随钻连续可变深度震源微震定位探测方法与流程

文档序号:11261473阅读:446来源:国知局
随钻连续可变深度震源微震定位探测方法与流程

本申请是一件分案申请,原申请的申请日是2015.04.21,申请号是201510187917.1,发明创造名称是《随钻地震钻头侧帮地质构造探测方法》。

技术领域:

本发明涉及地质构造探测方法,具体涉及随钻连续可变深度震源微震定位探测方法。

技术背景:

自然界地震包括自然地震和人工地震,其中人工地震包括主动地震和被动地震,在地震勘探中,人工震源用来携带有用的地质信息数据;在地震勘探中的地震波是人工激发产生的,即为人工震源,可以分为两类,一类是炸药震源,另一类是非炸药震源。炸药震源激发的地震波具有良好的脉冲特性和能量高的优点,是野外油气勘探激发地震波的主要震源.非炸药震源有落重式震源、气爆震源、电火花震源、可控震源和随钻地震震源等。

在国外,早在1936年,weatherby就提出了将钻头振动作为震源对地下构造进行成像的思路,上世纪80年代以来,随钻地震(swd,seismicwhiledrilling)是逐步发展起来,上世纪九十年代,随钻地震从理论探索逐步向工程应用过渡,形成了一整套技术,并开始对外服务,这些系统目前仍在不断的完善中。它以钻井作业中钻头破岩时产生的振动作为地下震源,通过安装在井架和钻杆顶端的传感器采集由钻杆传送上来的钻头振动信号,并通过地面测线上的检波器排列采集经地层传播上来的钻头信号的直达波和反射波图。可实时预测钻头前方地层构造的细节,异常地层孔隙流体压力,减少钻探风险,确定套管的最佳下放深度,对于提高钻井工程安全与效益具有非常重要的意义。目前,基于水平钻机钻头震源的随钻地震侧帮探测技术还未见报道,因此需要进行基于日常生产采掘设备的侧帮被动震源的地质勘探研究,填补空白。



技术实现要素:

本发明所要解决的技术问题是提供随钻连续可变深度震源微震定位探测方法。

为了解决上述问题,本发明技术方案是,随钻连续可变深度震源微震定位探测方法,其特征在于:包括如下步骤:

第一步:将检波器设置在钻柱尾端,用于接收钻头发射波;

第二步:将三分量传感器组设置在巷道侧帮,三分量传感器能同

时检测直达波和反射波;

第三步:启动钻机;

第四步:检波器将钻头震源通过钻柱传送的振动信号通过无线发射模块发送给防爆地质侧帮探测仪主机;三分量传感器组将收到的直达波和/或反射波通过无线发射模块发送给防爆地质侧帮探测仪主机;

第五步:防爆地质侧帮探测仪主机对收到的数据进行分析处理,

得出探测结论;数据分析处理按如下方法进行:

当直达波行程方向无异构体时,第一至第m三分量传感器接收到钻头震源信号的直达波,第m+1至第n三分量传感器未接收到直达波;则:c1,c2,τ1,τ2,li,可以通过方程组①求得:

其中:τ1为第一三分量传感器接收到的钻头震源信号直达波旅行时间,τ2为第m三分量传感器接收到的震源信号直达波旅行时间;t1为检波器接收的钻头震源信号在钻柱的传播时间;δt1为第一三分量传感器接收的钻头震源信号直达波旅行时间与钻头震源信号在钻柱传播时间的时间差,δt2为第m三分量传感器接收的钻头震源信号直达波旅行时间与钻头震源信号在钻柱的传播时间的时间差,i为从掌子面到侧帮布置的传感器序号,i=1,2,…m,li为钻头震源与第i个三分量传感器在垂直方向的距离,l1为钻头震源与第一三分量传感器在垂直方向的距离,l0为三分量传感器间距,x1为三分量传感器埋设深度,x2为开采巷道宽度;c1为钻头震源到第一三分量传感器的直线距离,c2为钻头震源到第m三分量传感器的直线距离;第一三分量传感器为三分量传感器组中与钻头距离最近的那个三分量传感器;第n三分量传感器为三分量传感器组中与钻头距离最远的那个三分量传感器。

本发明利用钻井作业中钻头破岩时产生的振动作为地下震源,通过安装在井架和钻杆顶端的传感器采集由钻杆传送上来的钻头振动信号,并通过安装在巷道侧帮的一组三分量传感器同时检测经地层传播上来的钻头信号的直达波和反射波,可实时预测钻头前方地层构造的细节,预测异常地层孔隙流体压力,减少钻探风险,确定套管的最佳下放深度。

将钻头从起点掘进到bt点,掘进长度为lt;掘进时间为t;

当三分量传感器组中第p三分量传感器收到反射波信号,说明有效探测区域有异构体;则:

b5,b6,c6,c7,τ7,τ8,y0可以通过方程组④求得:

其中:y0为异构体直径;τ7为第p三分量传感器接收的钻头震源信号在γ8方向反射波旅行时间,τ8为第p三分量传感器接收的钻头震源信号在γ9方向反射波旅行时间,δt7为第p三分量传感器接收的钻头震源信号在γ8方向反射波旅行时间与钻头震源信号在钻柱传播时间的时间差,δt8为第p三分量传感器接收的钻头震源信号在γ9方向反射波旅行时间与钻头震源信号在钻柱传播时间的时间差,b5为γ8方向第p三分量传感器到不良异构体界面距离,b6为γ9方向第p三分量传感器到不良异构体界面距离,γ6为第p三分量传感器探测到来自于钻头在起点的直达波与水平方向夹角,γ7为第p三分量传感器探测到来自于钻头在bt点的直达波与水平方向夹角,γ8为第p三分量传感器探测到来自于钻头在bt点的反射波与水平方向夹角,γ9为第p三分量传感器探测到来自于钻头在起点的反射波与水平方向夹角;c6为钻头震源到第p三分量传感器的直线距离;c7为钻头在bt点到第p三分量传感器的直线距离;

当无反射波信号时,则为有效探测区域无异构体,或者探测区域超出传感器探测精度。

本发明所述的随钻连续可变深度震源微震定位探测方法的有益效果是:本发明利用钻井作业中钻头破岩时产生的振动作为地下震源,通过安装在井架和钻杆顶端的传感器采集由钻杆传送上来的钻头振动信号,并通过安装在巷道侧帮的一组三分量传感器同时检测经地层传播上来的钻头信号的直达波和反射波,可实时预测钻头前方地层构造的细节,异常地层孔隙流体压力,减少钻探风险,确定套管的最佳下放深度,对于提高钻井工程安全与效益具有非常重要的意义;本发明成本低,实施方便,可广泛应用于煤矿、野外油气勘探、隧道建设以及地震探测等领域。

附图说明

图1为本发明所述的随钻连续可变深度震源微震定位探测方法原理图。

图2为当直达波行程方向无异构体时探测原理图。

图3是将钻头从起点掘进到bt点探测原理图。

具体实施方式

参见图1至图3,随钻连续可变深度震源微震定位探测方法,包括如下步骤:

第一步:将检波器b设置在钻柱尾端,用于接收钻头发射波;

第二步:将三分量传感器组a1,a2,……,am,am+1,……,an设

置在巷道侧帮,三分量传感器能同时检测直达波和反射波;

第三步:启动钻机;

第四步:检波器b将钻头震源通过钻柱传送的振动信号通过无线发射模块发送给防爆地质侧帮探测仪主机;三分量传感器组a1,a2,……,am,……,an将收到的直达波和/或反射波通过无线发射模块发送给防爆地质侧帮探测仪主机;

第五步:防爆地质侧帮探测仪主机对收到的数据进行分析处理,

得出探测结论;数据分析处理按如下方法进行:

当直达波行程方向无异构体时,第一至第m三分量传感器a1~am接收到钻头震源信号的直达波,第m+1至第n三分量传感器am+1~an未接收到直达波;则:c1,c2,τ1,τ2,li,可以通过方程组①求得:

其中:τ1为第一三分量传感器a1接收到的钻头震源信号直达波旅行时间,τ2为第m三分量传感器am接收到的震源信号直达波旅行时间;t1为检波器b接收的钻头震源信号在钻柱的传播时间;δt1为第一三分量传感器a1接收的钻头震源信号直达波旅行时间与钻头震源信号在钻柱传播时间的时间差,δt2为第m三分量传感器am接收的钻头震源信号直达波旅行时间与钻头震源信号在钻柱的传播时间的时间差,i为从掌子面到侧帮布置的传感器序号,i=1,2,…m,li为钻头震源与第i个三分量传感器在垂直方向的距离,l1为钻头震源与第一三分量传感器a1在垂直方向的距离,l0为三分量传感器间距,x1为三分量传感器埋设深度,x2为开采巷道宽度;c1为钻头震源到第一三分量传感器a1的直线距离,c2为钻头震源到第m三分量传感器am的直线距离;第一三分量传感器a1为三分量传感器组中与钻头距离最近的那个三分量传感器;第n三分量传感器an为三分量传感器组中与钻头距离最远的那个三分量传感器。

将钻头从起点掘进到bt点,掘进长度为lt,掘进时间为t;

当三分量传感器组中第p三分量传感器ap收到反射波信号,说明

有效探测区域有异构体;则:

b5,b6,c6,c7,τ7,τ8,y0可以通过方程组④求得:

其中:y0为异构体直径;τ7为第p三分量传感器ap接收的钻头震源信号在γ8方向反射波旅行时间,τ8为第p三分量传感器ap接收的钻头震源信号在γ9方向反射波旅行时间,δt7为第p三分量传感器ap接收的钻头震源信号在γ8方向反射波旅行时间与钻头震源信号在钻柱传播时间的时间差,δt8为第p三分量传感器ap接收的钻头震源信号在γ9方向反射波旅行时间与钻头震源信号在钻柱传播时间的时间差,b5为γ8方向第p三分量传感器ap到不良异构体界面距离,b6为γ9方向第p三分量传感器ap到不良异构体界面距离,γ6为第p三分量传感器ap探测到来自于钻头在起点的直达波与水平方向夹角,γ7为第p三分量传感器ap探测到来自于钻头在bt点的直达波与水平方向夹角,γ8为第p三分量传感器ap探测到来自于钻头在bt点的反射波与水平方向夹角,γ9为第p三分量传感器ap探测到来自于钻头在起点的反射波与水平方向夹角;c6为钻头震源到第p三分量传感器ap的直线距离;c7为钻头在bt点到第p三分量传感器ap的直线距离;

当无反射波信号时,则为有效探测区域无异构体,或者探测区域超出传感器探测精度。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1