的作用,有效消除旋转空间碎片上的特征点易受遮挡、导致敏感器观测量不连续等因素对系统性能的不利影响,达到精确估计空间碎片运动状态的目的,为实现空间碎片高精度运动状态确定提供了一种理想解决方案。本发明的主要技术内容可用于跨尺度、旋转空间碎片的主动清除任务,并可推广应用于我国空间机动平台、在轨维护等新型战略系统的研制,能够提高我国在空间攻防领域的技术水平。

本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1